2020年高考一轮总复习:第2讲 高考必考题突破讲座——高考考查NA的六大陷阱识别
- 格式:ppt
- 大小:809.00 KB
- 文档页数:24
高考数学简答题六大板块的考点以及知识点第一篇:高考数学简答题六大板块的考点以及知识点高考数学简答题六大板块的考点以及知识点1、三角函数(1)正弦、余弦公式(2)三角形基本性质:大角对大边etc(3)三种基本三角函数之间的转化与角度的化简Q1:带入求值,化简;Q2:利用正弦、余弦公式转化,根据角度取值范围确定正负号,求某角某边。
2、概率统计与期望(1)排列、组合运用(2)分布列罗列、期望计算Q1:求某条件的概率;Q2:利用Q1所求的概率,求分布列以及期望3、立体几何(1)直接逻辑法:面面,线面,线面垂直平行等性质的运用。
(2)空间向量法:线面垂直,平行时用向量如何表达,公式。
(3)等面积、体积法:找到最方便计算的图形Q1:证明线面,线线,面面垂直;Q2:求距离,求二面角等4、圆锥曲线(1)椭圆,双曲线,抛物线方程:长短轴性质,离心率等(2)直线与圆锥曲线联立,求解某点,证明某直线与圆锥曲线的关系等Q1:求圆锥曲线方程式;Q2:证明某点在某线某面上,求位置关系,求直线方程等5、数列(1)求通项公式:和作差,积作商,找规律叠加化简等(2)求求和公式:直接公式,错位相减,分组求和等Q1:求某一项,求通项公式,求数列和通式Q2:证明,求新数列第N项和,绝对值比较等初等函数以及导数(1)单调性,奇偶性,求导,推导规律。
(2)放缩,分类讨论,最大最小值,证明等。
Q1、2:函数表达式,求某函数值,求某常数值,求单调区间,最大最小值,证明等。
第二篇:人力资源六大板块人力资源分为:人力资源规划、招聘与配置、培训与开发、绩效管理、薪酬管理、劳动关系管理等六大模块。
各大模块内容主要有:一、人力资源规划1、2、3、4、5、组织机构的设置企业组织机构的调整与分析企业人员供给需求分析企业人力资源制度的制定人力资源管理费用预算的编制与执行二、招聘与配置1、2、3、4、5、6、7、8、需求分析工作分析和用途能力分析招聘程序和策略招聘渠道分析与选择招聘实施特殊政策与应变方案离职面谈降低员工流失的措施三、培训与开发1、2、3、4、理论学习项目评估调查与评估培训与发展5、6、7、8、9、需求评估与培训培训建议的构成培训、发展与员工教育培训的设计、系统方法开发管理与企业领导;开发自己和他人10、项目管理:项目开发与管理惯例四、绩效管理1、2、3、4、5、6、7、8、9、纯净管理准备阶段实施阶段考评阶段总结阶段应用开发阶段纯净管理的面谈绩效改进的方法行为异向型考评方法结果导向型考评方法五、薪酬管理1、2、薪酬构建全面的薪酬体系(岗位评价与薪酬等级、薪酬调查、薪酬结构、薪酬制度的制定、薪酬制度的调整、人工成本核算)3、福利和其它薪酬问题(福利保险管理、企业福利项目的设计、企业补充养老保险和补充医疗保险的设计)4、评估绩效和提供反馈六、劳动关系管理1、2、3、4、5、就业法劳动关系和社会行业关系和社会劳资谈判工会化和劳资谈判(安全、保安和健康、安全和健康项目安全和健康的工作环境促进工作场所的安全和健康管理职业健康和安全)第三篇:人力资源六大板块人力资源的6大模块:一、人力资源规划:1、组织机构的设置,2、企业组织机构的调整与分析,3、企业人员供给需求分析,4、企业人力资源制度的制定,5、人力资源管理费用预算的编制与执行;(国际人力资源管理1、职业生涯发展理论2、组织内部评估3、组织发展与变革;4、计划组织职业发展;5、比较国际人力资源管理综述6、开发人力资源发展战略计划7、工作中的绩效因素8、员工授权与监管)二、人力资源的招聘与配置:1、招聘需求分析,2、工作分析和胜任能力分析,3、招聘程序和策略、4、招聘渠道分析与选择,5、招聘实施,6、特殊政策与应变方案,7、离职面谈,8、降低员工流失的措施三、人力资源培训和开发:1、理论学习,2、项目评估,3、调查与平谷,4、培训与发展,5、需求评估与培训,6、培训建议的构成,7、培训、发展与员工教育,8、培训的设计、系统方法,9、开发管理与企业领导;开发自己和他人,10、项目管理:项目开发与管理惯例。
专题二化学计量及其应用真题研练·析考情【真题研练】1.[2022·辽宁卷]设N A为阿伏加德罗常数的值。
下列说法正确的是( )A.1.8 g 18O中含有的中子数为N AB.28 g C2H4分子中含有的σ键数目为4N AC.标准状况下,22.4 L HCl气体中H+数目为N AD.pH=12的Na2CO3溶液中OH-数目为0.01N A2.[2022·海南卷]在2.8 g Fe中加入100 mL 3 mol·L-1 HCl,Fe完全溶解。
N A代表阿伏加德罗常数的值,下列说法正确的是( )A.反应转移电子为0.1 molB.HCl溶液中Cl-数为3N AC.2.8 g 56Fe含有的中子数为1.3N AD.反应生成标准状况下气体3.36 L3.[2022·全国甲卷]N A为阿伏加德罗常数的值,下列说法正确的是( )A.25 ℃,101 kPa下,28 L氢气中质子的数目为2.5N AB.2.0 L 1.0 mol·L-1 AlCl3溶液中,Al3+的数目为2.0N AC.0.20 mol苯甲酸完全燃烧,生成CO2的数目为1.4N AD.电解熔融CuCl2,阴极增重6.4 g,外电路中通过电子的数目为0.10N A4.[2021·河北卷]N A是阿伏加德罗常数的值。
下列说法错误的是( )A.22.4 L(标准状况)氟气所含的质子数为18N AB.1 mol碘蒸气和1 mol氢气在密闭容器中充分反应,生成的碘化氢分子数小于2N AC.电解饱和食盐水时,若阴阳两极产生气体的总质量为73 g,则转移电子数为N AD.1 L 1 mol·L-1溴化铵水溶液中NH4+与H+离子数之和大于N A【考情分析】核心突破·提能力考点1 阿伏加德罗常数的综合应用【核心梳理】1.高考常涉及的关于N A的命题角度总结2.正确判断有关阿伏加德罗常数正误的“三大步骤”第一步:查看物质的状态及所处状况——正确运用气体摩尔体积的前提 (1)当物质是气体时,应查看所给条件是不是标准状况(见体积想条件)。
第一章集合与常用逻辑用语第一节集合运算[复习要点] 1.了解集合的含义、体会元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn)图表达集合间的关系及集合运算.知识点一集合的基本概念1.集合中元素的性质:________、________、________.2.元素与集合的关系(1)属于,记为________;(2)不属于,记为________.3.常见数集的符号4.答案:1.确定性无序性互异性2.(1)∈(2)∉3.N N*或N+Z Q R4.(1)列举法(2)描述法(3)图示法知识点二集合间的基本关系少有一个元素不是A 中的元素空集空集是________的子集,是________的真子集∅⊆A ∅B (B ≠∅)答案:相同 A ⊆B B ⊆A A ⊆B 或B ⊇A A B 或BA 任何集合 任何非空集合知识点三 集合的基本运算集合的并集 集合的交集 集合的补集 符号 表示 ________________若全集为U ,则集合A 的补集为________图形 表示意义{x |________}{x |______}{x |=________}答案:A ∪B A ∩B ∁U A x ∈A ,或x ∈B x ∈A ,且x ∈B x ∈U ,且x ∉A链/接/教/材1.[必修1·P11·A 组T1改编]若集合P ={x ∈N |x ≤ 2 021},a =22,则( ) A .a ∈P B .{a }∈P C .{a }⊆P D .a ∉P答案:D2.[必修1·P12·A 组T6改编]已知集合A ={x |x 2-2x -3≤0},B ={x |0<x ≤4},则A ∪B =( ) A .[-1,4] B .(0,3] C .(-1,0]∪(1,4] D .[-1,0]∪(1,4] 答案:A3.[必修1·P12·B 组T3改编]设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2} D .{x |0<x <2} 答案:B 易/错/问/题 1.忽视元素的互异性(1)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. (2)已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.答案:(1)-32 (2)0或32.集合中的两个易混结论:集合中元素的个数;集合子集的个数.(1)已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________.(2)集合A ={1,4,7,10,13,16,19,21},则集合A 有________个子集、________个真子集、________个非空子集、________个非空真子集.(1)答案:5 解析:因为A ∪B ={1,2,3,4,5},所以A ∪B 中元素的个数为5.(2)答案:28 28-1 28-1 28-2 解析:因为集合A 中有8个元素,所以集合A 有28个子集、28-1个真子集、28-1个非空子集、28-2个非空真子集.通/性/通/法1.解决集合问题的两个方法:列举法;图示法.(1)若集合A ={1,2,3},B ={1,3,4},则A ∩B 的子集的个数为________. (2)若集合A ={x |-5<x <2},B ={x |-3<x <3},则A ∩B =________.(1)答案:4 解析:A ∩B ={1,3},其子集分别为∅,{1},{3},{1,3},共4个.(2)答案:{x |-3<x <2} 解析:在数轴上画出表示集合A ,B 的两个区间,观察可知A ∩B ={x |-3<x <2}. 2.集合中两组常用结论:集合间的基本关系;集合的运算.(1)[2021湖南湘潭模拟]已知全集U =R ,集合M ={x ||x |<1},N ={y |y =2x ,x ∈R },则集合∁U (M ∪N )=( ) A .(-∞,-1]B .(-1,2)C .(-∞,-1]∪[2,+∞)D .[2,+∞)(2)[2021皖北协作区联考]已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=( ) A .⎣⎢⎡⎭⎪⎫0,12B .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞C .⎝ ⎛⎭⎪⎫0,12D .(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞(1)答案:A(2)答案:D 解析:因为A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg(x -2x 2)}=⎝ ⎛⎭⎪⎫0,12,所以A ∩B =⎝ ⎛⎭⎪⎫0,12,所以∁R (A ∩B )=(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.题型集合的含义与表示角度Ⅰ.用描述法表示集合试/题/调/研(题题精选,每题都代表一个方向) 1.已知集合A ={6x -5∈Z |}x ∈N *,则集合A 用列举法表示为_______________. 思考:已知集合A ={x ∈N *⎪⎪⎪⎭⎬⎫6x -5∈Z ,则A 中的元素分别是________. [答案] {-2,-3,-6,6,3,2,1} [解析] 集合中的元素为6x -5的取值,当x =2,3,4,6,7,8,11时,6x -5的值为-2,-3,-6,6,3,2,1,共有7个取值,集合A 用列举法表示为{-2,-3,-6,6,3,2,1}.思考:2,3,4,6,7,8,11 2.[2021湖北天门调研]集合M =⎩⎨⎧⎭⎬⎫x |x =k 2+14,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k 4+12,k ∈Z ,则( )A .M =NB .M NC .NMD .M 与N 没有相同的元素[答案] B [解析] 由题可知, 集合M =⎩⎨⎧⎭⎬⎫x |x =k 2+14,k ∈Z =⎩⎨⎧⎭⎬⎫x |x =14(2k +1),k ∈Z , N =⎩⎨⎧⎭⎬⎫x |x =k 4+12,k ∈Z =⎩⎨⎧⎭⎬⎫x |x =14(k +2),k ∈Z ,当k ∈Z 时,2k +1是奇数,k +2是整数,又知奇数均为整数,而整数不一定为奇数,所以M N ,故选B.方/法/指/导(来自课堂的最有用的方法)与集合中的元素有关的问题的求解策略(1)确定集合中的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数. [易错警示] 要注意检验集合中元素的互异性. 角度Ⅱ.元素的互异性与参数的求值试/题/调/研(题题精选,每题都代表一个方向) 3.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,ba ,1={a 2,a +b,0},则a 2 021+b 2 021为( )A .1B .0C .-1D .±1[答案] C [解析] 只有b =0,a 2=1⇒a =-1(a =1不满足互异性),从而b =0,且a =-1,有a 2 021+b 2 021=-1.4.[2021山东百师联盟测试三]已知集合P ={-1,2a +1,a 2-1},若0∈P ,则实数a 的取值集合为( )A .⎩⎨⎧⎭⎬⎫-12,1,-1B .⎩⎨⎧⎭⎬⎫-12,0C .⎩⎨⎧⎭⎬⎫-12,1D .⎩⎨⎧⎭⎬⎫-12,-1 [答案] C [解析] 当2a +1=0时,a =-12,满足题意;当a 2-1=0时,a =±1,经检验,a =1满足题意,故a ∈⎩⎨⎧⎭⎬⎫-12,1.5.已知集合A ={a 2,a +1,-3},B ={a -3,a -2,a 2+1},若A ∩B ={-3},则a =________. [答案] -1 [解析] 因为A ∩B ={-3}, 所以只可能a -3=-3或a -2=-3, 解得a =0或a =-1.当a =0时,A ={0,1,-3},B ={-3,-2,1},此时A ∩B ={1,-3},不合题意.当a =-1时,A ={1,0,-3},B ={-4,-3,2},此时A ∩B ={-3},符合题意,故a =-1.解/题/感/悟(小题示,大智慧)要深刻理解元素的互异性,在解决集合中含有字母的问题时,一定要返回代入验证,防止与集合中元素的互异性相矛盾.题型集合的基本关系角度Ⅰ.子集、真子集关系的判断试/题/调/研(题题精选,每题都代表一个方向) 1.已知集合M =⎩⎨⎧⎭⎬⎫x |x =m +16,m ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =n 2-13,n ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =p 2+16,p ∈Z ,试分析集合M ,N ,P之间的关系.[解] 集合M =⎩⎨⎧⎭⎬⎫x |x =m +16,m ∈Z .关于集合N :当n 是偶数时,令n =2m (m ∈Z ),则N =⎩⎨⎧⎭⎬⎫x |x =m -13,m ∈Z ; 当n 是奇数时,令n =2m +1(m ∈Z ), 则N =⎩⎨⎧⎭⎬⎫x |x =2m +12-13,m ∈Z=⎩⎨⎧⎭⎬⎫x |x =m +16,m ∈Z , 从而得M N .关于集合P :当p =2m (m ∈Z )时, 则P =⎩⎨⎧⎭⎬⎫x |x =m +16,m ∈Z ; 当p =2m -1(m ∈Z )时, 则P =⎩⎨⎧⎭⎬⎫x |x =2m -12+16,m ∈Z=⎩⎨⎧⎭⎬⎫x |x =m -13,m ∈Z , 从而得N =P . 综上可知,M N =P .角度Ⅱ.子集、真子集的个数问题试/题/调/研(题题精选,每题都代表一个方向)2.[2021山东省实验中学期中]设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 组成的集合的子集个数是( )A .2B .3C .4D .8[答案] D [解析] A ={x |x 2-8x +15=0}={3,5},因为A ∩B =B ,所以B ⊆A ,结合题意可知B =∅或{3}或{5},对应实数a 的值分别为0,13,15,其组成有3个元素的集合:⎩⎨⎧⎭⎬⎫0,13,15,所以所求子集个数是23=8,故选D. 3.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4[答案] D角度Ⅲ.根据集合间的关系求参数试/题/调/研(题题精选,每题都代表一个方向)4.[2021湖南长沙长郡中学适应性考试]已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}.若A ∩B 只有4个子集,则实数a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1][答案] D [解析] 本题考查根据集合的子集个数求参数的取值.集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}={x ∈Z |x ≤2},故A ∩B ={x ∈Z |a ≤x ≤2}.因为A ∩B 只有4个子集,所以A ∩B 中元素只能有2个,即A ∩B ={1,2},所以0<a ≤1,故选D.5.[多选]设集合P ={x ⎪⎪⎪⎭⎬⎫2x 2+2x =⎝ ⎛⎭⎪⎫12-x -6,集合T ={x |mx +1=0},若T ⊆P ,则实数m 的取值可以是( ) A .12 B .-12 C .0D .13[答案] BCD [解析] 由2x 2+2x =⎝ ⎛⎭⎪⎫12-x -6,得2x 2+2x =2x +6,∴x 2+2x =x +6,即x 2+x -6=0, 解得x =-3或x =2, ∴集合P ={2,-3}. 若m =0,则T =∅,∴T ⊆P . 若m ≠0,则T =⎩⎨⎧⎭⎬⎫-1m .由T ⊆P ,得-1m =2或-1m =-3, ∴m =-12或m =13.综上,实数m 的取值是13,-12,0. 故选BCD.方/法/指/导(来自课堂的最有用的方法)根据两集合的关系求参数的方法(1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性. (2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到. [易错警示] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论.题型集合的运算角度Ⅰ.交集、并集、补集的综合运算试/题/调/研(题题精选,每题都代表一个方向)1.[2020全国卷Ⅲ,理]已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6[答案] C [解析] 本题考查集合的表示方法,集合的交集运算,集合中元素的个数.依题意A ∩B 的元素是直线x +y =8上满足x ,y ∈N *且y ≥x 的点,即点(1,7),(2,6),(3,5),(4,4).故选C.2.[多选][2021山东济宁一中一模]若集合A ={x |sin x =1},B ={y ⎪⎪⎪⎭⎬⎫y =π4+k π2,k ∈Z ,则正确的结论有( )A .A ∪B =B B .∁R B ⊆∁R AC .A ∩B =∅D .∁R A ⊆∁R B[答案] AB [解析] 本题考查集合的包含关系与补集关系. 由A ={x |sin 2x =1}=⎩⎨⎧⎭⎬⎫x |x =k π+π4,k ∈Z =⎩⎨⎧⎭⎬⎫x |x =4k π+π4,k ∈Z, 又B ={y ⎪⎪⎪⎭⎬⎫y =π4+k π2,k ∈Z ={y ⎪⎪⎪⎭⎬⎫y =2k π+π4,k ∈Z , 显然集合{x |x =4k π+π,k ∈Z }⊆{x |x =2k π+π,k ∈Z }, 所以A ⊆B ,则A ∪B =B 成立,所以选项A 正确; 且∁R B ⊆∁R A 成立,所以选项B 正确,选项D 不正确; A ∩B =A ,所以选项C 不正确.故选AB.角度Ⅱ.根据集合的运算求参数试/题/调/研(题题精选,每题都代表一个方向)3.[2021湖北名校学术联盟联考]已知A ={1,2,3,4},B ={a +1,2a }.若A ∩B ={4},则a =( ) A .3 B .2 C .2或3D .3或1[答案] A [解析] ∵A ∩B ={4},∴a +1=4或2a =4.若a +1=4,则a =3,此时B ={4,6},符合题意;若2a =4,则a =2,此时B ={3,4},不符合题意.综上,a =3,故选A.4.[2021豫北名校联考]设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,34B .⎣⎢⎡⎭⎪⎫34,43C .⎣⎢⎡⎭⎪⎫34,+∞D .(1,+∞)[答案] B [解析] A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,因为函数f (x )=x 2-2ax -1图象的对称轴为直线x =a (a >0),f (0)=-1<0,根据对称性可知,若A ∩B 中恰有一个整数,则这个整数为2,所以有⎩⎪⎨⎪⎧ f (2)≤0,f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43.故选B.角度Ⅲ.补集思想在解题中的应用试/题/调/研(题题精选,每题都代表一个方向)5.已知集合A ={x |x 2+ax +1=0},B ={x |x 2+2x -a =0},C ={x |x 2+2ax +2=0},若三个集合至少有一个集合不是空集,则实数a 的取值范围是________.[答案] {a |a ≤-2或a ≥-1} [解析] 假设三个集合都是空集,即三个方程均无实根,则有⎩⎪⎨⎪⎧Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,解得⎩⎪⎨⎪⎧-2<a <2,a <-1,-2<a <2,解得-2<a <-1,∴a ≤-2或a ≥-1时,三个方程至少有一个方程有实根,即三个集合至少有一个集合不是空集.故实数a 的取值范围为{a |a ≤-2或a ≥-1}.解/题/感/悟(小提示,大智慧)运用补集思想求参数取值范围的步骤第一步:把已知的条件否定,考虑反面问题; 第二步:求解反面问题对应的参数的取值范围; 第三步:求反面问题对应的参数的取值集合的补集. 角度Ⅳ.集合的新定义问题试/题/调/研(题题精选,每题都代表一个方向)6.[2021名师原创]对集合A ,B ,记A -B ={x |x ∈A 且x ∉B },定义A △B =(A -B )∪(B -A )为A ,B 的对称差集.若A ={x ,xy ,lg(xy )},B ={0,y ,|x |},且A △B =∅,则⎝ ⎛⎭⎪⎫1x +1y +⎝ ⎛⎭⎪⎫1x 2+1y 2+⎝ ⎛⎭⎪⎫1x 3+1y 3+…+⎝ ⎛⎭⎪⎫1x 2 020+1y 2 020+⎝ ⎛⎭⎪⎫1x 2 021+1y 2 021=________.[答案] -2 [解析] 依题意及Venn 图知,图中左侧阴影部分为A -B ,右侧阴影部分为B -A ,两阴影部分合起来就是A △B ,因为A △B =∅,所以A =B ,根据集合中元素的互异性,且结合集合B 知x ≠0,y ≠0,因为0∈B ,且A =B ,所以0∈A ,故只有lg(xy )=0, 从而xy =1,而1=xy ∈A ,由A =B 得⎩⎪⎨⎪⎧ xy =1,|x |=1或⎩⎪⎨⎪⎧xy =1,y =1,其中x =y =1与集合中元素的互异性矛盾,所以x =y =-1,代入得⎝ ⎛⎭⎪⎫1x +1y +⎝ ⎛⎭⎪⎫1x 2+1y 2+⎝ ⎛⎭⎪⎫1x 3+1y 3+…+⎝ ⎛⎭⎪⎫1x 2 020+1y 2 020+⎝ ⎛⎭⎪⎫1x 2 021+1y 2 021=-2+2-2+…+2-2=-2. 7.[2021四川成都联考]已知集合A ={1,2,3,4,5,6}的所有三个元素的子集记为B 1,B 2,B 3,…,B k ,k ∈N *.记b i 为集合B i (i =1,2,3,…,k )中的最大元素,则b 1+b 2+b 3+…+b k =( )A .45B .105C .150D .210[答案] B [解析] 本题考查集合的新定义问题.集合A 的含有3个元素的子集共有C 36=20个,所以k =20.在集合B i (i =1,2,3,…,k )中,最大元素为3的集合有C 22=1个;最大元素为4的集合有C 23=3个;最大元素为5的集合有C 24=6个;最大元素为6的集合有C 25=10个,所以b 1+b 2+b 3+…+b k =3×1+4×3+5×6+6×10=105.故选B.8.[多选]已知集合M,N都是非空集合U的子集,令集合S={x|x恰好属于M,N中的一个},下列说法正确的是()A.若S=N,则M=∅B.若S=∅,则M=NC.若S⊆M,则M⊆ND.∃M,N,使得S=(∁U M)∪(∁U N)[答案]ABD[解析]本题考查Venn图.用Venn图表示,集合S为如图1中的阴影部分,对于A选项,若S =N,利用S的Venn图观察,则有M∩N=∅,M=∅,故A选项正确;对于B选项,若S=∅,则M=N,故B选项正确;对于C选项,反例:如图集合S为如图2中的阴影部分,N⊆M,故C选项错误;对于D选项,例如U ={1,2,3,4},M={1,2,3},N={4},S={x|x恰好属于M,N中的一个}={1,2,3,4}=U,而(∁U M)∪(∁U N)={4}∪{1,2,3}={1,2,3,4}=S,故D选项正确,故选ABD.图1图2方/法/指/导(来自课堂的最有用的方法)解决集合新定义问题的方法1.紧扣新定义分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是解答新定义型集合问题的关键.2.用好集合的性质集合的性质(概念、元素的性质、运算性质等)是解答集合新定义问题的基础,也是突破口,在解答时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.提醒完成限时跟踪检测(一)第二节充分条件与必要条件,全称量词与存在量词[复习要点] 1.理解充分条件与必要条件的意义.2.理解全称量词与存在量词的含义.3.能正确地对含有一个量词的命题进行否定.知识点一命题的概念概念使用语言、符号或者式子表达的,可以判断______的陈述句特点(1)能判断真假;(2)陈述句分类________命题、________命题答案:真假真假知识点二充分条件、必要条件与充要条件的概念若p⇒q,则p是q的______条件,q是p的______条件p是q的________条件p⇒q且q pp是q的________条件p q且q⇒pp是q的________条件p⇔qp是q的________条件p q且q p 答案:充分必要充分不必要必要不充分充要既不充分也不必要知识点三全称量词和存在量词1.全称量词:所有的,任意一个,任给一个,用符号“________”表示;存在量词:存在一个,至少有一个,有些,用符号“________”表示.2.含有全称量词的命题,叫做全称量词命题.“对M中任意一个x,有p(x)成立”用符号简记为:___________________________________.3.含有存在量词的命题,叫做存在量词命题.“存在M中元素x0,使p(x0)成立”用符号简记为:_________________________________________.答案:1.∀∃ 2.∀x∈M,p(x) 3.∃x0∈M,p(x0)知识点四含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)________________∃x0∈M,p(x0)________________答案:∃x0∈M,綈p(x0)∀x∈M,綈p(x)链/接/教/材1.[选修2-1·P12·A组T3]设a,b∈R且ab≠0,则ab>1是a>1b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:D2.[选修2-1·P30·A组T6]命题“表面积相等的三棱锥体积也相等”的否定是_____________________________________________.答案:有些表面积相等的三棱锥体积不相等3.[选修2-1·P27·A组T3改编]命题“∀x∈R,x2+x≥0”的否定是()A.∃x0∈R,x20+x0≤0B.∃x0∈R,x20+x0<0C.∀x∈R,x2+x≤0D.∀x∈R,x2+x<0答案:B4.[选修2-1·P24·例3改编]命题:“∃x∈R,x2-ax+1<0”的否定为________.答案:∀x∈R,x2-ax+1≥0易/错/问/题1.命题中的易错点:命题的否定与否命题区分不当.命题“已知a>1,若x>0,则a x>1”的否命题为()A.已知0<a<1,若x>0,则a x>1B.已知a>1,若x≤0,则a x>1C.已知a>1,若x≤0,则a x≤1D.已知0<a<1,若x≤0,则a x≤1答案:C2.充要条件的易混点:混淆条件的充分性和必要性.[多选]设x∈R,则x>2的一个必要不充分条件是()A.x<1 B.x>1C.x>-1 D.x>3答案:BC3.充要条件的易错点:否定形式下充分条件、必要条件判断错误.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件答案:A 核/心/素/养逻辑推理——充要条件关系中的核心素养充要条件问题中常涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,充分体现“逻辑推理”的核心素养.[2021河北保定模拟]已知条件p :4x -1≤-1,条件q :x 2+x <a 2-a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,-12B .⎣⎢⎡⎦⎥⎤12,2C .[-1,2]D .⎝ ⎛⎦⎥⎤-2,12∪[2,+∞) 答案:C 解析:由4x -1≤-1,即4x -1+1≤0, 化简,得x +3x -1≤0,解得-3≤x <1;由x 2+x <a 2-a ,得x 2+x -a 2+a <0,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,即p 是q 的必要不充分条件, 即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集. 设f (x )=x 2+x -a 2+a ,如图,则⎩⎪⎨⎪⎧f (-3)=-a 2+a +6>0,f (1)=-a 2+a +2≥0,所以⎩⎪⎨⎪⎧-2<a <3,-1≤a ≤2,所以-1≤a ≤2.题型充分条件与必要条件角度Ⅰ.充分条件与必要条件的判断试/题/调/研(题题精选,每题都代表一个方向)1.[2020北京卷]已知α,β∈R ,则“存在k ∈Z 使得α=k π+(-1)k β”是“sin α=sin β”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件[答案] C [解析] 本题考查充分条件、必要条件的判断,以及诱导公式的应用.充分性:若存在k ∈Z 使得α=k π+(-1)k β,当k 为偶数时,设k =2n (n ∈Z ),则α=2n π+β,则sin α=sin(2n π+β)=sin β;当k 为奇数时,设k =2n +1(n ∈Z ),则α=(2n +1)π-β=2n π+(π-β),则sin α=sin(2n π+π-β)=sin(π-β)=sin β,所以充分性成立.必要性:若sin α=sin β,则α=2n π+β或α=2n π+π-β(n ∈Z ),即α=k π+(-1)k β(k ∈Z ),所以必要性成立.故选C.2.[多选][2021海南华侨中学段测]“关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立”的一个必要不充分条件是( )A .0<a <1B .0≤a ≤1C .0<a <12D .a ≥0[答案] BD [解析] 本题考查二次不等式恒成立、充分条件和必要条件的判断.关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立,则Δ=4a 2-4a <0,解得0<a <1.A 选项,“0<a <1”是“关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立”的充要条件;B 选项,“0≤a ≤1”是“关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立”的必要不充分条件;C 选项,“0<a <12”是“关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立”的充分不必要条件; D 选项,“a ≥0”是“关于x 的不等式x 2-2ax +a >0对 ∀x ∈R 恒成立”的必要不充分条件.故选BD. 3.[2019北京卷]设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] C [解析] 因为点A ,B ,C 不共线,由向量加法的三角形法则,可知BC →=AC →-AB →,所以|AB →+AC →|>|BC →|等价于|AB →+AC →|>|AC →-AB →|,因为模为正,故不等号两边平方得AB →2+AC →2+2|AB →|·|AC →|cos θ>AC →2+AB →2-2|AC →|·|AB →|cos θ(θ为AB →与AC →的夹角),整理得4|AB →|·|AC →|cos θ>0,故cos θ>0,即θ为锐角.因为以上推理过程可逆,所以“AB →与AC →的夹角为锐角”是“|AB→+AC →|>|BC →|”的充分必要条件.故选C.方/法/指/导(来自课堂的最有用的方法)充分条件与必要条件的判定方法1.定义法①若p⇒q且q p,则p是q的充分不必要条件;②若q⇒p且p q,则p是q的必要不充分条件;③若p⇒q且q⇒p,则p是q的充要条件;④若p q且q p,则p是q的既不充分也不必要条件.2.等价转化法条件和结论带有否定性词语的命题常转化为其逆否命题来判断.如①命题“綈q⇒綈p”转化为命题“p⇒q”;②命题“綈p⇒綈q”转化为命题“q⇒p”;③命题“綈p⇔綈q”转化为命题“q⇔p”.3.集合法设满足条件p的元素构成集合A,满足条件q的元素构成集合B,则①若A⊆B,则p是q的充分条件;②若A⊇B,则p是q的必要条件;③若A=B,则p是q的充要条件;④若A B,则p是q的充分不必要条件;⑤若A B,则p是q的必要不充分条件;⑥若A B,且A⊉B,则p是q的既不充分也不必要条件.角度Ⅱ.探究充分条件、必要条件及充要条件试/题/调/研(题题精选,每题都代表一个方向)4.[多选]“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是()A.2≤m<3 B.12≤m≤3C.1≤m<3 D.2≤m≤5 2[答案]BC[解析]本题考查必要不充分条件的探求.函数f(x)图象的对称轴是直线x=m,由已知可得充要条件是1<m <3,由选项判断,命题成立的必要不充分条件可以是12≤m ≤3或1≤m <3.故选BC.角度Ⅲ.由充分条件、必要条件求参数试/题/调/研(题题精选,每题都代表一个方向)5.[多选]设f (x )是⎝ ⎛⎭⎪⎫x 2+12x 6展开式的中间项,则f (x )≤mx 在区间⎣⎢⎡⎦⎥⎤22,2上恒成立的必要不充分条件是( )A .m ∈[0,+∞)B .m ∈⎣⎢⎡⎭⎪⎫54,+∞C .m ∈⎣⎢⎡⎦⎥⎤54,5D .m ∈[5,+∞)[答案] AB [解析] 易知f (x )=C 36(x 2)3·⎝ ⎛⎭⎪⎫12x 3=52x 3,故f (x )≤mx ⇔m ≥52x 2,x ∈⎣⎢⎡⎦⎥⎤22,2, ∴m ≥⎝ ⎛⎭⎪⎫52x 2max =5.∴m ∈[5,+∞)满足条件,即所求区间应真包含区间[5,+∞).故选AB.6.已知p :⎝ ⎛⎭⎪⎫1-x 32≤4,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,则实数m 的取值范围为________.[答案] [8,+∞) [解析] 由q :x 2-2x +1-m 2≤0,解得1-m ≤x ≤1+m , 所以綈q :A ={x |x >1+m 或x <1-m ,m >0}, 由p :⎝ ⎛⎭⎪⎫1-x 32≤4,解得-3≤x ≤9,所以綈p :B ={x |x >9或x <-3}. 因为綈p 是綈q 的必要不充分条件, 所以A B . 所以⎩⎪⎨⎪⎧m >0,1-m <-3,1+m ≥9或⎩⎪⎨⎪⎧m >0,1-m ≤-3,1+m >9,即m ≥8或m >8,所以m ≥8.7.[2021湖南浏阳三校联考]设p :实数x 满足x 2-4ax +3a 2<0,a ∈R ;q :实数x 满足x 2-x -6≤0或x 2+2x -8>0.若a <0且綈p 是綈q 的必要不充分条件,求实数a 的取值范围.[解] 由p 得(x -3a )(x -a )<0, 当a <0时,3a <x <a .由q 得(x -3)(x +2)≤0或(x +4)·(x -2)>0, 则-2≤x ≤3或x <-4或x >2, 则x <-4或x ≥-2.∴綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件. 设A =(3a ,a ),B =(-∞,-4)∪[-2,+∞), 可知A B ,∴a ≤-4或3a ≥-2, 即a ≤-4或a ≥-23.又∵a <0,∴a ≤-4或-23≤a <0,即实数a 的取值范围为(-∞,-4]∪⎣⎢⎡⎭⎪⎫-23,0.方/法/指/导(来自课堂的最有用的方法) 1.根据充分、必要条件求解参数范围的方法解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.2.利用充要条件求参数的关注点(1)巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍. [提醒] 含有参数的问题,要注意分类讨论.题型全称量词与存在量词角度Ⅰ.全(特)称命题的否定试/题/调/研(题题精选,每题都代表一个方向)1.[2021湖南怀化模拟]命题“∀x ∈N *,x 2∈N *且x 2≥x ”的否定形式是( )A .∀x ∈N *,x 2∉N *且x 2<xB .∀x ∈N *,x 2∉N *或x 2<xC .∃x 0∈N *,x 20∉N *且x 20<x 0 D .∃x 0∈N *,x 20∉N *或x 20<x 0[答案] D [解析] 本题考查存在量词命题的否定.由题意可得命题“∀x ∈N *,x 2∈N *且x 2≥x ”的否定为“∃x 0∈N *,x 20∉N *或x 20<x 0”,故选D.2.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2 D .∃x ∈R ,∀n ∈N *,使得n <x 2[答案] D [解析] 根据含有量词的命题的否定的概念可知选D.方/法/指/导(来自课堂的最有用的方法)全称命题与特称命题的否定1.改写量词确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写. 2.否定结论对原命题的结论进行否定. 3.“双量词”命题的否定叙述“对于∀t ∈D 1,∃x 0∈D 2,满足条件p (t ,x 0)”其否定叙述为“∃t 0∈D 1,对于∀x ∈D 2,满足条件綈p (t 0,x )”,如本例2中出现的形式.角度Ⅱ.全(特)称命题的真假判断试/题/调/研(题题精选,每题都代表一个方向) 3.下列四个命题:p 1:∃x 0∈(0,+∞),⎝ ⎛⎭⎪⎫12x 0<⎝ ⎛⎭⎪⎫13x 0;p 2:∃x 0∈(0,1),log 12x 0>log 13x 0;p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >log 12x ;p 4:∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x .其中真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4[答案] D [解析] 对于p 1,当x 0∈(0,+∞)时,总有⎝ ⎛⎭⎪⎫12x 0>⎝ ⎛⎭⎪⎫13x 0成立,故p 1是假命题;对于p 2,当x 0=12时,有1=log 1212=log 1313>log 1312成立,即log 1212>log 1312,故p 2是真命题;对于p 3,结合指数函数y =⎝ ⎛⎭⎪⎫12x 与对数函数y =log 12x 在(0,+∞)上的图象(如图1)可以判断p 3是假命题;对于p 4,结合指数函数y =⎝ ⎛⎭⎪⎫12x 与对数函数y =log 13x 在⎝ ⎛⎭⎪⎫0,13上的图象(如图2)可以判断p 4是真命题.综上可知,真命题为p 2,p 4,故选D.4.下列各命题中,真命题是( ) A .∀x ∈R,1-x 2<0 B .∀x ∈N ,x 2≥1 C .∃x 0∈Z ,x 30<1D .∃x 0∈Q ,x 20=2[答案] C [解析] 分别对选项中的不等式求解,依次判断是否正确即可.对于选项A,1-x 2<0,即x >1或 x <-1,故A 不正确;对于选项B ,当x =0时,x 2=0<1,故B 不正确;对于选项D ,x =±2为无理数,故D 不正确;对于选项C ,当x =0时,x 3=0<1,故C 为真命题,故选C.5.[多选]已知直线l :y =k (x -1),圆C :(x -1)2+y 2=r 2(r >0),则下列命题正确的是( ) A .∀k ∈R ,l 与C 相交 B .∃k ∈R ,l 与C 相切 C .∀r >0,l 与C 相交D .∃r >0,l 与C 相切[答案] AC [解析] 直线l :y =k (x -1)经过定点(1,0), 圆C :(x -1)2+y 2=r 2(r >0)的圆心为(1,0),半径为r , ∴直线l 经过圆C 的圆心,∴∀k ∈R ,l 与C 相交,∀r >0,l 与C 相交.∴AC 正确.解/题/感/悟(小提示,大智慧)由于全称命题的否定是特称命题,特称命题的否定是全称命题,原命题与其否定的真假相对,因此涉及特称命题为假命题时,常转化为全称命题为真命题后求解.全称命题为真,常转化为恒成立问题,特称命题为真,常转化为有解问题.角度Ⅲ.根据全(特)称命题的真假求参数试/题/调/研(题题精选,每题都代表一个方向)6.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.[答案] ⎝ ⎛⎦⎥⎤0,12 [解析] f (x )=x 2-2x ,在x ∈[-1,2]内的值域为[-1,3],g (x )=ax +2(a >0)在x ∈[-1,2]内的值域为[-a +2,2a +2].由条件可知:[-a +2,2a +2]⊆[-1,3].从而:⎩⎪⎨⎪⎧-a +2≥-1,2a +2≤3,∴0<a ≤12. 7.已知f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________.[答案] ⎣⎢⎡⎭⎪⎫14,+∞ [解析] 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由题意得f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.8.[2021河南安阳调研]已知p :∀x ∈[1,2],x 2-a ≥0,q :∃x 0∈R ,使x 20+2ax 0+2-a =0.若命题“p 且q ”是真命题,则实数a 的取值范围是________.[答案] {a |a ≤-2或a =1} [解析] 由x 2-a ≥0,得a ≤x 2.又x ∈[1,2],∴x 2∈[1,4],∴a ≤1,∴若命题p 是真命题,则a ≤1;要使命题q 为真命题,则有Δ=4a 2-4(2-a )≥0,即a 2+a -2≥0,解得a ≥1或a ≤-2.∵命题“p 且q ”是真命题,∴p ,q 同时为真,∴⎩⎪⎨⎪⎧ a ≤1,a ≥1或a ≤-2,解得a ≤-2或a =1,即实数a 的取值范围是{a |a ≤-2或a =1}.解/题/感/悟(小提示,大智慧)根据全(特)称命题真假求参数的取值范围时,常采用分离参数法(1)∀x ∈D ,不等式p (a ,x )≥0恒成立,分离出参数a 后转化为a ≥f (x )[或a ≤f (x )]恒成立,进而转化为a ≥f (x )max [或a ≤f (x )min ].(2)∃x ∈D ,不等式p (a ,x )≥0有解,求参数,也常分离参数后,化为a ≥f (x )[或a ≤f (x )]有解问题,从而转化为a ≥f (x )min [或a ≤f (x )max ].(3)形如:“对∀x 1∈A ,都存在x 2∈B ,使得g (x 2)=f (x 1)成立”,问题转化为两值域间的包含关系:{y |y =f (x )}⊆{y |y =g (x )}.(4)形如:“对∀x 1∈A ,都存在x 2∈B ,使得f (x 1)<g (x 2)成立”,问题转化为两函数最值间的关系:f (x )max <g (x )max . 提醒 完成限时跟踪检测(二)。