高中物理 卫星变轨问题学习资料
- 格式:ppt
- 大小:2.59 MB
- 文档页数:40
卫星变轨问题知识点总结
卫星变轨是指卫星在轨道上偏离原有轨道进行调整的过程,用于满足不同的需求,如太阳同步轨道、地球静止轨道等。
以下是卫星变轨问题的几个知识点总结:
1. 变轨方式:变轨主要有化学推进剂变轨和电推进剂变轨两种方式。
前者通常采用火箭发动机进行推进,后者则利用电磁力进行推进。
2. 变轨方法:变轨方法通常包括单次变轨、多次变轨、连续变轨等几种。
其中单次变轨是指通过一次加速或减速达到目标轨道;多次变轨是分数次进行变轨,实现最终目标轨道;连续变轨则是通过对卫星进行定期推进来维持轨道的稳定。
3. 变轨技术:变轨技术主要包括贴近飞行、引力助推、轨道选择等。
贴近飞行需要精确掌握卫星的运动状态,以便在飞行过程中进行微调;引力助推则是利用行星或月球等天体的引力来实现变轨;轨道选择则是根据具体任务需求选择不同的轨道。
4. 变轨误差:变轨过程中存在着各种误差,如发动机性能波动、气象条件变化等。
这些误差会影响卫星的运行轨迹,需要对其进行修正和控制。
5. 动力学方程:卫星的运动状态可以通过动力学方程描述。
动力学方程包括万有引力、空气阻力、电磁效应等多个因素,并可通过数值积分方法求解得到卫星的运动状态。
总之,卫星变轨是卫星运行中重要的环节之一,需要精确掌握
变轨技术和动力学方程,保证卫星能够按照预定轨道稳定运行,实现各种任务目标。
卫星的变轨运动(一)原理一、怎样把卫星发射到轨道上去呢?有两种方法。
以地球同步卫星为例。
一种是直线发射,由火箭把卫星发射到三万六千公里的赤道上空,然后做九十度的转折飞行,使卫星进入轨道。
另一种方法是变轨发射,即先把卫星发射到高度约二百公里~三百公里的圆轨道上,这条轨道叫停泊轨道,当卫星穿过赤道平面时,末级火箭点火工作,使卫星进入一条大的椭圆轨道,其远地点恰好在赤道上空三万六千公里处,这条轨道叫转移轨道,当卫星到达远地点时,再开动卫星上的发动机,使之进入圆形同步轨道,也叫静止轨道。
第一种发射方法,在整个发射过程中,火箭都处于动力飞行状态,要消耗大量燃料,还必须在赤道上设置发射场,有一定的局限性。
第二种发射方法,运载火箭消耗的燃料较少,发射场的位置也不受限制。
目前各种发射同步卫星都用第二种方法,但这种方法在操作和控制上都比较复杂。
二、嫦娥一号的发射步骤嫦娥卫星变轨分三次进行,如下图所示。
第一次,“嫦娥一号”卫星发射后首先被送入一个地球同步椭圆轨道,这一轨道离地面最近距离为500公里,最远为7万公里。
探月卫星用26小时环绕此轨道一圈。
第二次,通过加速再进入一个更大的椭圆轨道,距离地面最近距离500公里,但最远为12万公里,需要48小时才能环绕一圈。
此后,探测卫星不断加速,开始“奔向”月球,大概经过83小时的飞行,在快要到达月球时,依靠控制火箭的反向助推减速。
第三次,在被月球引力“俘获”后,成为环月球卫星,最终在离月球表面200公里高度的极地轨道绕月球飞行,开展拍摄三维影像等工作。
卫星奔月总共大约需要157个小时,距离地球接近38.44万公里。
为什么“嫦娥一号”卫星首次变轨选择在远地点进行呢?在对卫星的运行轨道实施变轨控制时,一般选择在近地点和远地点完成,这样做可以最大限度地节省卫星上所携带的燃料。
嫦娥一号卫星的首次变轨之所以选择在远地点实施,是为了抬高卫星近地点的轨道高度,只有在远地点变轨才能抬高近地点的轨道高度。
物理必修二卫星变轨知识点卫星变轨是指卫星在轨道上改变运动状态的过程。
卫星变轨的目的是为了调整轨道的位置、形状和倾角,以满足特定的任务需求。
在卫星变轨的过程中,需要考虑多种因素,包括能源消耗、轨道参数调整、轨道机动计划等。
卫星变轨的原理是通过在卫星上施加推力,改变其速度和轨道参数,从而实现轨道变化。
卫星通常采用火箭发动机或推进器来提供推力。
在卫星变轨过程中,需要考虑推力的方向和大小,以及推力施加的时间和方式。
卫星变轨可以实现多种功能。
例如,卫星可以通过变轨来调整轨道高度,以实现通信、导航和遥感等任务需求。
此外,卫星变轨还可以用于轨道维护,即调整轨道参数,以保持轨道的稳定性和可用性。
卫星变轨的过程中需要考虑多个因素。
首先是能源消耗问题。
卫星在变轨过程中需要消耗大量的燃料,因此需要合理安排能源供应和消耗,以保证卫星的运行时间和任务需求。
其次是轨道参数调整问题。
卫星的轨道参数包括轨道高度、倾角、偏心率等,这些参数对于卫星的任务效果有重要影响。
在变轨过程中,需要根据具体任务需求和轨道特性来调整这些参数,以达到最佳效果。
最后是轨道机动计划问题。
卫星变轨需要制定详细的机动计划,包括推力的方向、大小和持续时间等。
在制定机动计划时,需要考虑卫星的运行状态、任务需求和能源消耗等因素,以保证变轨的效果和安全性。
卫星变轨是卫星运行中的重要环节,对于实现卫星任务和保持轨道稳定性都具有重要意义。
随着卫星技术的不断发展,卫星变轨的方法和技术也在不断创新和改进。
未来,随着卫星任务的需求和技术的进步,卫星变轨将会更加精确和高效,为人类社会的发展做出更大的贡献。
专题17 卫星变轨问题【专题概述】当我们要从地球向天空发射不同的卫星时,就牵扯到卫星的变轨问题,要想让卫星向高轨道运动,那么我们就要让卫星加速做离心运动,使得卫星的运动轨道达到我们的要求,对于卫星的运动,我们首先需要了解卫星在不同轨道上运动的规律:卫星的向心加速度、线速度、角速度、周期与轨道半径的关系,根据万有引力提供卫星绕地球运动的向心力,即有:错误!=ma n=m错误!=mω2r=m错误!r(1)a n=错误!,r越大,a n越小.(2)v=错误!,r越大,v越小.(3)ω=错误!,r越大,ω越小.(4)T=2π错误!,r越大,T越大.卫星变轨:这是卫星变轨图:卫星先在较低的圆轨道1上做圆周运动,当运动到近地点A时,经过点火加速,会使得卫星做离心运动,运动轨道变成了椭圆轨道2,在远地点在再次点火加速,上到预定轨道3,然后卫星绕地球再次做匀速圆周运动,这样就达到了发射卫星的目的,对于此类问题,A和B的速度和加速度之间的关系:卫星在轨道1上经过A点到达轨道2上的B点时,引力做负功,所以动能减小,所以卫星在轨道1上运行的速率大于在轨道2上经过B点时的速率;因为G=ma 即a=卫星在轨道2上经过A点时的向心加速度大于在轨道2上经过B点时的向心加速度,卫星在B点时,距离地球的距离相同,万有引力相同,根据牛顿第二定律,加速度相同关于地球的同步1.定义:相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.2.“七个一定”的特点(1)轨道平面一定:轨道平面与赤道平面共面.(2)周期一定:与地球自转周期相同,即T=24 h。
(3)角速度一定:与地球自转的角速度相同.(4)高度一定:由G错误!=m错误!(R+h)得地球同步卫星离地面的高度h=3。
6×107 m.(5)速率一定:v=错误!=3.1×103 m/s。
(6)向心加速度一定:由G错误!=ma得a=错误!=g h=0。
23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向相同.【典例精析】关于同步卫星典例1利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为()A.1 h B.4 h C.8 h D.16 h 【答案】B卫星的轨道半径为r=错误!=2R由错误!=错误!得错误!=错误!。
物理必修二卫星变轨知识点卫星变轨是指卫星在轨道中改变自身的轨道参数,以满足不同的任务需求。
卫星变轨技术在现代卫星应用中起着至关重要的作用。
本文将从卫星变轨的原因、方法和应用等方面进行详细介绍。
一、卫星变轨的原因卫星变轨的原因主要有以下几点:1.任务需求:不同的任务对卫星的轨道要求不同,比如通信卫星需要在地球上不同的位置保持良好的覆盖范围,观测卫星需要在不同的轨道高度进行观测等。
2.故障修复:当卫星发生故障时,需要进行修复或更换,卫星变轨可以使得维修人员更容易接近故障卫星。
3.轨道维持:卫星在轨道中受到多种因素的影响,如地球引力、太阳引力、大气阻力等,这些因素会导致卫星轨道发生偏离,卫星变轨可以使轨道得到校正。
二、卫星变轨的方法卫星变轨的方法主要有以下几种:1.推力变轨:通过发射推进剂,产生推力使卫星改变速度和方向,从而改变轨道。
推力变轨通常分为瞬间变轨和连续变轨两种方式。
2.重力助推:利用其他天体的引力对卫星进行助推,实现轨道变化。
重力助推主要包括天体摄动助推和多天体引力助推。
3.空气动力变轨:通过调整卫星的姿态,利用大气阻力使卫星轨道发生变化。
这种方法适用于较低轨道的卫星。
三、卫星变轨的应用卫星变轨的应用非常广泛,主要包括以下几个方面:1.通信卫星:通信卫星需要覆盖全球不同地区,通过卫星变轨可以实现全球范围内的通信覆盖。
2.导航卫星:导航卫星需要提供精确的定位和导航服务,通过卫星变轨可以实现更好的覆盖范围和定位精度。
3.观测卫星:观测卫星需要在不同的轨道高度进行观测,通过卫星变轨可以实现不同高度的观测任务。
4.科学实验卫星:科学实验卫星需要在特定的轨道上进行科学实验,通过卫星变轨可以实现科学实验的需求。
总结:卫星变轨是一项重要的技术,可以满足不同任务对卫星轨道的需求。
卫星变轨的方法主要包括推力变轨、重力助推和空气动力变轨等。
卫星变轨的应用非常广泛,涵盖了通信、导航、观测和科学实验等领域。
通过卫星变轨,可以实现更好的覆盖范围、定位精度和任务需求。
物理必修二卫星变轨知识点卫星变轨是指卫星在轨道上进行位置调整或者改变轨道的过程。
在卫星运行过程中,由于地球重力场的作用以及其他外力的干扰,卫星可能会偏离原定轨道。
为了保证卫星的正常运行和任务的顺利进行,需要对卫星进行变轨操作。
一、卫星变轨的原因卫星变轨的原因主要有以下几点:1.地球引力场的不均匀性:地球的引力场并不是完全均匀的,不同地方的重力场强度不同,导致卫星在不同位置受到的引力大小不同,从而引起轨道偏离。
2.摄动力的干扰:卫星在轨道上受到太阳、月球、行星等天体的摄动力干扰,这些干扰力会引起卫星轨道的周期性变化。
3.大气阻力的影响:卫星在轨道运行过程中会与地球上的稀薄大气层发生摩擦,受到阻力的作用,从而导致轨道偏离。
二、卫星变轨的方法卫星变轨的方法主要有以下几种:1.推进器推力法:通过卫星上的推进器对卫星进行推力,改变卫星的速度和轨道,从而实现变轨。
这种方法适用于大型卫星,推进器的推力和燃料的消耗量都较大。
2.动量轮转动法:通过控制卫星上的动量轮的转动,改变卫星的角动量,从而实现变轨。
这种方法适用于小型卫星,具有推进器推力法所没有的优点,如燃料消耗量小、调整精度高等。
3.太阳帆法:通过卫星上的太阳帆对太阳光的反射和吸收,利用太阳光的压力对卫星进行推动,实现变轨。
这种方法适用于微小卫星,具有高效、节能的特点。
三、卫星变轨的步骤卫星变轨的步骤主要包括以下几个阶段:1.变轨需求分析:根据卫星的任务需求和轨道偏差情况,确定卫星的变轨需求。
包括变轨的目标、变轨的方式以及变轨的时间等。
2.变轨计划设计:根据变轨需求,设计卫星的变轨计划。
包括变轨的方式、变轨的时间、变轨的轨道等。
需要考虑到卫星的燃料消耗、动量控制等因素。
3.变轨操作执行:根据变轨计划,进行卫星的变轨操作。
包括控制卫星上的推进器、动量轮或太阳帆等设备,实现卫星的位置调整和轨道变化。
4.变轨效果评估:根据变轨后的卫星轨道和位置,评估变轨的效果。
卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。
(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。
2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。
人造卫星的发射过程要经过多次变轨方可到达预定轨道,在赤道上顺着地球自转方向发射卫星到圆点点火加速,速度变大,进入椭圆轨道Ⅱ再次点火加速进入圆轨道Ⅲ卫星变轨问题分析方法速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足以此为依据可分析卫星在两个不同圆轨道上的②卫星做椭圆运动经过近地点时,卫星做离心运动,m v2.以此为依据可分析卫星沿椭圆轨r道和沿圆轨道通过近地点时的速度大小(即加速离心.发射“嫦娥三号”的速度必须达到第三宇宙速度.在绕月圆轨道上,卫星周期与卫星质量有关.卫星受月球的引力与它到月球中心距离的平方成反比.在绕月轨道上,卫星受地球的引力大于受月球的引力明白第三宇宙速度是指被发射物体能够脱离太阳系的最小发射速度,而“嫦娥三号”没有脱离太阳的引力范要熟记万有引力的表达式并清楚是万有引力提供卫星做圆如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆,到达远地点Q时再次变轨,进入同步卫星轨设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道点的速率为v2,沿转移轨道刚到达远地点,在同步卫星轨道上的速率为v4,则下列说法正确的是点变轨时需要加速,Q点变轨时要减速点变轨时需要减速,Q点变轨时要加速D.v2>v1>v4>v3练2发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的运行速率大于在轨道1上的运行速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上运动一周的时间大于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度反思总结卫星变轨问题关键词转化二、有关宇宙航行的几个问题辨析辨析1.发射速度与运行速度的比较(1)发射速度在地面以某一速度发射一个物体,发射后不再对物体提供动力,在地面离开发射装置时的速度称为发射速度,三个宇宙速度都是指发射速度.(2)运行速度运行速度是指做圆周运动的人造卫星稳定飞行时的线速度,对于人造地球卫星,轨道半径越大,则运行速度越小.(3)有的同学这样认为:沿轨道半径较大的圆轨道运行的卫星的发射速度大,发射较为困难;而轨道半径较小的卫星发射速度小,发射较为容易.这种观点是片面的.因为高轨卫星的发射难易程度与发射速度没有多大关系,如果我们在地面上以7.9km/s 的速度水平发射一个物体,则这个物体可以贴着地面做圆周运动而不落到地面;如果速度增大,则会沿一个椭圆轨道运动.速度越大,椭圆轨道的半长轴就越大;如果这个速度达到11.2km/s,则这个物体可以摆脱地球的引力.可见,无论以多大速度发射一个物体或卫星,都不会使之成为沿较大的圆轨道做圆周运动的人造卫星,高轨卫星的发射过程是一个不断加速变轨的过程,并不是在地面上给一个发射速度就可以的.【典例2】(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星的发射速度必定大于11.2km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9km/sC.在椭圆轨道上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ辨析2.分清三个不同(1)重力和万有引力的向心加速度等于重力加速度g 的运动周期有可能是20小时如图所示,地球赤道上的山丘e,近地资源卫星均在赤道平面上绕地心做匀速圆周运动.设、v3,向心加速度分别为v2<v33<a2已知地球赤道上的物体随地球自转的线速度大小为近地卫星线速度大小为,地球同步卫星线速度大小为设近地卫星距地面高度不计,同步卫星距地面高度约为地倍.则下列结论正确的是(。
人造卫星变轨问题专题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r 确定后,与之对GM、周期T 2r 3、向心加速度 a GM应的卫星线速度 v 也都是确定的。
如果卫星r 2rGM的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。
同理,只要上述物理量之一发生变化,另外几个也必将随之变化。
在高中物理中,会涉及到人造卫星的两种变轨问题。
二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小) ,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。
解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。
如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。
如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。
由于这种变轨的起因是阻力,阻力对卫星做负功, 使卫星速度减小, 所需要的向心力m v 2减r小了,而万有引力大小GMm没有变,因此卫星将做向心运动,即半径r 将减小。
r 2由㈠中结论可知:卫星线速度 v 将增大,周期 T 将减小,向心加速度三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。
如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在 P 点点火加速,在短时间内将速率由 v 1 增加到 v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点 Q 时的速率为 v 3,此时进行第二次点火加速, 在短时间内将速率由 v 3 增加到 v 4,使卫星进入同步轨道Ⅲ, 绕地球做匀速圆周运动。
a 将增大。
v 3ⅢQ v 4v 1 Ⅱ Ⅰ Pv 2第一次加速:卫星需要的向心力mv 2 增大了,但万有引力 GMm 没变,因此卫星将开始做rr 2离心运动,进入椭圆形的转移轨道Ⅱ。
卫星变轨问题知识点一、知识概述《卫星变轨问题知识点》①基本定义:卫星变轨呢,简单说就是卫星在太空中改变自己运行的轨道。
卫星本来按照一定的轨道绕着地球之类的天体转,然后通过一些操作,就跑到另一个轨道上去了。
②重要程度:这在航天领域可是相当重要的。
要是没有卫星变轨技术,很多航天任务就没法完成啦。
像卫星要到特定的位置进行观测或者通讯,那就得变轨到合适的地方。
③前置知识:得先了解一些基本的圆周运动知识,比如向心力这些概念。
还得知道万有引力定律,就是那个任何两个物体之间都存在相互吸引力的定律,在卫星这个事情里,它就是卫星绕着天体转的关键力量。
④应用价值:在现实里用处超多。
例如,通信卫星有时候需要调整轨道来覆盖不同的地区,如果一个地区有特殊需求,像举办大型运动会之类的,就可以让卫星变轨来更好地提供通信服务。
还有,科研卫星要是想对某个特定星球区域进行探测,也得变轨过去。
二、知识体系①知识图谱:卫星变轨知识在航天物理学这个大学科里可是重要的一部分。
它和卫星的发射、运行等其他知识紧密相连。
比如说,发射卫星到预定轨道可能就涉及到一些初步的变轨操作。
②关联知识:和万有引力、圆周运动、天体力学这些知识联系密切。
万有引力是变轨的根源力量,圆周运动是卫星运行轨道的基本模式,天体力学则是研究这一系列问题的综合学科。
③重难点分析:- 掌握难度:这一块有点难度。
卫星变轨涉及到复杂的力与运动的关系,还有能量的变化。
比如说在变轨过程中,卫星的速度怎么变,这就得考虑多种因素了。
- 关键点:得搞明白卫星变轨时速度、高度、能量三者的关系。
当卫星要变到更高轨道的时候,得先加速,但是到了高轨道速度又会变小,这听起来有点拗口,但却是关键。
④考点分析:- 在考试中的重要性:在高中或者大学的物理学科里,这是个重点考查内容,特别是航天专题相关的考试。
- 考查方式:可能会让你计算卫星在变轨前后的速度、能量变化;也可能考查你变轨原理这种概念性的东西。
三、详细讲解【理论概念类】①概念辨析:卫星变轨核心就是卫星改变它原本的运行轨道。