课件——应用随机过程(英文版—G.A. PAVLIOTIS)
- 格式:pdf
- 大小:2.41 MB
- 文档页数:367
《应用随机过程》教学大纲英文名称Stochastic Process课程代码0212713适用对象研究生统计学、数量经济学类专业先修课程数学分析、概率论与数理统计考考试方式课程论文一、课程的性质、教学目的和要求(一)性质和目的随机过程是研究随机变量在时间参数的变化过程中所呈现出的统计规律性的一门学科,具有较高的理论和应用价值,是研究生相关专业的选修课。
本课程着重学习在经济金融领域中有较高应用价值的一些内容,如随机过程的基本概念和基本类型,泊松过程,更新过程,马尔可夫链,鞅,等基础知识,从而为学生学习后继课程和毕业论文打下必要的基础。
(二)教学方法主要是理论教学,采取多媒体辅助教学。
(三)教学安排本课程总学时48学时,其中习题课6学时。
二、课程内容和学时分配第一章金融领域中的数学模型(5节)教学重点:资产组合和期权定价理论及套利定价难点:期权定价理论和套利定价第一节债券和利率第二节证券市场和股票的波动第三节资产组合第四节期权定价理论和套利定价第二章随机过程(6节)教学重点:随机过程基本概念难点:Poisson过程第一节随机过程的基本概念第二节随机过程的数字特征第三节离散时间和离散型随机过程第四节正态随机过程第五节 Poisson过程第六节平稳随机过程第三章 Poisson过程(6)教学重点:Poisson过程的几个等价定义难点:更新过程第一节齐次Poisson过程到达时间间隔与等待时间的分布第二节非齐次Poisson过程和复合Poisson过程第三节年龄与剩余寿命第四节更新过程第四章离散参数Markov链(9)教学重点:Markov链在金融中的应用难点:状态空间的分解第一节Markov链的基本概念第二节 Chapman-Kolmogorov方程第三节 Markov链的状态分类第四节闭集与状态空间的分解第五节转移概率的极限状态与平稳分布第六节从随机游动到Black-Scholes公式第七节 Markov链在金融、经济中的应用举例第五章连续时间Markov链(3节)教学重点:生灭过程难点:极限定理第一节连续时间Markov链的定义第二节极限定理和Kolmogorov方程第三节生灭过程第四节生灭过程与股票价格过程第六章 Brown运动(9节)教学重点:Brown运动的推广难点:Brown运动联合分布第一节 Brown运动的背景及应用第二节 Brown运动的定义及基本性质第三节 Brown运动的推广第四节标准Brown运动的联合分布第五节 Brown运动的首中时及最大值第六节 Brown运动轨道的性质第七节 Brown运动在金融、经济中的应用举例第八节 Poisson过程在证券价格波动中的应用第七章鞅及其应用(6节)教学重点:条件期望即鞅的应用难点:随机微分方程第一节鞅的定义及其性质第二节上鞅、下鞅及分解定理第三节停时与停时定理第四节条件期望的投影性及鞅的应用三、教科书和参考书(一)教科书《随机过程及其在金融领域中的应用》王军王娟主编清华大学出版社2007。
随机过程理论及应用(中英文0600006)一、课程代码:0600006课内学时: 48 学分: 3二、适用范围(学科、专业、层次等)控制科学与工程、控制工程三、先修课程线性代数、微积分、概率论四、教学目标随机过程理论及应用是自动控制专业研究生所必修的一门基础课程,该课程覆盖了概率论和随机过程的基本知识,包括泊松过程、马尔可夫链、鞅和布朗运动等。
在这门课程中,我们旨在讲授随机过程的一些基本理论,并扩展到其在控制、通信、经济和金融等领域的一些应用。
通过学习这门课程可以让学生学会以概率的方式来思考问题、看待问题和解决问题。
五、考核与成绩评定:成绩以百分制衡量。
成绩评定依据:课堂成绩10%,课后作业20%,考试70%。
六、教学方式课堂讲授、课堂讨论、论文分析七、教学大纲(大纲撰写人:闫莉萍)1.预备知识 6学时1.1概率的公理化定义1.2随机变量与数字特征1.3矩母函数与特征函数1.4条件数学期望1.5随机过程的基本概念1.6随机过程的有限维分布和数字特征1.7随机过程的分类2.二阶矩过程与均分分析 6学时2.1基本概念2.2H空间与均方分析2.3宽平稳过程的概念和基本性质3.泊松过程 6学时3.1定义3.2与泊松过程相关的若干分布3.3泊松过程的推广3.4泊松过程的应用4. 离散时间马尔可夫过程 8学时4.1定义4.2转移概率矩阵4.3Chapman-Kolmogorov方程4.4状态的分类与状态空间分解4.5平稳分布4.6离散参数马尔科夫链的随机模拟与蒙特卡罗方法4.7应用5. 连续时间马尔可夫过程 6学时5.1定义与基本概念5.2转移概率矩阵5.3Kolmogorov微分方程5.4强马尔可夫性与嵌入马尔可夫链5.5连续马尔可夫过程的随机模拟5.6应用6. 鞅 6学时6.1基本概念6.2上(下)鞅及分解定理6.3停时和停时定理6.4鞅收敛定理6.5连续参数鞅7. 布朗运动 6学时7.1定义7.2布朗运动的性质7.3最大值与首中时7.4布朗运动的变形与推广8. 伊藤过程 4学时8.1伊藤积分8.2伊藤公式8.3伊藤微分8.4应用实例九、参考书及学生必读参考资料:1. 闫莉萍, 夏元清, 杨毅. 随机过程理论及其在自动控制中的应用[M]. 北京:国防工业出版社, 2012.2. Sheldon M. Rose. Stochastic Processes (Second Edition) [M]. John Wiley & SonsInc., 1996.3. 龚光鲁, 钱敏平. 应用随机过程[M]. 北京: 清华大学出版社, 2007.4. 林元烈. 应用随机过程[M]. 北京: 清华大学出版社, 2002.。