现代材料分析方法-原子力显微镜共38页
- 格式:ppt
- 大小:4.72 MB
- 文档页数:38
原子力显微镜法原子力显微镜(Atomic Force Microscopy,简称AFM)是一种高分辨率的表面形貌和力学特性测量技术。
它通过在探针和样品表面之间施加微小的力量,利用谐振频率变化的检测原理获得样品表面的拓扑信息,从而实现纳米尺度的观测和测量。
本文将介绍 AFM 的基本原理、操作流程及其在纳米科学与纳米技术领域的应用。
一、基本原理原子力显微镜是基于探针与样品表面之间相互作用力的测量原理工作的。
探针端通过弹性变形受到样品表面的力作用,且力与距离成反比。
AFM以原子尺度的分辨率测量表面形貌,使用悬臂梁弹簧探针,通过测量力传感器的弯曲程度得到样品表面的高低起伏。
由于探针尖端可以被加工成非常尖锐的形状,所以可以实现纳米级别的表面成像。
二、操作流程1. 样品准备:将待测样品表面进行清洗和处理,确保表面干净平整。
2. 探针安装:选择合适的探针并安装在原子力显微镜仪器上。
3. 探针校准:使用标定样品或试样进行探针的校准调整,以确保测量结果的准确性。
4. 调整参数:根据样品的特性和需要测量的参数,进行原子力显微镜的工作参数设置。
5. 表面成像:将样品放置在仪器台面上,通过控制探针的移动和扫描模式,实现对样品表面的成像。
6. 数据分析:对得到的图像进行处理和分析,提取所需的拓扑和力学信息。
三、应用领域原子力显微镜法在纳米科学与纳米技术领域有着广泛的应用。
1. 表面形貌分析:原子力显微镜可以实现对材料表面的纳米级别形貌观测,如纳米颗粒、纳米线、纳米薄膜等的形貌表征。
2. 纳米力学性质研究:通过在原子力显微镜中加入力曲线扫描模式,可以测量材料的力学性质,如硬度、弹性模量等。
3. 表面化学成分分析:结合原子力显微镜与其他表征手段,如扫描电子显微镜、能谱分析等,可以实现对样品表面化学成分的分析。
4. 生物医学应用:原子力显微镜可实现对生物分子及细胞的高分辨率成像和测量,对生物医学研究具有重要意义。
5. 纳米加工与纳米制造:利用原子力显微镜的扫描控制功能,可以进行纳米级别的构筑、雕刻和操控,用于纳米加工技术和纳米器件制造。
物电学院原子力显微镜092班王天江(091002228)原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。
它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。
将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。
扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面结构信息。
生物型原子力显微镜它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。
微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。
AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。
原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.图1. 激光检测原子力显微镜探针工作示意图原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。
利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。