结构动力学(5)-第四章 结构动力学的求解
- 格式:ppt
- 大小:1.04 MB
- 文档页数:55
第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。
根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。
2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。
①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。
②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。
结构的动力学方程()g MX CX KX MIx t ++=-clear; clc; n=4;II=sqrt(-1);%主结构质量、阻尼、刚度矩阵123400000000000m mM m m ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M=eye(n)*1.0e+4; K=eye(n)*1.6*1.0e+7; %主结构刚度矩阵聚合 zk=zeros(n);122223333444400000k k k kk k k K k k k k k k +-⎡⎤⎢⎥-+-⎢⎥=⎢⎥-+-⎢⎥-⎣⎦for j=1:(n-1)zk(j,j)=K(j,j)+K(j+1,j+1); zk(j,j+1)=-K(j+1,j+1); zk(j+1,j)=-K(j+1,j+1); endzk(n,n)=K(n,n); k=zk; m=M;%求解各阶模态频率 [tzxl,tzz]=eig(k,m); d=diag(sqrt(tzz)); %振型规一化 for i=1:n[tzz1(i),j]=min(d); tzxl1(:,i)=tzxl(:,j); d(j)=max(d)+1; end%振型归一化取第一层振型为1 for j=1:ntzxl1(:,j)=tzxl1(:,j)/tzxl1(1,j); endw0=tzz1;w=tzz1/(2*pi); zhx=tzxl1;广义阻尼矩阵1112220333444200002000020002M M C M M ζωζωζωζω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦各阶模态阻尼比都取0.05i ζ= %阻尼比ks0=0.05;ks=ones(n,1)*ks0;第n 阶广义质量:Tn n n M M φφ=%求广义质量 Mn=zhx'*m*zhx; 阻尼矩阵为:()()110TC C φφ--=%求阻尼矩阵 C=zeros(n); for i=1:nC(i,i)=2*ks(i)*w0(i)*Mn(i,i); endc=(zhx')\C/zhx;()()4222022222244g g g g x g g gS S ωζωωωωωζωω+=-+参数eg 即g ζ%过滤白噪声参数 eg=0.6; wg=15.708; S0=0.001574;%按照书上的要求,取频率和时间的最大值和步长 %频率间隔 dw=0.3;%最大频率范围 maxw=45; %最大时间值 maxt=40; %时间间隔 dt=0.2;%各层各时间点频率点的功率谱密度,循环变量:层数,时间点,频率点 Pwt=zeros(n,maxt/dt,maxw/dw); %频率点数循环变量wn wn=1;%对频率进行循环,求解各频率点的时间历程 for w=0:dw:maxwx1=1+4*eg^2*(w/wg)^2;x2=(1-(w/wg)^2)^2+4*eg^2*(w/wg)^2; Sgw=x1*S0/x2; s=sqrt(Sgw);%采用精细积分法进行求解时间历程,得到位移和速度时程 [disp,velp]=JINGXI67(M,zk,c,dt,maxt,w,s,n); Ywt=disp;for kkk=1:maxt/dt%求确定频率下各时间点的功率谱 Yw=Ywt(:,kkk);()()()()()1234t t t t t y y y y y ωωωωω⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎩⎭每一时刻和频率点的位移向量,对其进行求共轭和装置得到协方差矩阵,对角上的元素即是每一时刻的各层的功率谱y1=conj(Yw);y2=transpose(Yw);()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()11121314212223243132333441424344t t t t t t t t t t t t t t t t yy t t t t t t t t t t t t t t t t y y y y y y y y y y y y y y y y S y y y y y y y y y y y y y y y y ωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωω****************⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ %确定时间点确定频率下的功率谱Yw,取对角线元素Syyw=y1*y2; for kk=1:nPwt(kk,kkk,wn)=Syyw(kk,kk); end endwn=wn+1; end()()()()()()()()()()()()()()2012311231212222yyy yy yy yy n yy yy yy n yy yy n yy yy yy n S d S d S S S S S d S S S S S d σωωωωωωωωωωωωωωωω+∞+∞-∞--==⎡⎤ =⨯++++⋯+⎣⎦⎡⎤ =++++⋯+⎣⎦⎰⎰ %求解完成后实际上wn 为maxw/dw+2,实际频率点个数为maxw/dw+1%各层的时变方差,循环变量为:层数,时间点 Fangcha=zeros(n,maxt/dt); for tn=1:maxt/dt%求解各层的时变方差 for kk=1:nxx1=zeros(wn-1,1);%每一个时刻的方差对各频率点进行积分,频率点数取maxw/dw+1,即wn-1 for wn0=1:wn-1xx1(wn0)=Pwt(kk,tn,wn0); end%采用复合梯形求积公式对功率谱进行积分得到方差Fangcha(kk,tn)=(xx1(1)+xx1(wn-1)+2*sum(xx1(2:wn-1-1)))*dw; end end%画图c1=(1:maxt/dt)*dt; d1=Fangcha(1,:)/S0; d2=Fangcha(2,:)/S0; d3=Fangcha(3,:)/S0; d4=Fangcha(4,:)/S0; figure(3)plot(c1,d1,'k',c1,d2,'r',c1,d3,'m',c1,d4,'r-')精细积分的程序function [disp,velp]=JINGXI67(m,k,c,dt,maxt,w,s,n) %虚数单位 II=sqrt(-1); % i teω中的i ωIIW=II*w; I=eye(n); Z=zeros(n);离散化n 自由度结构受均匀调制演变随机激励(){}f t 时的运动微分方程可表示为:()()()My Cy Ky f t MIg t x t ++==-其中()x t 为平稳高斯白噪声随机过程向量,()g t 为调制函数。
结构动力学方程常用数值解法对于一个实际结构,由有限元法离散化处理后,动力学方程可写为:...++=()M x C x Kx F t从数学角度看,这是一个常系数的二阶线性常微分方程组,计算数学领域,常微分数值算法常用的有两大类:-、针对一阶微分方程数值积分法发展的欧拉法,中点法,Rugge-kutta(龙格—库塔)方法。
二、直接基于二阶动力学方程发展的方法。
对结构动力学问题的数值求解,常用的有两大类:一是坐标变换法,它是对结构动力方程式,在求解之前,进行模态坐标变换,实际上就是一种Rize变换,即把原物理空间的动力方程变换到模态空间中去求解。
现在,普遍使用的方法是模态(振型)迭加法。
二是直接积分法,它是对结构动力方程式在求解之前不进行坐标变换,直接进行数值积分计算。
这种方法的特点是对时域进行离散,然后将该时刻的加速度和速度用相邻时刻的各位移线性组合而成。
通常又称为逐步积分法。
模态迭加方法,比较常用,但如下情况通常使用直接积分方法(即求解之前不进行模态分析)一、非比例阻尼,非线性情况。
二、有冲击作用,激起高频模态,力作用持续时间较短,模态迭加计算量太大。
一振型迭加法与Duhamel积分数值解按照有限单元法的一般规则, 经过边界条件的约束处理, 结构在强迫振动时多自由度体系的运动平衡方程可以表示为:++= (1)MU CU KU R其中, M是体系的质量矩阵, C 是体系的阻尼矩阵, 而K 则是刚度矩阵. R 为外荷载向量. U、U和U则分别是体系单元节点的位移、速度和加速度向量. 上述动力平衡方程实质上是与加速度有关的惯性力MU和与速度有关的阻尼力CU及与位移有关的弹性力KU在时刻t与荷载的静力平衡。
振型叠加法是把多自由度体系的结构的整体振动分解为与振型次数相对应的单自由度体系, 求得各个单自由度体系的动力响应后, 再进行叠加得出结构整体响应. 振型叠加法原理是利用结构无阻尼自由振动的振型矩阵作为变换矩阵, 将结构动力方程式(1)式变换成一组非耦合的微分方程. 逐个地求解这些方程后, 将解叠加即可得到动力方程的解。