用于PSK载波提取的改进型逆调制环的研究
- 格式:pdf
- 大小:379.25 KB
- 文档页数:5
PSK正交解调频偏纠正算法的FPGA实现作者:***来源:《中国新通信》2021年第12期【摘要】針对通信系统中,通信双方相对运动而产生的载波频偏对接收端解调的影响,本文寻找了一种PSK正交解调频偏纠正算法来进行弥补,通过该算法的理论概述和FPGA中的实现总结,并通过某数据链传输系统的工程实践进了验证。
该纠正算法在大大降低载波频率偏差对数据传输系统中误码率影响的同时,还因为其适合进行FPGA硬件实现,在相关通信系统工程实践中可进行推广。
【关键词】 PSK解调频偏纠正引言:PSK调制是一种广泛应用的相位调制方式。
在硬件实现中,因为非相干解调不需要载波同步,其运算量较小,在硬件系统或是FPGA中易于实现,但其抗频偏的性能相对较弱。
另外,多数通信系统中的通信双方会进行相对运动,导致接收信号存在一定的频率偏差,只有估计并纠正该频率偏差,才能进行正常的解调[1]。
本文在上述背景下,讨论了一种基于正交解调的PSK频偏纠正算法,并在Xilinx FPGA芯片xc7z045ffg900-2中进行了算法的硬件实现,在某数据链传输系统中验证了该算法的抗频偏能力。
一、频偏纠正算法系统中接收信号经AD采样数字化后的PSK信号如式(1)所示[2]:其中,fc为发射端载波频率;g(t-kTs)表示信道传输以及接收通道滤波后的脉冲函数;Ts 为基带数据编码周期;为初始相位;为第k个数据的调制相位,其与PSK调制进制相关。
现假设接收端本地载波与fc的频率偏差为,在接收端进行数字下变频和基带滤波后的IQ 信号如式(2)(3)所示:通过构造两个正交表达式,命名为点积运算dot(k)和叉积运算cross(k),如式(4)(5)所示:由式(6)(7)结合三角函数的正交特性可得,dot(k)和cross(k)相互正交成立,可映射到星座图的同向分量和正交分量。
由于收发端载波频率的偏差,其在星座图中对应一定角度的范围,如式(8)所示:其中,Rs表示基带编码码速率。
1 前言随着通信技术的迅猛发展,数字调制技术中的PSK 调制在通信领域的应用已经步入了一个新的阶段,它不仅在军事通信方面发挥着不可取代的优势,而且广泛渗透到民用通信的各个方面。
而作为PSK 调制技术之一的QPSK 调制技术是在通信中应用最多,技术最成熟的一种数字调制方式,是目前应用最广泛的数字调制系统。
本课题是对PSK 调制解调技术的研究与实现,根据当今现代通信技术的发展,对QPSK 信号的调制解调问题进行了分析, 利用System View 建立系统模型,仿真参数的设计以及系统波形的分析来分析系统的各项性能指标。
PSK 调制解调的关键问题是系统的同步,论文采用相干解调方式对PSK 信号进行解调,并且在最后对设计仿真结果中的时域波形,系统的频谱图,系统的误码率以及抗干扰性能都做了分析,从而体会并了解到QPSK 调制解调系统的优势。
本毕业设计对PSK 系统的应用典型QPSK 调制解调系统进行系统的设计、仿真、分析,从而达到设计的目的,最终在对理想信道(插入窄带高斯白噪声信道)干扰中,对仿真结果与理论值进行比较,可以得出本系统的仿真设计基本符合要求,并且可以深刻地体会到QPSK 调制解调系统具有良好的抗干扰性能,在未来的通信技术中具有决定性的应用前景。
2 调制解调技术的概述数字信号调制是用基带数字信号控制高频载波,把基带数字信号变换为频带数字信号的过程,数字信号的调制设备包括数字信号处理(编码)单元和调制单元。
图1 数字通信调制系统框图首先将模拟信号数字化,数字信号序列进行编码码流是不能或不适合直接通过传输信道进行传输的,必须经过信道编码,使之变成适合在规定信道中传输的形式。
信道编码,一般包括扰码,R-S编码,卷积交织,卷积编码;有关调制单元的调制类型的分类:(1) 按数据类型数字调制可分为二进制调制和多进制调制两种。
(2) 按已调信号的结构形式分为线性调制和非线性调制两种。
(3) 按数字调制方式分为调幅、调频和调相三种基本形式。
psk调制与解调实验报告PSK调制与解调实验报告引言:调制与解调是通信领域中非常重要的技术,它们被广泛应用于无线通信、卫星通信、光纤通信等领域。
相位移键控调制(Phase Shift Keying, PSK)是一种常见的数字调制技术,本实验旨在通过实践,深入了解PSK调制与解调的原理和实际应用。
一、实验目的本实验的主要目的是掌握PSK调制与解调的基本原理,熟悉其实际应用,并通过实验验证理论知识的正确性。
二、实验器材1. 信号发生器2. 频谱分析仪3. 示波器4. 电脑及相关软件三、实验原理1. PSK调制PSK调制是利用不同相位表示数字信号的一种调制技术。
常见的PSK调制方式有二进制相移键控调制(Binary Phase Shift Keying, BPSK)和四进制相移键控调制(Quadrature Phase Shift Keying, QPSK)等。
BPSK调制将0和1分别映射为相位为0和π的两种状态,而QPSK调制则将00、01、10和11分别映射为相位为0、π/2、π和3π/2的四种状态。
2. PSK解调PSK解调是将接收到的PSK信号转化为数字信号的过程。
解调的关键是从接收到的信号中提取出相位信息。
常用的解调方法有相干解调和非相干解调。
相干解调需要与发送信号保持相位同步,而非相干解调则不需要。
四、实验步骤1. 设置信号发生器的频率和幅度,选择合适的PSK调制方式。
2. 连接信号发生器和频谱分析仪,观察并记录调制后的信号频谱。
3. 将调制后的信号输入到示波器中,观察并记录波形。
4. 通过解调器将接收到的信号转化为数字信号。
5. 使用电脑及相关软件进行信号解调的仿真实验,比较实验结果与理论分析的差异。
五、实验结果与分析1. 调制实验结果根据实验步骤中的设置,我们可以通过频谱分析仪观察到调制后的信号频谱。
根据不同的PSK调制方式,频谱图上会出现不同的频率成分。
通过观察波形,我们可以看到相位的变化对应着信号的变化。
基于改进小波脊线的PSK信号载频提取技术仿真
池庆玺;袁健全;陈旭情;佟富欣
【期刊名称】《系统仿真学报》
【年(卷),期】2008(20)23
【摘要】针对低截获概率(LPI)雷达中相位编码(PSK)信号的二相编码(BPSK)、四相编码(QPSK)信号载频估计,提出了小波脊线迭代法下PSK信号载频提取技术及其抗噪性能,分析了其在载频提取中迭代初始参数选取、迭代结果精度以及发散点迭代等不足,给出了用于PSK载频提取的改进小波脊线。
改进方法在发挥运算量小、抗噪性能的同时,提高了PSK信号载频估计精度。
MATLA仿真验证了改进算法的有效性,表明其较传统相位差分法信噪比门限降低了5dB。
【总页数】5页(P6338-6342)
【作者】池庆玺;袁健全;陈旭情;佟富欣
【作者单位】哈尔滨工程大学;中国航天科工飞航技术研究院;中国航天二院科研部【正文语种】中文
【中图分类】TN911.72
【相关文献】
1.基于改进小波脊线法的LFM信号脉内特征提取
2.基于小波脊线特征提取的雷达辐射源信号识别
3.基于小波脊线特征提取的雷达辐射源信号识别
4.基于小波脊线法的数字调制信号载频估计
5.基于最大坡度法提取非平稳信号小波脊线和瞬时频率
因版权原因,仅展示原文概要,查看原文内容请购买。
题目:DQPSK调制解调技术的研究与实现学生姓名:学号:专业班级:指导教师:完成时间:目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题背景 (1)1.2 DQPSK调制技术与数字通信 (2)第二章DQPSK调制与解调原理分析 (5)2.1 DQPSK信号特点 (5)2.2 差分编码与解码原理 (10)2.3 FPGA实现方案 (12)第三章DQPSK信号调制 (14)3.1 调制器总体设计方案 (14)3.2 串并转换 (14)3.3 差分编码 (15)3.4 FIR滤波器设计 (17)3.5 数字载波 (18)第四章DQPSK信号解调 (20)4.1 解调器总体方案 (20)4.2 AD采样 (20)4.3 同步设计 (22)4.3.1 COSTAS载波跟踪环 (22)4.3.2 位定时同步 (26)4.4 差分解码 (26)4.5 并串转换 (29)总结 (30)参考文献 (31)致谢 (32)摘要QPSK(quadrature phase shift keying)是四相移键控的简称,它兼有两方面的特性;从一方面看,它采用了4种相位;从另一方面看,它采用了正交的载波。
DQPSK是差分四相移键控(differential QPSK)的简称,是结合差分编码的QPSK。
DQPSK调制解调方式以其抗干扰能力强、频带利用率高等优点,在现代数字通信系统如数字微波通信、等宽带无线通信等中得到广泛的应用。
DQPSK是在QPSK(四相正交绝对调相)的基础上作的改进,它克服了QPSK信号载波的相位模糊问题,用相邻码元之间载波相位的相对变化来表示2位二进制数字信息。
由于DQPSK 传输信息的特有方式,使得解调时不存在相位模糊问题,这是因为不论提取的载波取什么起始相位,对相邻两个四进制码元来说都是相等的,那么相邻两个四进制码元的相位差肯定与起始相位无关,也就不存在由于相干解调载波起始相位不同而引起的相位模糊问题,所以,在使用中都采用相对的四相调制。
COSTAS 环的仿真与实现一. COSTAS 环的原理:同步是通信系统中一个重要的实际问题。
当采用同步解调或相干检测时,接收端需要提供一个与发射端调制载波同频同相的相干载波。
这个相干载波的获取就称为载波恢复,或称为载波同步。
载波恢复的方法通常有两类,一类是在发送信号的同时,在适当的频率上还发送导频信号,实际中这种方法很少采用。
另一类是直接从接收到的信号中提取,可以用平方变换法和COSTAS 环法等。
由于在获得相同的工作性能时,COSTAS 环法的工作频率是平方变换法工作频率的1/2。
因此,COSTAS 环法在实际中更为常用。
其构成原理如图示:设环路的输入信号为 tt m t s t s c PSK ωcos )()()(2==环路锁定时,压控振荡器输出的是与发送信号频率相同相位差为Φ的相干载波,记作 )cos()(φω+=t t u c vco此信号和它的经过相移2π后的正交信号分别在同相支路和正交支路与输入信号相乘,得经低通滤波器后的输出分别为 :由于 和 都包含有调制信号,将它们再相乘可以消除调)i )(0t q (0t 环路锁定时,有0或π,这意味着恢复出的载波可能与理想载波同相,也可能反相。
这种相位关系的不确定性,称为0,π的相位模糊度。
COSTAS 环也可以推广到MPSK的载波提取,具体请参阅相关文献当输入信号为QPSK时,相应的COSTAS环如下:这种方法实现起来比较复杂,实际中一般不采用。
一般采用一种改进型的COSTAS环,该方法可以用数字电路实现,具有比传统COSTAS 环更好的性能。
其原理如下:设接收信号为: )sin()()cos()()(1211φφ+++=wt t s wt t s t s 设参考载波为:sin(+wt d 相位误差: 鉴相并低通滤波后得到:其中把坐标轴化为8个区间:)2φu =2112)sgn()sgn(u u u u −φφφφsin 2)(cos 2)()(cos 2)(sin 2)()(212211t s t s t u t s t s t u −=+=12φφφ−=⎪⎩⎪⎨⎧<−=>+=0,10,00,1)sgn(x x x x当φ位于不同的区间时: Φ 1 2 3 4 5 6 7 8SGNu1 s2(t) s1(t) s1(t) -s2(t)-s2(t)-s1(t)-s1(t) s2(t) SGNu2 s1(t) -s2(t) -s2(t)-s1(t)-s1(t)s2(t) s2(t) s1(t) ⎪⎪⎩⎪⎪⎨⎧−−=区间,在,区间,在,区间,在,区间,在,76cos 32cos 54sin 81sin φφφφφφφφdd d d d k k k k u 其鉴相曲线为:可见改进型的COSTAS 环鉴相曲线为锯齿性,其鉴相灵敏度比传统的COSTAS 环高其,鉴相特性比COSTAS 环好。
基于改进粒子滤波的PSK信号时延和码元联合估计算法夏楠;邱天爽【摘要】An adaptive particle filtering algorithm based on resampling was proposed for time delay estimation of PSK signals, which could eliminate the influence of inaccurate posterior possibility distribution caused by the small noise variance and the influence of the increase of estimation error caused by the large noise variance. Taking into account the small time delay estimation being invalid in the existing algorithms, a symbol forward and backward detection technique was applied to achieve random time delay accurate estimation in a symbol period. Otherwise, the carrier frequency offset of the received signal was estimated and compensated. Simulation results verify the novel algorithm can achieve more accurate tune delay estimation and lower symbol error rate than the existing algorithm.%提出了一种基于自适应重采样的粒子滤波算法用于对PSK信号的时间延迟进行估计,可以消除由于状态噪声方差设置过小而产生不准确的后验概率分布和设置过大引起的估计误差增大的问题.同时,考虑已有算法无法实现较小时间延迟准确估计的问题,提出了一种码元正向与反向检测相结合的算法,可实现一个码元周期内任意时间延迟的准确估计.另外,对载频偏差进行精确估计并补偿.仿真结果表明这种新方法与原算法相比能够实现更精确的时间延迟估计与更低码元检测误码率.【期刊名称】《通信学报》【年(卷),期】2012(033)004【总页数】7页(P129-135)【关键词】粒子滤波;自适应重采样;时延估计;码元正向和反向检测【作者】夏楠;邱天爽【作者单位】大连理工大学电子信息与电气工程学部,辽宁大连116024;大连理工大学电子信息与电气工程学部,辽宁大连116024【正文语种】中文【中图分类】TN911.721 引言移相键控(PSK)调制是通信系统中应用广泛的一种数字调制方式。
Psk调制解调电路的新原理和过程目录: 1. 引言 2. Psk调制原理 3. Psk解调原理 4. Psk调制解调电路的实现5. 新原理和过程6. 总结1. 引言Psk(相位偏移键控)调制和解调技术是无线通信中常用的调制解调方式之一。
它通过改变载波信号的相位,来传输数字信号。
本文将介绍Psk调制解调电路的基本原理和传统实现方式,同时探讨一些新的原理和过程,以拓宽对这一主题的理解。
2. Psk调制原理Psk调制的基本原理是根据数字信号的码元来调整载波信号的相位。
具体来说,假设二进制数字信号的两种状态为0和1,将0映射到一个特定的相位,如0°,将1映射到另一个相位,如180°。
这样,在传输过程中,根据数字信号的变化,载波信号的相位会相应地改变,从而传输数字信息。
这种方式使得信号在频谱中具有良好的集中性,能够有效地传输数据。
3. Psk解调原理Psk解调的过程是将调制后的Psk信号转换为可供数字系统处理的基带信号。
解调电路需要对Psk信号的相位进行检测,判断每个码元所对应的相位,并将其转化为数字信号。
常见的解调方式有包络检波、相干解调等。
包络检波方法通过检测Psk信号的幅度变化来确定相位,而相干解调则是通过将Psk信号与本地参考信号相乘,再通过低通滤波得到基带信号。
4. Psk调制解调电路的实现传统上,Psk调制解调电路的实现主要基于模拟电路。
调制电路通常由载波产生器和相位调制电路组成,而解调电路则需要相位解调器和解调滤波器。
这些电路在实现上较为复杂,不仅需要精确的设计,而且在制造过程中也容易受到各种噪声和失真的影响。
模拟电路的性能通常会受到工艺、温度等因素的影响,可能无法满足高精度和高速传输的需求。
5. 新原理和过程随着数字电路和信号处理技术的发展,Psk调制解调电路的实现方式也在不断创新。
一种新的原理是将Psk调制解调电路实现在数字领域中,利用现代的低功耗、高速度的数字集成电路,以及数字信号处理器(DSP)的算法。
2PSK 平方环法载波提取+原理图+PCB一.课题目的(1)了解2PSK (平方环法载波提取)通信系统的工作原理和信息传输方案,掌握系统的设计方法与参数选择原则。
(2)熟悉SYSTEMVIEW 的使用,完成2PSK 通信系统和平方环提取载波的仿真。
(3)根据需要选择相关芯片,完成原理图和PCB 图的设计。
二.原理介绍1.2PSK 信号的调制和解调2PSK 中以载波的不同相位去直接表示相应的数字信息,载波的振幅和频率都是不变的。
载波相位随基带脉冲的变化而取相应的离散值,通常用相位0°和180°来分别表示1或-1。
这种PSK 波形在抗噪声性能方面比ASK 和FSK 都好,而且频带利用率也高,所以在中高速数传中得到广泛的应用。
(1)时域表达式:)cos(2ϕωn c PSK t A e +=发送0时,ϕn 是0°;发送1时,ϕn 是180°。
(2)2PSK 的调制:图1 2PSK 调制器原理框图 cos ω c t 0°开关电路e 2PSK (t)π180°相移s(t)(b)(3)2PSK 信号:图2 2PSK 信号示意图(4)2PSK 的相干解调:PSK 信号恒包络,是利用相位传递信息的,所以在接收端必须采用相干解调,此次设计要求用平方环提取相干载波。
2PSK 信号经过带通滤波器得到有用信号,经相乘器与本地载波相乘再经过低通滤波器得到低频信号,再经抽样判决得到基带信号。
图3 2PSK 相干解调原理框图图中各点信号波形如下:图4 解调过程波形图 BPF e 2PSK(t)a 相乘器c LPF d be 抽样判决器输出cos c t 定时脉冲(5)倒π现象:在2PSK中,由于发端以某一个相位作为基准的,因而在接收端也必须有这样一个固定基准相位作参考。
如果提取的相干载波相位发生180°变化,则恢复的数字信号正好相反,0变为1,1变为0。
实验二 PSK 信号载波恢复一、实验目的1、掌握科斯塔斯环的组成、工作原理及在载波恢复中的应用。
2、掌握倍频器的组成、工作原理及在载波恢复中的应用。
二、实验内容1、观察科斯塔斯环工作过程,各处信号波形及特性。
2、观察载波恢复的相位模糊现象。
三、基本原理当采用同步解调或相干检测时,接收端需要提供一个与发射端调制载波同频同相的相干载波。
这个相干载波的获取就称为载波提取,或称为载波同步。
提取载波的方法一般分为两类:一类是在发送有用信号的同时,在适当的频率位置上,插入一个(或多个)称作导频的正弦波,接收端就由导频提取出载波,这类方法称为插入导频法;另一类是不专门发送导频,而在接收端直接从发送信号中提取载波,这类方法称为直接法。
下面就重点介绍直接法的两种方法。
1、平方变换法和平方环法设调制信号为()m t ,()m t 中无直流分量,则抑制载波的双边带信号为t t m t s c ωcos )()(=接收端将该信号进行平方变换,即经过一个平方律部件后就得到2222()1()()cos ()cos 222c c m t e t m t t m t t ωω==+(8-1)由式(8-1)看出,虽然前面假设了()m t 中无直流分量,但2()m t 中却有直流分量,而()e t 表示式的第二项中包含有2ωc 频率的分量。
若用一窄带滤波器将2ωc 频率分量滤出,再进行二分频,就获得所需的载波。
根据这种分析所得出的平方变换法提取载波的方框图如图8-1所示。
若调制信号()m t =±1,该抑制载波的双边带信号就成为二相移相信号,这时211()[()cos ]cos 222c c e t m t t t ωω==+ (8-2)图8-1 平方变换提取载波因而,用图8-1所示的方框图同样可以提取出载波。
由于提取载波的方框图中用了一个二分频电路,故提取出的载波存在180°的相位模糊问题。
对移相信号而言,解决这个问题的常用方法是采用相对移相。
新型Costas环在2PSK中的研究与硬件实现梁源;王兴华;向新【摘要】针对先验概率相等的2PSK中的信号不含载波分量,无法通过常规锁相法进行载波同步的缺陷,提出了利用新型科斯塔斯(Costas)环对2PSK进行锁频的方案.利用Simulink搭建框图平台对理论进行了验证,并通过System Generator自动代码生成并将代码下载到FPGA芯片上,同时通过硬件在环协同仿真功能将结果实时在Simulink平台显示出来.输出结果表明该方法能较好地达到实现锁频目的,通过比特流数据实时下载到FPGA开发板来进行调试与验证,提高系统性能.【期刊名称】《科学技术与工程》【年(卷),期】2014(014)020【总页数】5页(P237-240,262)【关键词】2PSK;载波同步;科斯塔斯环;硬件在环协同【作者】梁源;王兴华;向新【作者单位】空军工程大学航空航天工程学院,西安710038;空军工程大学航空航天工程学院,西安710038;空军工程大学航空航天工程学院,西安710038【正文语种】中文【中图分类】TN911.7当今世界,随着VLSI(very large scale integration)的迅速发展,无线通信技术实现了理论到实践的高速推进。
在通信过程中,发射和接收是通信系统中至关重要的两个部分,而诸如信道中噪声干扰、多普勒频移等因素都将造成接收端本振频率与载波频率之间的频率与相位偏移,因此接收机如何捕获并跟踪载波成为了影响通信质量好坏的关键。
载波同步可以分为有辅助导频的载频提取和无辅助导频的载频提取。
有辅助导频是指发射信号中加入一个或多个导频信号,然后进行载波提取。
例如,对于2PSK信号,当先验概率相等时,其不含载频信号,通过向发送信号添加导频信号后,可以通过相干法来接收此类信号。
但是该类方法必须在发射信号中添加载频信号,这样接收机就必须根据载频信号的范围设定相应的通带滤波器,同时在多普勒频移的影响下,导频信号会出现相位漂移,这样滤波器的带宽过宽过窄都将对接收性能造成影响[1,2]。
PSKPSK ( Phase Shift Keying)是一种数字调制技术,常用于数字通信中。
在PSK 中,数字比特被编程为特定的相位。
PSK 信号解调算法研究就是对这种编码方式进行解调,将其中的数字信息恢复出来的过程。
本论文将依次介绍PSK 信号基本原理、PSK 信号解调算法、PSK 信号解调的应用场景,以及一些PSK 解调算法的优缺点。
一、PSK 信号基本原理在数字通信中,原始信号最基础的载波形式是正弦波。
对于数字信号而言,我们需要在这个载波上加个特定频率,并改变这个频率的相位来表达数字信息。
这就是PSK 信号的基本原理。
在PSK 调制中,相位的变化与数字信号有关,不同的相位表示不同的信息,通常使用270、180、90 或0 度来代表数字信号的“0”或“1”。
PSK 信号的基本构成为载波信号和基带信号。
载波信号通常是一个正弦波,可以表示为:s(t)=sin(2πfct+θ)其中,fc 表示载波频率,θ表示载波的相位,t 表示时间。
基带信号是需要被调制的信息,可以表示为:d(t)=Acos(2πfdt)其中,A 表示信号的振幅,fd 表示信号的频率,t 表示时间。
在PSK 调制时,载波信号的相位会随着基带信号的变化而调整,实现数字信号的传输。
不同的PSK 调制方式会有不同的相位偏移值,例如2PSK 将数据编码成相位偏移为180 度的正弦波,而4PSK 则将数据编码成相位偏移为90 度、180 度、270 度的正弦波。
二、PSK 信号解调算法PSK 信号的解调是将数字信息从信号中恢复出来的过程。
常用的PSK 信号解调算法有相干解调法、非相干解调法和差分解调法。
1. 相干解调法在相干解调法中,解调器需要估计接收信号的相位,然后将接收信号的相位与已知干净的信号相比较,通过相位差来确定每个比特位的数值。
相干解调法中使用一个相干解调回路来执行这些操作,可以表示为:y(t)=x(t)*cos(ωt)+z(t)*sin(ωt)其中,x(t)表示接收到的信号,ω表示载波频率,y(t)表示解调后的信号,z(t)是一个高斯白噪声。
基于COSTAS环的BPSK信号解调的研究与仿真作者:骞尧来源:《中国新通信》 2017年第15期【摘要】二进制相移键控(BPSK) 是一种基础的、应用广泛的数字调制,因此二进制相移键控(BPSK) 信号的解调的研究很重要。
本文主要研究了基于科斯塔斯(COSTAS) 环的BPSK 信号的解调并用MATLAB/SIMULINK 软件对BPSK 信号的解调进行了仿真,对仿真结果进行分析。
仿真结果表明,本文建立的仿真模型能够实现BPSK 信号的解调。
【关键词】科斯塔斯二进制相移键控解调仿真引言二进制相移键控(BPSK) 是一种基础的、应用广泛的数字调制。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在二进制相移键控(BPSK) 中,通常用初始相位0 度或180 度分别表示二进制“0”和“1”。
二相相移键控(BPSK) 信号的解调通常采用相干解调法,这就需要得到与接收的二进制相移键控(BPSK) 信号同频同相得相干载波。
二相相移键控(BPSK) 信号抑制了载波,无离散载频分量,可以采用非线性变换的方法从信号中获取载频,继而实现二相相移键控(BPSK) 信号的相干解调。
常用的非线性变换方法有2 种:一是平方环法,一是科斯塔斯(COSTAS) 环法。
本文研究用科斯塔斯(COSTAS) 环法来实现二进制相移键控(BPSK) 的相干解调,用MATLAB/SIMULINK软件仿真来验证该方法的可行性,观察仿真结果并作出分析。
一、科斯塔斯(COSTAS) 环法的原理科斯塔斯(COSTAS) 环又称同相正交环或边环,它的原理框图如图1 所示[1]。
科斯塔斯(COSTAS) 环主要由相位鉴别器(PD)、压控振荡器(VCO) 和环路滤波器(LF) 三部分构成。
相位鉴别器(PD) 用来鉴别两个输入信号之间相位的差异,可以简单的是一个乘法器。
环路滤波器(LF) 的作用是滤波,降低环路中的噪声,使滤波结果既能真实地反映环路滤波器(LF) 输入信号的相位变化情况,又能防止由于噪声的缘故而过激地调节压控振荡器(VCO),环路滤波器(LF) 通常是一个低通滤波器。
专利名称:32APSK载波环路同步锁定检测方法专利类型:发明专利
发明人:刘洋,杜瑜
申请号:CN201910453375.6
申请日:20190528
公开号:CN110247870A
公开日:
20190917
专利内容由知识产权出版社提供
摘要:本发明提出的一种32APSK载波环路同步锁定检测方法,旨在提供一种判定准确,不受输入信号幅度影响的检测方法。
本发明通过下述技术方案予以实现:载波环路锁定状态检测模块分别从I、Q数据存储模块中取出解调点,送入后端的32APSK外圈判决点计算模块和32APSK星座判决模块,计算其内外圈判决门限,抛去内圈及中圈的星座点后将外圈的星座点送入归一化信号高阶矩计算模块,计算外圈点的归一化高阶矩,阈值调整模块完成外圈的判决阈值,载波同步锁定检测环路在每一时刻将阈值调整模块的判决阈值和高阶矩计算模块归一化高阶矩计算值送入比较器,与预设的锁定阈值进行比较,判定32APSK载波环路的锁定状态,输出载波锁定指示状态。
申请人:西南电子技术研究所(中国电子科技集团公司第十研究所)
地址:610036 四川省成都市金牛区茶店子东街48号
国籍:CN
代理机构:成飞(集团)公司专利中心
代理人:郭纯武
更多信息请下载全文后查看。