电机启动的几种方式
- 格式:doc
- 大小:141.00 KB
- 文档页数:5
电动机的启动方式与起动装置选择电动机是一种将电能转换为机械能的设备,广泛应用于工业生产和日常生活中。
在电动机运行前,需要选择适当的启动方式和起动装置来确保电动机能够有效、安全地启动。
本文将探讨电动机的启动方式以及起动装置的选择。
一、电动机的启动方式1. 直接起动方式直接起动是最简单、最常用的启动方式。
它的原理是将电源直接接入电动机,通过控制电源的开关来启动和停止电动机。
直接起动适用于小型电动机或对起动时间无特殊要求的场合。
这种方式简单可靠,成本低,但对电源的冲击较大,容易引起电网电压的瞬间下降。
2. 限流起动方式限流起动方式通过限制电动机的电流来达到缓慢启动的目的。
其中一种常见的方法是使用启动电阻,通过逐步减小电阻的方式来限制电流增长的速度,从而使电动机实现缓慢启动。
限流起动方式适用于启动负载较重或对电源冲击要求较高的电动机。
3. 自耦变压器起动方式自耦变压器起动方式是通过自耦变压器来降低电源电压,从而使电动机实现缓慢启动。
使用自耦变压器能够减小启动时电动机对电源的冲击,提高起动过程的平稳性。
这种方法适用于起动大功率电动机或对启动冲击要求较低的场合。
4. 频率变换器起动方式频率变换器起动方式是通过改变电源频率来控制电动机的启动和停止。
频率变换器将电源的交流电转换为直流电,再通过中间环节将其转换为对应频率的交流电供给电动机。
这种方式适用于对电动机启动的平稳性和精度要求较高的场合。
二、起动装置的选择1. 起动电阻器起动电阻器主要用于限制电动机的起动电流,减少启动时对电源的冲击。
它适用于小型电动机或起动冲击要求较高的电动机。
起动电阻器可以通过调节电源电阻来控制启动电流的大小,从而实现缓慢启动的效果。
2. 软起动器软起动器是一种智能化的起动装置,它通过电子元件来实现对电机的启动和停止控制。
软起动器具有启动过程的平稳性好、启动电流小、调速性能好等优点。
它适用于对电动机起动和停止过程要求较高的场合。
3. 磁力启动器磁力启动器是一种通过电磁力来实现对电动机启动和停止的装置。
各种启动方式的特点低压电工2016-07-10 06:08原创作者:晓月池塘基础知识/各种启动方式的特点常见电动机启动方式有以下几种:1.全压直接启动;2.自耦减压起动;3.Y-Δ起动;4.软起动器;5.变频器启动。
目前软启动器和变频器启动为市场发展的潮流。
当然也不是必须要使用软启动器和变频器启动,以成本和适用性为主要参考,下面简要介绍各种启动方式的特点。
1全压直接起动:图一在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。
主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw的电动机不宜用此方法。
直接启动的优点是所需设备少,启动方式简单,成本低。
电动机直接启动的电流是正常运行的5倍左右,经常启动的电动机,提供电源的线路或变压器容量应大于电动机容量的5倍以上不经常启动的电动机,向电动机提供电源的线路或变压器容量应大于电动机容量的3倍以上。
这一要求对于小容量的电动机容易实现,所以小容量的电动机绝大部分都是直接启动的,不需要降压启动。
对于大容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强大的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网稳定运行不利,所以大容量的电动机和不能直接启动的电动机都要采用降压启动。
2自耦减压起动:图二图三利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。
它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%,启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。
自耦变压器降压启动的优点是可以直接人工操作控制,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。
缺点是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。
电机各类启动原理
电机是现代工业中必不可少的设备之一,它的启动方式有多种,下面介绍几种常见的电机启动原理:
1. 直接启动:直接将电源接到电机上,通过电机自身的转动来启动。
这种方法简单易行,但启动电流较大,对电网影响较大,有可能导致电网电压波动或短暂的停电,因此适用于小功率电机。
2. 自耦变压器启动:通过调节自耦变压器的输出电压来改变电机的启动电流,从而达到减小对电网影响的目的。
这种方法适用于功率较大的电机。
3. 电阻启动:在电机的回路中串联一定的电阻,通过降低电机的起始电压来降低启动电流。
这种方法适用于中小功率的电机,但在启动过程中会产生大量的热量,会影响电机的寿命。
4. 自动启动控制器启动:通过自动启动控制器来控制电机的启动,可以实现多种启动方式,如星三角启动、电动启动等。
这种方法操作简便,启动电流小,对电网影响较小,适用于各种功率的电机。
以上是几种常见的电机启动原理,不同的电机启动方式适用于不同的场合,选择合适的启动方式可以提高电机的效率和使用寿命。
- 1 -。
电动机常用的启动方法
电动机常用的启动方法有直接启动法、自耦变压器启动法、星三角启动法、电阻启动法、变频启动法等。
1. 直接启动法
直接启动法是最简单、最常见的电动机启动方法。
即将电动机直接连接到电源,通过闭合启动电机的电源开关来完成启动。
这种方法适用于起动转矩小、机械负载较小的电动机。
2. 自耦变压器启动法
自耦变压器启动法是使用自耦变压器来降低电动机启动时的电压,以减小启动电流并提高电动机的转矩。
自耦变压器启动法适用于起动转矩较大、起动时需限制电流的电动机。
3. 星三角启动法
星三角启动法是将电动机启动时的绕组连接方式从星型切换到三角形,以降低启动时的电流,减小电动机起动时对电网的影响。
星三角启动法适用于起动转矩较大的电动机。
4. 电阻启动法
电阻启动法是通过在电动机绕组中串联电阻,降低电动机的起动电压,以减小启动时的电流和起动转矩,保护电动机和负载设备。
适用于起动转矩较大、负载设
备对起动电流敏感的电动机。
5. 变频启动法
变频启动法是通过变频器来调整电源频率,通过改变电动机的转速来改变电动机的转矩和起动特性。
变频启动法适用于需要控制电动机启动转矩和速度的场合,如需要在启动过程中缓慢加速和平稳运行的电动机。
总结来说,电动机常用的启动方法有直接启动法、自耦变压器启动法、星三角启动法、电阻启动法和变频启动法。
不同的启动方法适用于不同的电动机起动特性和负载要求。
需要根据具体的工作需求和负载情况选择最合适的启动方法,以保障电动机的正常运行和负载设备的安全运行。
电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压起动,Y-Δ降压启动,软启动器启动,变频器启动等等方式。
那么他们之间有什么不同呢?1、全压直接起动在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。
优点是操纵控制方便,维护简单,而且比较经济。
主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw 的电动机不宜用此方法。
2、自耦减压起动利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。
它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。
并且可以通过抽头调节起动转矩。
至今仍被广泛应用。
3、Y-Δ起动对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。
这样的起动方式称为星三角减压起动,或简称为星三角起动(Y-Δ起动)。
采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。
如果直接起动时的起动电流以6~7Ie 计,则在星三角起动时,起动电流才2~2.3 倍。
这就是说采用星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。
适用于无载或者轻载起动的场合。
并且同任何别的减压起动器相比较,其结构最简单,价格也最便宜。
除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。
此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。
4、软起动器这是利用了可控硅的移相调压原理来实现电动机的调压起动,主要用于电动机的起动控制,起动效果好但成本较高。
因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。
另外电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。
电机的各种启动方式性能及优缺点对比一、各种启动方式的性能对比1.直接启动直接启动是最简单的电机启动方式,直接将电源接通。
其性能优点是简单、成本低、安装维护方便。
但缺点是启动冲击大,电流突变会对电网和电机造成冲击,可能引起设备损坏或电网不稳定。
2.步进启动步进启动是通过将电动机的启动电流以逐步增加的方式进行启动。
其性能优点是启动过程平稳,缓解了直接启动所带来的冲击,可以有效保护设备和电网。
但缺点是启动时间较长,不能满足一些对快速启动的要求。
3.自耦变压器启动自耦变压器启动是通过在电机线圈中引入自耦变压器,降低电压来减小启动电流。
其性能优点是启动冲击小,可以有效延长电机和设备的使用寿命。
但缺点是成本较高,维护困难,启动时间较长。
4.电压降低启动电压降低启动是通过降低电源电压来减小启动电流。
其性能优点是启动冲击小,保护设备,电压恢复后电机能正常工作。
但缺点是启动时电机转矩较小,启动过程中可能出现振动,不适合对转矩要求较高的设备。
5.频率变换启动频率变换启动是通过变换电源电压的频率来实现电机启动。
其性能优点是启动平稳,电流变化较小,对电网影响较小。
但缺点是设备复杂,成本较高。
1.直接启动优点:简单、成本低、安装维护方便。
缺点:启动冲击大,可能引起设备损坏,电网不稳定。
2.步进启动优点:启动过程平稳,可以缓解直接启动的冲击,保护设备和电网。
缺点:启动时间较长,不能满足对快速启动的要求。
3.自耦变压器启动优点:启动冲击小,可以有效延长电机和设备的使用寿命。
缺点:成本较高,维护困难,启动时间较长。
4.电压降低启动优点:启动冲击小,保护设备,电压恢复后电机能正常工作。
缺点:启动时电机转矩较小,不适合转矩要求较高的设备。
5.频率变换启动优点:启动平稳,电流变化小,对电网影响小。
缺点:设备复杂,成本较高。
综上所述,不同的启动方式具有各自的优缺点,选择适合的启动方式需要根据具体的应用场景和需求进行评估。
对于对电压和转矩要求较高的设备,可以选择步进启动或自耦变压器启动;对于对启动冲击要求小,且成本低的设备,直接启动是一个较好的选择;对于对启动平稳性要求较高的设备,可以选择频率变换启动。
1.基本的直接启动控制线路
按下启动按钮,KM线圈得电,KM常开辅助触点自锁,绿灯亮,电机运行;按下停止按钮,KM线圈失点,辅助触点复位,红灯亮,电机停止。
2 直接启动,延时停止
通过时间继电器作用,延时使回路断开。
3 控制电机正反转
使用双重互锁,采用复合按钮和2个接触器。
将2个接触器的常闭辅助触点相互串联在对方回路中,安全方便,避免了短路的发生~
4 顺停、逆停循环
5 电机轮流循环启动
6 三台电机轮流循环
7 单按钮控制电机启动停止
8 时间继电器控制双速电机
9 定子串电阻降压启动
这个不太常用!
10 延边三角形降压启动
这个知道就行!!!
11 星三角降压启动
照片名称:星三角降压启动实物接线图
照片名称:星三角
照片名称:星三角启动控制线路图
照片名称:星三角
(这个很重要,也和简单,也很实用的降压启动,一般电机大于7.5千瓦,为了保护电压网就应该采取降压的方式。
)
12 自耦降压
这也是很使用的降压启动控制线路。
一般大于40千瓦的电机使用。
三相异步电动机的启动方式一、前言三相异步电动机是工业生产中常用的一种电动机,其启动方式有多种。
本文将详细介绍三相异步电动机的启动方式,包括直接启动、星角变压器启动、自耦变压器启动、软起动器启动和变频器启动。
二、直接启动直接启动是最简单的一种三相异步电动机的启动方式,其原理是将电源直接连接到电机的三个相线上。
这种方式适用于小功率电机,但对于大功率电机来说,由于起始电流较大,容易引起系统过载,甚至损坏设备。
因此,在实际应用中,直接启动往往只适用于小功率电机。
三、星角变压器启动星角变压器是一种常用的三相异步电动机起始装置。
其原理是通过一个特殊的变压器将高压供应转换为低压供应,并在低压侧形成一个星形结构和一个角形结构。
在起始时,先将三个绕组接在星形结构上,并通过开关控制转换到角形结构上。
这样可以降低起始时的电流和转矩,并保护设备不受过载损坏。
四、自耦变压器启动自耦变压器启动是一种常用的三相异步电动机起始装置。
其原理是通过一个特殊的变压器将高压供应转换为低压供应,并在低压侧形成一个自耦结构。
在起始时,先将电机接在高压侧上,然后逐步降低电源电压,直到达到额定电流和转矩。
这种方式可以降低起始时的电流和转矩,并保护设备不受过载损坏。
五、软起动器启动软起动器是一种新型的三相异步电动机起始装置。
其原理是通过一个特殊的晶闸管控制器逐步升高电源电压,并控制起始时的电流和转矩。
这种方式可以有效地降低起始时的冲击和噪声,并保护设备不受过载损坏。
六、变频器启动变频器是一种常用的三相异步电动机启动装置。
其原理是通过一个特殊的变频控制器将高频交流供应转换为低频交流供应,并控制其输出频率和幅度,以达到控制转速和扭矩的目的。
这种方式可以实现无级调速和精确控制,适用于需要频繁启停和调速的应用场合。
七、总结三相异步电动机的启动方式有多种,每种方式都有其适用范围和特点。
在选择启动方式时,需要根据电机的功率、负载特性和运行环境等因素进行综合考虑,并选择最合适的方式来保护设备并提高生产效率。