排列组合的应用题解法
- 格式:ppt
- 大小:1.22 MB
- 文档页数:12
解排列组合应用题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( ) A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数 是( )A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种 答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A = 共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A = 共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 解析:将{}1,2,3,100I = 分成四个不相交的子集,能被4整除的数集{}4,8,12,100A = ;能被4除余1的数集{}1,5,9,97B = ,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D = ,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂. 例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
解排列组合应用题的26种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.解排列组合问题的基础是两个基本原理,分类用加法原理,分步用乘法原理,问题在于怎样合理地进行分类、分步,特别是在分类时如何做到既不重复,又不遗漏,正确分每一步,这是比较困难的。
要求我们周密思考,细心分析,理解并掌握解题的常用方法和技巧,掌握并能运用分类思想、转化思想、整体思想、正难则反等数学思想解决排列组合问题。
实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1、相邻排列——捆绑法:n个不同元素排列成一排,其中某k个元素排在相邻位置上,有多少种不同排法?先将这k个元素“捆绑在一起”,看成一个整体,当作一个元素同其它元素一起排列,共有种排法.然后再将“捆绑”在一起的元素进行内部排列,共有种方法.由乘法原理得符合条件的排列,共种.例1.五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有()A、60种B、48种C、36种D、24种解析:把视为一人,且固定在的右边,则本题相当于4人的全排列,种,答案:.例2 有3名女生4名男生站成一排,女生必须相邻,男生必须相邻,共有多少种不同的站法?解:先把3名女生作为一个整体,看成一个元素,4名男生作为一个整体,看成一个元素,两个元素排列成一排共有种排法;女生内部的排法有种,男生内部的排法有种.故合题意的排法有种.2.相离排列——插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.将n个不同元素排成一排,其中k个元素互不相邻,有多少种排法?先把个元素排成一排,然后把k个元素插入个空隙中,共有排法种.例3 五位科学家和五名中学生站成一排照像,中学生不相邻的站法有多少种?解:先把科学家作排列,共有种排法;然后把5名中学生插入6个空中,共有种排法,故符合条件的站法共有种站法.例4.七位同学并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种,选.3、定序问题---倍缩法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.此法也被叫消序法.将n个不同元素排列成一排,其中某k个元素的顺序保持一定,有多少种不同排法?n个不同元素排列成一排,共有种排法;k个不同元素排列成一排共有种不同排法.于是,k个不同元素顺序一定的排法只占排列总数的分之一.故符合条件的排列共种.例5.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是()A、24种B、60种C、90种D、120种解析:在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即种,选.例6. A,B,C,D,E五个元素排成一列,要求A在B 的前面且D在E的前面,有多少种不同的排法?解:5个不同元素排列一列,共有种排法. A,B两个元素的排列数为;D,E两个元素的排列数为.因此,符合条件的排列法为种.4、标号排位问题---分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例7.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选.5、留空排列——借元法例8、一排10个坐位,3人去坐,每两人之间都要留空位,共有种坐法。
解排列组合应用题的解法•技巧引言:1、本资料对排列、组合应用题归纳为8种解法、13种技巧2、解排列组合问题的“16字方针”:分类相加,分步相乘,有序排列,无序组合一般先选再排,即先组合再排列,先分再排。
弄清要完成什么样的事件是前提,解决这类问题通常有三种途径(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置即采用“先特殊后一般”的解题原则(3)先不考虑附加条件,计算岀排列或组合数,再减去不符合要求的排列数或组合数前两种方式叫直接解法,后一种方式叫间接(剔除)解法注:数量不大时可以逐一排出结果。
3、解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得岀的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得岀的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.(一)排列组合应用题的解法排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。
下面通过一些例题来说明几种常见的解法。
一.运用两个基本原理二.特殊元素(位置)优先三.捆绑法四.插入法五.排除法六.机会均等法七.转化法八.隔板法一.运用两个基本原理加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。
例1: n个人参加某项资格考试,能否通过,有多少种可能的结果?解法1:用分类记数的原理,没有人通过,有C0种结果;1个人通过,有c n种结果,……;n个人通过,有C;种结果。
所以一共有C: C n C:2n种可能的结果。
解法2 :用分步记数的原理。
第一个人有通过与不通过两种可能,第二个人也是这样,……,第n个人也是这样。
所以一共有2n种可能的结果。
排列组合问题的基本类型及解题方法解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。
其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。
加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。
分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类。
以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。
(一)特殊元素的“优先安排法”对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。
在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。
例1: 0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?解法一:(元素优先)分两类:第一类,含0,0在个位有24A 种,0在十位有1123A A 种;第二类,不含0,有1223A A 种。
故共有2111242323(A A A )+A A 30+=种。
注:在考虑每一类时,又要优先考虑个位。
解法二:(位置优先)分两类:第一类,0在个位有24A 种;第二类,0不在个位,先从两个偶数中选一个放个位,再选一个放百位,最后考虑十位,有111233A A A 种。
故共有21114233A +A A A =30(二)总体淘汰法对于含有否定词语的问题,还可以从总体中把不符合要求的除去,此时应注意既不能多减也不能少减,例如在例1中也可以用此法解答:5个数字组成三位数的全排列为35A ,排好后发现0不能在首位,而且3和5不能排在末尾,这两种不合题意的排法要除去,故有30个偶数.(三)合理分类与准确分步解含有约束条件的排列组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分布层次清楚,不重不漏.例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有 解:由题意,可先安排甲,并按其进行分类讨论:(1)若甲在第二个位置上,则剩下的四人可自由安排,有44A 种方法;(2)若甲在第三个或第四个位置上,则根据分布计数原理不同的站法有113333A A A 种站法;再根据分类计数原理,不同的站法共有:21134333A A A A 78+=种.(四)相邻问题:捆绑法对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合应用题的类型及解题策略排列组合问题,通常都是出现在选择题或填空题中,或结合概率统计综合出题,它联系实际,生动有趣,但题型多样,思路灵活,不易掌握。
实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。
一.处理排列组合应用题的一般步骤为:①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
二.处理排列组合应用题的规律(1)两种思路:直接法,间接法。
(2)两种途径:元素分析法,位置分析法。
解决问题的入手点是:特殊元素优先考虑;特殊位置优先考虑。
特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。
例1.(06上海春)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有A22种;中间4个为不同的商业广告有A44种,从而应当填A22·A44=48. 从而应填48.(3)对排列组合的混合题,一般先选再排,即先组合再排列。
弄清要“完成什么样的事件”是前提。
三.基本题型及方法:1.相邻问题(1)、全相邻问题,捆邦法例2、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有(C )种。
A)720 B)360 C)240 D)120说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑将相邻元素视作一个“大”元素。
(2)、全不相邻问题,插空法例3、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法,解:先将6个歌唱节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个A种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排位置中再排4个舞蹈节目有47A A种法为4676例4(06重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(A)1800 (B)3600 (C)4320 (D)5040A A=3600,故选B解:不同排法的种数为5256说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。
排列组合应用题的常见解法作者:杜剑骅来源:《读写算》2013年第01期排列组合问应用题高考中多以客观题出现,每年必考。
它们具有较强的灵活性和抽象性,故解题时要求我们认真地审题,对题目中的信息进行科学地加工与处理。
本文说明几种常见的解法:一、直接法例1:n个人参加某项资格考试,能否通过,有多少种可能的结果?解法1:用分类计数原理。
没有人通过,有C0n种结果;1个人通过,有C01种结果,……;n个人通过,有Cnn种结果。
所以一共有C0n+C1n+…Cnn=2n种可能的结果。
解法2:用分步计数原理。
第一个人有通过与不通过两种可能,第二个人也是这样,……,第n个人也是这样。
所以一共有种可能的结果。
二、间接法(排除法)例2.8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法?解:无限制条件有A88种排法。
A与B或A与C在一起各有A22A77种排法,A、B、C 三人站在一起且A在中间有A22A66种排法,所以一共有A88-2A22A77+A22A66=21600种排法。
例3:以一个长方体的顶点为顶点的四面体的个数。
解:从8个点中取4个点,共有C48种方法,其中取出的4个点共面的有6+6=12种,所以符合条件的四面体的个数为个C48-12=58个。
三、特殊元素(位置)法例4:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个?解:个位选0,有A49个,个位不选0且万位不能选0,有C14C18C38个,所以一共可以得到A49+C14C18C38=13775个偶数。
例5:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?解:先排甲,有A14种排法。
再排乙,有A15种排法,再排其余的人,又有A66种排法,所以一共有A14A15A66=14400种排法。
四、查字典法例6:由0,1,2,3,4,5六个数字可以组成多少个无重复数字且比324105大的数?解:(1)查首位,有4×××××与5×××××,共有2A55个;(2)查头两位,有34××××与35××××两种,共有2A44个;(3)查头三位,有325×××一种,共A33个;(4)查头四位,有3245××,共A22个;(5)查头五位,仅324150一个,故共有2A55+2A44+A33+A22+1=297个。
n n nn 解排列组合应用题的解法·技巧引言:1、本资料对排列、组合应用题归纳为 8 种解法、13 种技巧2、解排列组合问题的“16 字方针”:分类相加,分步相乘,有序排列,无序组合一般先选再排,即先组合再排列,先分再排。
弄清要完成什么样的事件是前提,解决这类问题通常有三种途径(1) 以元素为主,应先满足特殊元素的要求,再考虑其他元素(2) 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置即采用“先特殊后一般”的解题原则.(3) 先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数 前两种方式叫直接解法,后一种方式叫间接(剔除)解法 注:数量不大时可以逐一排出结果。
3、解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且 每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果, 任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列, 无序组合.(一)排列组合应用题的解法排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。
下面通过一些例题来说明几种常见的解法。
一. 运用两个基本原理二. 特殊元素(位置)优先 三. 捆绑法 四. 插入法 五. 排除法 六. 机会均等法 七. 转化法 八. 隔板法一. 运用两个基本原理加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。
例 1:n 个人参加某项资格考试,能否通过,有多少种可能的结果?解法 1:用分类记数的原理,没有人通过,有 C 0 种结果;1 个人通过,有 C 1 种结 n n果,……;n 个人通过,有C n 种结果。
所以一共有C 0 + C 1 + +C n = 2n 种可能的结果。
排列组合应用题题型及解法排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;处理排列组合应用题的一般步骤:(1)明确要完成的是一件什么事情(审题)(2)有序还是无须(3)分步还是分类。
下面就谈一谈排列组合应用题的题型及解题策略。
一、特殊元素、特殊位置,优先法1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.2、五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有多少种?3、从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有多少种?4、安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是多少?5、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有多少种?二、相邻问题,捆绑法、插空法(1)全相邻问题,捆绑法1、6名同学站在一排,其中甲乙两人必须排在一起的不同排法有多少种?2、7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法?3、记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有多少种?(2)全不相邻,插空法1、高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是多少?2、要排一张有6个歌唱节目和4个舞蹈节目的演出节目表,任何两个舞蹈节目不得相邻,有多少种排法?3、用1、2、3、4、5、6组成无重复数字的6位数,要求1、2、3三个数字中任何两个数字不相邻,问有多少种排法?(3)不全相邻问题,排除法1、五个人站成一排,其中甲、乙、丙三人中有两人相邻,有多少种排法?三、顺序一定,除法或分类处理1、7个人站成一排,其中甲要在乙前面,乙要在丙前面,有多少种排法?2、某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。