可急回抽油机速度分析及机械系统设计讲义
- 格式:doc
- 大小:1.11 MB
- 文档页数:41
设计题目——油田抽油机1. 机器的用途及功能要求抽油机是一种采油机械,主要用于当油井不能自喷或自喷能力不能满足采油需要时,从地下抽取石油。
图1是游梁式抽油机的工作原理图。
工作时,抽油机的执行机构通过钢丝绳牵引抽油杆,带动活塞上、下往复运动。
当活塞上移(上冲程)时,抽油泵泵体下部形成负压,使得排出阀关闭,吸入阀打开,油液被吸入泵体内;当活塞下移(下冲程)时,泵体下部压力增大,使得吸入阀关闭,排出阀打开,泵体内的石油被压入活塞体内。
在活塞不断往复运动的过程中,油液从活塞体内进入抽油泵上部的油管,最后从井口排入集油管线(图1a)。
抽油机在一个运动循环中所受的生产阻力变化很大。
在上冲程中,生产阻力不仅包括抽油杆和活塞以上环形液柱的重量,而且还包括抽油杆和环形液柱的惯性动载荷(悬点E承受了最大载荷);而在下冲程时,抽油杆在其自重作用下克服浮力下行,生产阻力为零。
此外,执行机构的总惯性力和总惯性力矩也不平衡。
这些因素使抽油机在工作过程中产生有害振动,同时造成其速度波动,影响抽油杆和抽油泵的正常工作,影响抽油机的工作寿命。
因此,必须对抽油机进行动平衡。
2. 设计要求和原始数据设计以电动机为原动机的抽油机。
⑴ 抽油机结构简单,加工容易,便于维护,受力好,效率高,执行机构的许用压力角[α]≤40°;⑵ 执行机构具有急回性能,行程速比系数1<k≤1.15;⑶ 抽油杆的冲程长度可调;⑷ 采用曲柄平衡方式对抽油机进行动平衡,平衡重G 作用于B点(图1b);3. 设计内容⑴ 确定总体设计方案,包括传动系统中各传动的类型、传动路线、总传动比和传动比分配;⑵ 选择执行机构的型式,确定各构件尺寸,计算机构自由度;⑶ 用电算法作执行机构的运动分析,求出在一个运动循环中,步长为π/36弧度的抽油杆的位置、速度和加速度,以及抽油杆在一个运动循环中的平均速度Vm、最大速度Vmax、最小速度Vmin和速度不均匀系数δv(此处所说速度均指速度的大小);⑷ 求出原动机所需工作功率Pd,选择电动机;⑸ 对传动系统中各级传动进行工作能力计算;⑹ 进行减速器的结构设计。
(此文档为word格式,下载后您可任意编辑修改!)抽油机机械系统设计目录:1.设计任务(1)2.设计内容(2)3.方案分析(2)4.设计目标(3)5.设计分析(3)6.电机选择(7)7. V带传动设计(10)8.齿轮传动设计(11)9.轴的结构设计(19)10.轴承寿命校核(21)11.心得与总结(25)12.附录(26)机械设计课程设计设计任务:抽油机机械系统设计抽油机是将原油从井下举升到地面的主要采油设备之一。
常用的有杆抽油设备由三部分组成:一是地面驱动设备即抽油机;二是井下的抽油泵,它悬挂在油井油管的下端;三是抽油杆,它将地面设备的运动和动力传递给井下抽油泵。
抽油机由电动机驱动,经减速传动系统和执行系统(将转动变换为往复移动)带动抽油杆及抽油泵柱塞作上下往复移动,从而实现将原油从井下举升到地面的目的。
悬点——执行系统与抽油杆的联结点悬点载荷P(kN)——抽油机工作过程中作用于悬点的载荷抽油杆冲程S(m)——抽油杆上下往复运动的最大位移冲次n(次/min)——单位时间内柱塞往复运动的次数悬点载荷P的静力示功图——在柱塞上冲程过程中,由于举升原油,作用于悬点的载荷为P1,它等于原油的重量加上抽油杆和柱塞自身的重量;在柱塞下冲程过程中,原油已释放,此时作用于悬点的载荷为P2,它就等于抽油杆和柱塞自身的重量。
假设电动机作匀速转动,抽油杆(或执行系统)的运动周期为T。
油井工况为:设计内容:1. 根据任务要求,进行抽油机机械系统总体方案设计,确定减速传动系统、执行系统的组成,绘制系统方案示意图。
2. 根据设计参数和设计要求,采用优化算法进行执行系统(执行机构)的运动尺寸设计,优化目标为抽油杆上冲程悬点加速度为最小,并应使执行系统具有较好的传力性能。
3. 建立执行系统输入、输出(悬点)之间的位移、速度和加速度关系,并编程进行数值计算,绘制一个周期内悬点位移、速度和加速度线图(取抽油杆最低位置作为机构零位)。
第1液压传动的发展概况和应用 (1)1.1液压传动的发展概况 (1)1.2液压传动的特点及在机械行业中的应用 (2)第2章液压传动的工作原理和组成 (3)2.1工作原理 (3)2.2液压系统的基本组成 (3)第3章液压系统工况分析 (5)3.1运动分析、负载分析、负载计算 (5)3.2液压缸的确定 (6)第4章拟定液压系统图 (8)4.1选择液压泵型式和液压回路 (8)4.2选择液压回路和液压系统的合成 (8)第5章液压元件的选择 (11)5.1选择液压泵和电机 (11)5.2辅助元件的选择 (12)5.3确定管道尺寸 (12)5.4确定油箱容积 (12)第6章液压系统的性能验 (13)6.1管路系统压力损失验算 (13)6.2 液压系统的发热与温升验算 (13)注意事项 .................................................................... 错误!未定义书签。
第一章抽油机机械系统设计 (15)第一节抽油机—深井泵抽油装置及基础理论计算 (15)一、抽油机—深井泵抽油装置 (15)(一)抽油机 (15)(二)抽油泵 (16)(三)抽油杆 (17)二、抽油泵的工作原理 (17)(一)泵的抽汲过程 (17)(二)泵的理论排量 (18)三、抽油机悬点载荷的计算 (18)(一)悬点承受的载荷 (18)(二)悬点最大、最小载荷 (22)(一)抽油机平衡计算 (24)(二)电机的选择与功率计算 (26)(一)柱塞冲程 (29)(二)泵的充满程度 (30)(三)提高泵效的措施 (32)第四节抽油机井系统效率及节能技术 (33)一、系统效率 (33)(二)系统效率的影响因素 (35)(三)提高系统效率的方法 (36)二、抽油机井节能技术 (37)(一)抽油机的电能消耗的特点 (37)(二)节能技术 (37)附表 (41)第1章液压传动的发展概况和应用1.1液压传动的发展概况液压传动和气压传动称为流体传动,是据17世纪帕斯卡提出的液体静压力传动原理发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。
1前言可急回抽油机速度分析及机械系统设计是一种多功能机械,目前被广泛应用于水利工程,交通运输,电力工程和矿山采掘等机械施工中,它在减轻繁重的体力劳动,保证工程质量。
加快建设速度以及提高劳动生产率方面起着十分重要的作用。
由于液压抽油机具有多品种,多功能,高质量及高效率等特点,因此受到了广大施工作业单位的青睐。
可急回抽油机速度分析及机械系统设计的生产制造业也日益蓬勃发展。
可急回抽油机速度分析及机械系统设计紧密地联系在一起,其发展主要以液压技术的应用为基础。
由于抽油机的工作条件恶劣,要求实现的动作很复杂,于是它对液压系统的设计提出了很高的要求,其液压系统也是工程机械液压系统中最为复杂的。
因此,可急回抽油机速度分析及机械系统设计已经成为推动抽油机发展中的重要一环[1]。
1.1 可急回抽油机简介挖可急回抽油机速度分析及机械系统设计的发展历史久远,可以追溯到1840年。
当时美国西部开发,进行铁路建设,产生了模仿人体构造,有大臂、小臂和手腕,能行走和扭腰类似机械手的抽油机,它采用蒸汽机作为动力在轨道上行走。
但是此后的很长时间可急回抽油机速度分析及机械系统设计没有得到很大的发展,应用范围也只局限于矿山作业中。
导致可急回抽油机速度分析及机械系统设计发展缓慢的主要原因是:其作业装置动作复杂,运动范围大,需要采用多自由度机构,古老的机械传动对它不太适合。
而且当时的工程建设主要是国土开发,大规模的筑路和整修场地等,大多是大面积的水平作业,因此对抽油机的应用相对较少,在一定程度上也限制了抽油机的发展。
由于液压技术的应用,二十世纪四十年代有了在拖拉机上配装液压反铲的悬挂式抽油机。
随着液压传动技术迅速发展成为一种成熟的传动技术,抽油机有了适合它的传动装置,为抽油机的发展建立了强有力的技术支撑,是抽油机技术上的一个飞跃。
同时,工程建设和施工形式也发生了很大变化。
在进行大规模国土开发的同时,也开始进行城市型土木施工,这样,具有较长的臂和杆,能装上各种各样的工作装置,能行走、回转,实现多自由动作,可以切削高的垂直壁面,挖掘深的基坑和沟槽的抽油机得到了广泛应用[2]。
1950年在意大利北部生产了第一台液压抽油机。
第一台液压抽油机采用定量齿轮泵,中位开式多路阀,工作压力为9Mpa,所有执行元件互相并联连结。
由单泵向6个执行元件供油。
由于早期液压抽油机主要采用了定量齿轮泵,不能按需改变供油流量,无法充分利用发动机的功率,因此其能量损失很大,不能满足抽油机复合动作的复杂要求,且可操纵性差。
另外,早期试制的液压抽油机是采用飞机和机床的液压技术,缺少适用于抽油机各种工况的液压元件,配套件也不齐全,制造质量不够稳定。
从二十世纪六十年代到八十年代中期,液压抽油机进入了推广和蓬勃发展的阶段,各国抽油机制造厂和品种增加很快,产量猛增。
1968-1970年间,液压抽油机产量己经达到抽油机总产量的83%,其时对抽油机液压系统的研究也已经十分成熟,液压抽油机已经具有了同步控制系统和负载敏感系统L。
自第一台手动可急回抽油机速度分析及机械系统设计诞生以来的160多年当中,抽油机一直在不断地飞跃发展,其技术已经发展到相对成熟稳定的阶段。
目前国际上迅速发展全液压抽油机,对其控制方式不断改进和革新,使抽油机由简单的杠杆操纵发展到液压操纵、气压操纵、液压伺服操纵和电气控制、无线电遥控、电子计算机综合程序控制。
在危险地区或水下作业采用无线电操纵,利用电子计算机控制接收器和激光导向相结合,实现了抽油机作业操纵的完全自动化。
所有这一切,可急回抽油机速度分析及机械系统设计为其奠定了坚实的基础,创造了良好的前提[3]。
据有关专家估算,全世界各种施工作业场约有65%至70%的土石方工程都是由抽油机完成的。
抽油机是一种万能型工程机械,目前已经无可争议地成为工程机械的第一主力机种,在世界工程机械市场上己占据首位,并且仍在发展扩大。
抽油机的发展主要以液压技术的应用为基础,其液压系统已成为工程机械液压系统的主流形式。
随着科学技术的发展和建筑施工现代化生产的需要,液压抽油机需要大幅度的技术进步,技术创新是液压抽油机行业所面临的新挑战。
在技术方面,抽油机产品的核心技术就是液压系统设计,所以对其液压系统的分析研究具有十分重要的现实意义。
1.2 国内外研究现状及发展动态1.2.1 国外研究状况及发展动态从20世纪60年代液压传动技术开始应用在抽油机上至今,可急回抽油机速度分析及机械系统设计己经发展到了相当成熟的阶段。
目前国际上先进的抽油机产品的额定压力大都在30MPa以上,并且随着材料科学技术的进步,有朝着更高的压力甚至采用超高压液压技术方向发展的趋势;流量通常在每分钟数百升;功率在数百千瓦以上。
如德国Orensttein&Koppe制造的目前世界上首台最大的RH40。
型全液压抽油机,铲斗容量达42m3,液压油源为18台变量轴向柱塞泵,总流量高达10200L/min,原动机为2台QSK60柴油发动机,总功率高达2014kW,由于可急回抽油机速度分析及机械系统设计经常在较恶劣环境下持续工作,其各个功能部件都会受到恶劣环境的影响.系统的可靠性日益受到重视。
美、英、日等国家推广采用有限寿命设计理论,以替代传统的无限寿命设计理论和方法,并将疲劳损伤累积理论断裂力学、有限元法、优化设计、电子计算机控制的电液伺服疲劳试验技术、疲劳强度分析方法等先进技术应用于液压抽油机强度研究方面,不断提高设备的可靠性。
美国提出了考核动强度的动态设计分析方法。
日本制定了液压抽油机构件的强度评定程序,研制了可靠性信息处理系统使液压抽油机的运转率达到85%-95%,使用寿命超过1万小时。
近几年来,随着液压抽油机产量的提高和使用范围的扩大,世界上著名的抽油机生产商纷纷采用各种高新技术,来提高自己抽油机在国际上的竞争力,主要表现在五个方面: (1)液压系统逐渐从开式系统的转变;(2)系统的节能技术成为研究的重点; (3)系统的高压化和高可靠性发展趋势日益凸显; (4)系统的操纵特性上升到很重要的地位;(5)液压系统与电子控制的结合成为潮流[4]。
(1) 开式向闭式液压系统的转变采用三位六通阀,其特点是有两条供油路,其中一条是直通供油路,另一条是并联供油路。
由于这种油路调速方式是进油节流调速和旁路节流调速同时起作用,其调速特性受负载压力和油泵流量的影响,因此这种系统的操纵性能、调速性能和微调性能差。
另外,当液压作用元件一起复合动作时,相互干扰大,使得复合动作操纵非常困难。
由于抽油机作业工程中要求对液压元件能很好地控制其运动速度和进行微调,而且在其工作的许多工况下要求多个执行元件完成复合动作,而长期以来使用的开式液压系统无法满足抽油机的调速和复合动作的要求。
近年来在国外的抽油机液压系统中出现了闭式负载敏感系统(CLSS)。
它可以采用一个油泵同时向所有液压作用元件供油,每一个液压作用元件的运动速度只与操纵阀的阀杆行程有关,与负载压力无关,泵的流量按需提供,而且多个液压作用元件同时动作时相互之间干扰小,因此操纵性好是闭式液压系统的主要特点。
这种系统非常符合抽油机操作的要求,它操纵简单,对司机的操纵技巧要求低,在国际上己经获得较广泛的使用,是抽油机液压系统的发展趋势。
目前日本小松公司已经把大量抽油机液压系统从开式系统改为闭式系统了。
(2) 节能技术的应用目前液压可急回抽油机典型的节能技术基本上有两种。
即负载敏感技术和负流量控制技术,目前液压抽油机都选用其中一种控制技术来实现节能要求。
负载敏感技术是一种利用泵的出口压力与负载压力差值的变化而使系统流量随之相应变化的技术。
德国曼内斯曼(Mannesmann)公司研制的一种负载传感系统,将其安装在液压系统中,可以控制一个或几个液压作用元件,而与对其施加的载荷无关。
该系统不仅易于操纵,而且微动控制特性很好。
其最大的特点就是可以根据负载大小和调速要求对油泵进行控制,从而实现在按需供流的同时,使调速节流损失△P控制在很小的固定值,从而达到节能的目的lzs.e57负流量控制技术是通过位于主控制阀后面的节流阀建立的压力对主泵的排量进行调节的技术。
日前以韩国现代(HYUNDAI)、日本小松(KOMATSU)和日本日立(HITACHI)为代表的许多国外著名品牌的抽油机生产商都在自己的抽油机液压系统中使用了负流量控制技术。
这种控制技术具有稳定性好、响应快、可靠性和维修性好等特点,但在起始点为重负荷下作业时,因流量与负载有关,所以可控制性较差[5]。
(3) 提高负载能力和可靠性为了提高可急回抽油机的负载能力,直接的方法是提高其液压系统工作压力、流量和功率。
目前,国际上先进的抽油机产品的额定压力大都在30MPa以上,并且随着材料科学技术的进步,有朝着更高的压力甚至采用超高压液压技术方向发展的趋势;流量通常在每分钟数百升;功率在数百千瓦以上。
如德国Orensttein&Koppe制造的型全液压抽油机,铲斗容量达42立方米液压油源为18台变量轴向柱塞泵,总流量高达100200L/min,原动机为2台QSK60柴油发动机,总功率高达2014kW,由于液压抽油机经常在较恶劣环境下持续工作,其各个功能部件都会受到恶劣环境的影响。
系统的可靠性日益受到重视。
美、英、日等国家推广采用有限寿命设计理论,以替代传统的无限寿命设计理论和方法,并将疲劳损伤累积理论、断裂力学、有限元法、优化设计、电子计算机控制的电液伺服疲劳试验技术、疲劳强度分析方法等先进技术应用于液压抽油机强度研究方面,不断提高设备的可靠性。
美国提出了考核动强度的动态设计分析方法。
日本制定了液压抽油机构件的强度评定程序,研制了可靠性信息处理系统,使液压抽油机的运转率达到85%-95%,使用寿命超过1万小时。
(4) 重视操纵特性可急回抽油机的操纵特性越来越受到重视。
日前国际上迅速发展全液压抽油机,不断改进和革新控制方式,使可急回抽油机由简单的杠杆操纵发展到液压操纵、气压操纵、液压伺服操作和电气控制,无线电遥控、电子计算机综合程序控制。
各种高新技术的应用,使得抽油机液压系统操纵特性大大提高。
(5) 电子一液压集成控制成为当前主要研究目标电子控制技术与液压控制技术相结合的电子一液压集成控制技术近年来获得了巨大发展,特别是传感器、计算机和检测仪表的应用,使液压技术和电子控制有机结合,开发和研制出了许多新型电液自动控制系统,提高了抽油机的自动化程度,推动着抽油机的迅猛发展。
目前国外先进品牌的抽油机在电液联合控制方面的研究己趋成熟。
美国林肯一贝尔特公司新C系列LS-5800型液压抽油机安装了全自动控制液压系统,可自动调节流量,避免了驱动功率的浪费。
日本住友公司生产的FJ系列五中新型号抽油机配有与液压回路连接的计算机辅助的功率控制系统,利用精控模式选择系统,减少燃油、发动机功率和液压功率的消耗,并延长了零部件的使用寿命。