基本蚁群优化算法及其改进毕业设计
- 格式:doc
- 大小:618.50 KB
- 文档页数:42
最短路径问题的蚁群算法优化设计蚁群算法是一种以模拟蚂蚁觅食行为为基础的启发式优化算法,已经广泛应用于解决最短路径问题。
在这篇文章中,我们将探讨如何对蚁群算法进行优化设计,以提高其在解决最短路径问题上的效率和准确性。
1. 引言最短路径问题是在图论中经常遇到的问题,其目标是找到两个节点之间最短路径的距离和路径。
传统的解决方法,如迪杰斯特拉算法和贝尔曼-福特算法等,虽然能够得到最短路径结果,但在处理大规模图时效率较低。
因此,研究者们开始探索新的算法来解决这个问题。
2. 蚁群算法原理蚁群算法模拟了蚂蚁在寻找食物时释放信息素和选择路径的行为。
蚂蚁释放的信息素会在路径上逐渐积累,其他蚂蚁会根据信息素浓度选择路径。
路径上的信息素浓度和路径的长度成反比,从而使得较短路径上的信息素浓度更高,其他蚂蚁更容易选择该路径。
3. 蚁群算法的优化设计虽然蚁群算法在解决最短路径问题中表现出良好的性能,但仍有一些问题需要解决,比如收敛速度慢和易陷入局部最优解等。
下面我们将介绍一些优化设计来解决这些问题。
3.1 蚂蚁数量的合理设置蚂蚁数量的设置对蚁群算法的性能有很大影响。
过少的蚂蚁数量会导致搜索空间不充分,可能无法找到最优解;过多的蚂蚁数量会增加计算量,在较大规模问题上不可行。
因此,通过实验和经验,选择合适的蚂蚁数量是一项重要的优化设计。
3.2 信息素更新策略信息素更新策略决定了信息素的挥发和补充速度。
为了避免蚂蚁陷入局部最优解,我们可以引入一定程度的信息素挥发,使得信息素不断更新和调整。
此外,对于发现更短路径的蚂蚁,可以适当加大其留下信息素的量,以便其他蚂蚁更有可能选择这条路径。
3.3 启发函数的设计蚂蚁选择下一步路径时,需要根据路径上的信息素浓度和启发函数计算出路径的吸引度。
启发函数的设计应该符合最短路径问题的特点,比如节点间距离的衡量指标和路径选择的偏好等。
合理的启发函数设计可以提高蚁群算法的搜索效率和准确性。
4. 实验与结果通过在不同规模图上进行实验,我们可以得到蚁群算法在解决最短路径问题上的表现。
【优秀作业】蚁群优化算法蚁群优化算法一.概述生物学家发现,自然界中的蚁群觅食是一种群体性行为,并非单只蚂蚁自行寻找食物源。
蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。
信息素浓度的大小表征到食物源路径的远近,信息素浓度越高,表示对应的路径距离越短。
通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径上的信息素浓度,这样会形成一个正反馈。
最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即最短距离。
值得一提的是,生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。
20世纪90年代初,意大利学者M.Dorigo等人提出了模拟自然界蚂蚁群体觅食行为的蚁群算法。
其基本思想是:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上积累的信息素浓度逐渐增高,选择该路径上的蚂蚁个数也越来越多。
最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。
二.蚁群算法解决TSP问题1. 算法原理M.Dorigo等人最早将蚁群算法用于解决旅行商问题(Traveling Salesman Problem,TSP),并取得了较好的实验结果。
设整个蚂蚁群体中蚂蚁的数量为,城市的数量为,城市与城市之间的距离为,时刻城市与城市连接路径上的信息素浓度为。
初始时刻,各个城市间连接路径上的信息素浓度相同,不妨设。
蚂蚁根据各个城市间连接路径上的信息素浓度决定下一个访问城市,设表示时刻蚂蚁从城市转移到城市的转移概率,其公式为:其中:为启发函数,表示蚂蚁从城市转移到城市的期望程度;为蚂蚁待访问城市的集合,开始时,中有个元素,即包括除了蚂蚁出发城市的所有其它城市,随着时间的推进,中的元素不断减少,直至为空,即表示所有的城市均访问完毕;为信息素重要程度因子,其值越大,表示信息素的浓度在转移中起的作用越大;为启发函数重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁会以较大的概率转移到距离短的城市。
蚁群优化算法及其在工程中的应用引言:蚁群优化算法(Ant Colony Optimization,ACO)是一种基于蚁群行为的启发式优化算法,模拟了蚂蚁在寻找食物过程中的行为。
蚁群优化算法以其在组合优化问题中的应用而闻名,特别是在工程领域中,其独特的优化能力成为解决复杂问题的有效工具。
1. 蚁群优化算法的原理与模拟蚁群优化算法源于对蚂蚁觅食行为的研究,它模拟了蚂蚁在寻找食物时使用信息素沉积和信息素蒸发的策略。
蚂蚁释放的信息素作为信息传播的媒介,其他蚂蚁会根据信息素浓度选择路径。
通过这种方式,蚁群优化算法利用信息素的正反馈机制,不断优化路径选择,从而找到全局最优解。
2. 蚁群优化算法的基本步骤蚁群优化算法的基本步骤包括:初始化信息素浓度、蚁群初始化、路径选择、信息素更新等。
2.1 初始化信息素浓度在蚁群优化算法中,信息素浓度表示路径的好坏程度,初始时,信息素浓度可以设置为一个常数或随机值。
较大的初始信息素浓度能够提醒蚂蚁找到正确的路径,但也可能导致过早的收敛。
2.2 蚁群初始化蚂蚁的初始化包括位置的随机选择和路径的初始化。
通常情况下,每只蚂蚁都在搜索空间内的随机位置开始。
2.3 路径选择蚂蚁通过信息素和启发式信息来选择路径。
信息素表示路径的好坏程度,而启发式信息表示路径的可靠程度。
蚂蚁根据这些信息以一定的概率选择下一个位置,并更新路径。
2.4 信息素更新每只蚂蚁走过某条路径后,会根据路径的好坏程度更新信息素浓度。
信息素更新还包括信息素的挥发,以模拟现实中信息的流失。
3. 蚁群优化算法在工程中的应用蚁群优化算法在工程领域中有广泛的应用,以下将从路径规划、交通调度和电力网络等方面进行说明。
3.1 路径规划路径规划是蚁群算法在工程中最为常见的应用之一。
在物流和交通领域,蚁群算法可以帮助寻找最短路径或最佳路线。
例如,蚁群优化算法在无人驾驶车辆中的应用,可以通过模拟蚁群的行为,找到最优的路径规划方案。
3.2 交通调度蚁群优化算法在交通调度中的应用可以帮助优化交通流,减少拥堵和行程时间。
第一章绪论1。
1选题的背景和意义受社会性昆虫行为的启发,计算机工作者通过对社会性昆虫的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群体智能的研究。
群体智能作为一个新兴领域自从20世纪80年代出现以来引起了多个学科领域研究人员的关注,已经成为人工智能以及经济社会生物等交叉学科的热点和前沿领域。
群体智能(Swarm Intelligence)中的群体(Swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解,群体智能指的是无智能或者仅具有相对简单智能的主体通过合作表现出更高智能行为的特性;其中的个体并非绝对的无智能或只具有简单智能,而是与群体表现出来的智能相对而言的。
当一群个体相互合作或竞争时,一些以前不存在于任何单独个体的智慧和行为会很快出现。
群体智能的提出由来已久,人们很早以前就发现,在自然界中,有的生物依靠其个体的智慧得以生存,有的生物却能依靠群体的力量获得优势。
在这些群体生物中,单个个体没有很高的智能,但个体之间可以分工合作、相互协调,完成复杂的任务,表现出比较高的智能。
它们具有高度的自组织、自适应性,并表现出非线性、涌现的系统特征。
群体中相互合作的个体是分布式的,这样更能够适应当前网络环境下的工作状态;没有中心的控制与数据,这样的系统更具有鲁棒性,不会由于某一个或者某几个个体的故障而影响整个问题的求解。
可以不通过个体之间直接通信而是通过非直接通信进行合作,这样的系统具有更好的可扩充性。
由于系统中个体的增加而增加的系统的通信开销在这里十分小.系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性。
因为具有这些优点,虽说群集智能的研究还处于初级阶段,并且存在许多困难,但是可以预言群集智能的研究代表了以后计算机研究发展的一个重要方向。
随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,当前存在的一些群体智能算法有人工神经网络,遗传算法,模拟退火算法,群集智能,蚁群算法,粒子群算等等。
基于改进蚁群算法的优化方法及其应用IntroductionMetaheuristic algorithms are popular techniques used for solving complex optimization problems such as the traveling salesman problem, portfolio optimization, and many others. One of the famous metaheuristic algorithms is the Ant Colony Optimization (ACO) algorithm, which simulates the behavior of ants in finding the shortest path between their colony and a food source. However, the traditional ACO algorithm has some limitations that affect its performance in solving complex optimization problems. In this article, we will introduce an improved version of the ACO algorithm and its applications in various optimization problems.Chapter 1: Basic Ant Colony Optimization AlgorithmThe ACO algorithm is a population-based search algorithm that imitates the behavior of ants in finding the shortest path between their nest and food source. The algorithm consists of a set of ants that move through a graph and deposit pheromone trail on the edges they traverse. The pheromone trail acts as a form of communication among ants, and those edges with the highest pheromone concentration are more likely to be chosen by other ants.The basic steps of the traditional ACO algorithm are as follows:1. Set the number of ants, the initial pheromone concentration, and the heuristic value for each edge.2. Each ant selects a starting node and iteratively selects the next node based on a probabilistic rule that combines the pheromone trail and the heuristic value of each edge.3. After an ant completes a tour, the pheromone trail on each edge is updated based on the length of the tour. Edges with shorter tour length receive more pheromone.4. Repeat steps 2 and 3 until a stopping criterion is met.Chapter 2: Limitations of Basic ACO AlgorithmAlthough the traditional ACO algorithm is effective in solving many combinatorial optimization problems, it has some limitations that may affect its performance in solving more complex problems. Some of the limitations are:1. Premature Convergence: The ACO algorithm tends to converge prematurely to a local optimum, which means that it fails to explore the search space adequately, leading to suboptimal solutions.2. Stagnation: The algorithm can get stuck in a local optimum due to the lack of exploration.3. Inefficient Parameter Tuning: The performance of the ACO algorithm highly depends on parameter values such as the pheromone evaporation rate, the initial pheromone value, and the visibility of theedges. The selection of appropriate parameter values can be challenging and time-consuming.Chapter 3: Improved Ant Colony Optimization AlgorithmTo address the limitations of the basic ACO algorithm, several improved versions have been proposed. One of the popular improved ACO algorithms is the Max-Min Ant System (MMAS) algorithm that ensures better exploration and avoids premature convergence.The MMAS algorithm introduces several enhancements that improve the performance of the basic ACO algorithm. These enhancements include:1. Pheromone Updating Rule: The MMAS algorithm uses a max-min strategy to update the pheromone trail. Each edge's pheromone concentration is bounded by a maximum and minimum value to ensure proper pheromone evaporation and allow better exploration of the search space.2. Pheromone Initialization: The initial value of the pheromone concentration is set to a higher value than the traditional ACO algorithm to encourage global exploration.3. Dynamic Parameter Tuning: The algorithm uses a dynamic parameter tuning mechanism that adjusts the parameter values based on the current state of the search. This tuning mechanism helps to find a balance between exploration and exploitation.The MMAS algorithm has been successfully applied in many optimization problems such as the Traveling Salesman Problem, Quadratic Assignment Problem, and many others.Chapter 4: Applications of Improved ACO AlgorithmThe improved ACO algorithm has been applied in many real-world optimization problems such as:1. Wireless Sensor Network Optimization: The optimization of Wireless Sensor Networks (WSNs) is a challenging task due to the complex nature of the network topology. The ACO algorithm has been used to optimize the WSN topology for better energy efficiency, coverage, and connectivity.2. Vehicle Routing Problem: The Vehicle Routing Problem (VRP) is a combinatorial optimization problem where a set of vehicles has to visit a set of customers while minimizing the total distance traveled. The ACO algorithm has been used to optimize the route taken by the vehicles to minimize the total distance traveled.3. Image Segmentation: Image segmentation is a critical task in computer vision that involves dividing an image into separate regions. The ACO algorithm has been used to segment medical images for better diagnosis and treatment.ConclusionThe Ant Colony Optimization algorithm has been successfully applied in many optimization problems, but its performance can be further improved by introducing several enhancements. The Max-Min Ant System algorithm is an improved version of the ACO algorithm that ensures better exploration and avoids premature convergence. The improved ACO algorithm has been applied in many real-world optimization problems such as Wireless Sensor Network Optimization, Vehicle Routing Problem, and Image Segmentation.。
蚁群算法在车辆路径优化中的应用毕业设计论文蚁群算法在车辆路径优化中的应用毕业设计论文本科毕业生设计(论文)毕业设计(论文)题目:蚁群算法在车辆路径优化中的应用姓名学号0910312134 所在学院湖北工业大学专业班级09计职1班指导教师日期2013 年 5 月8 日摘要许多实际工程问题可以抽象为相应的组合优化问题,TSP问题是作为所有组合优化问题的范例而存在的,它已成为并将继续成为测试组合优化新算法的标准问题。
从理论上讲,使用穷举法可以求解出TSP问题的最优解;但是对现有的计算机来说,让它在如此庞大的搜索空间中寻求最优解,几乎是不可能的。
所以,各种求TSP问题近似解的算法应运而生了,本文所描述的蚁群算法(AC)也在其中。
目前已出现了很多的启发式算法,而蚁群算法作为一种新型的启发式算法,已成功地应用于求解TSP问题。
蚂蚁通过分泌信息素来加强较好路径上信息素的浓度,同时按照路径上的信息素浓度来选择下一步的路径:好的路径将会被越来越多的蚂蚁选择,因此更多的信息素将会覆盖较好的路径;最终所有的蚂蚁都集中到了好的路径上。
蚂蚁的这种基于信息素的正反馈原理正是整个算法的关键所在。
本文介绍了基本蚁群算法概念、原理及蚁群算法的特点,再根据蚁群算法的缺点做出了优化。
采用轮盘赌选择代替了基本框架中通过启发式函数和信息素选择路径,改进蚁群算法的信息素传递参数,让整个算法更快速的找到最优解。
其次,采用最大最小优化系统限制最大值和最小值,让整个系统更快收敛,得到最优解。
关键字:蚁群算法,TSP问题,启发式函数,轮盘算法,最大最小优化ABSTRACT Many practical engineering problems can be abstracted as corresponding combinatorial optimization problem, TSP problem is an example of all as a combinatorial optimization problem, it has become and will continue to be a new combinatorial optimization algorithm of standard test problems. In theory, using the exhaustion method can solve the TSP problem optimal solution; But for the existing computer, let it in such a large search space to seek the optimal solution, it is almost impossible. So, all kinds of algorithm arises at the historic moment, the approximate solution of the TSP problem described in this paper, ant colony algorithm (AC) is amongthem. Has appeared a lot of heuristic algorithm and ant colony algorithm as a kind of new heuristic algorithm, has been successfully used in solving TSP problems. Ant secretion by pheromones to strengthen the good path pheromone concentration, at the same time according to the path to choose the next path pheromone concentration: good paths will be more and more ants to choose, so that more information will cover good path; Eventually all the ants on a good path. This positive feedback based on the pheromone of ant principle is the key to the whole algorithm. This paper introduces the basic concept of ant colony algorithm, principle and characteristics of ant colony algorithm, according to the disadvantages of ant colony algorithm optimization. Adopting roulette selection instead of the basic framework by heuristic function and choose path pheromone, pheromone passing parameters of improved ant colony algorithm, make the whole algorithm find the optimal solution more quickly. Second, limiting the maximum and the minimum maximum minimum optimization system, make the whole system faster convergence and the optimal solution is obtained. Keywords: ant colony algorithm, the TSP problem, a heuristic function, roulette algorithm, maximum_minimum optimization 目录摘要2 ABSTRACT3 第1章绪论6 1.1研究目的和意义6 1.2 国内外研究现状7 1.2.1 国外研究现状7 1.2.2 国内研究现状8 1.3 本文研究内容9 (1)基本蚁群算法9 (2)蚁群算法的优化9 (3)蚁群算法在TSP 问题中的应用9 1.4 开发环境与工具9 1.5 论文的组织结构10 第2章蚁群算法10 2.1 蚁群算法简介10 2.2 蚁群算法的原理11 2.2.1 蚂蚁觅食规则12 2.2.2 蚂蚁移动规则12 2.2.3 蚂蚁避障规则12 2.2.4 蚂蚁撒信息素规则12 2.3 蚁群算法的特点及优缺点13 2.3.1 蚁群算法的特点13 2.3.2 蚁群算法的优点14 2.3.3 蚁群算法的缺点14 2.5 蚁群算法的核心函数15 (1)初始化15 (2)选择下一个城市,返回城市编号15 (3)更新环境信息素17 (4)检查终止条件18 (5)输出最优值18 2.6 蚁群算法的参数分析19 2.6.1 蚂蚁数量N_ANT_COUNT19 2.6.2 启发因子19 2.6.3 期望启发因子20 2.6.4 信息素挥发度20 2.6.5 总信息量(DBQ)21 第3章改进的蚁群算法21 3.1 轮盘赌选择22 3.1.1 轮盘赌选择基本思想22 3.1.2 轮盘赌选择工作过程22 3.2 MAX_MIN ACO24 3.2.1 MAX_MIN算法的框架结构24 3.2.2 MAX_MIN 算法流程图26 第4章蚁群算法在车辆路径问题中的应用28 4.1 车辆路径问题简介28 4.1.1 车辆路径问题定义28 4.1.2 车辆路径问题分类29 4.2 车辆路径问题的求解算法29 4.2.1 精确算法29 4.2.2 启发式算法30 4.3 蚁群算法解决车辆路径问题31 4.4 数值实验结果及分析33 4.4.1 轮盘赌选择优化前后数据对比33 4.4.2 MAX_MIN算法改进前后数据对比34 第5章总结与展望36 参考文献36 第1章绪论TSP问题是一种特殊的车辆路径问题,是作为所有组合优化问题的范例而存在的,它已成为并将继续成为测试组合优化新算法的标准问题。
蚁群算法改进及应用研究摘要:蚁群算法是一种启发式优化算法,其物理现象的模拟和仿生方法使其在多个领域得到广泛应用。
本文将介绍蚁群算法的基本原理,并对其改进方法进行探讨。
在应用方面,将重点讨论蚁群算法在路线规划、图像处理、机器学习和网络优化等领域的应用。
通过对蚁群算法的研究和改进,将有助于提高算法的性能和适应性。
1. 引言蚁群算法是一种基于觅食行为的模拟算法,最早由意大利科学家Marco Dorigo等人于1992年提出。
蚁群算法的基本原理来自于觅食过程中蚂蚁的行为,通过模拟蚂蚁的觅食路径选择和信息素沉积行为,实现对问题的优化求解。
2. 蚁群算法的基本原理蚁群算法的基本原理是通过蚂蚁之间的正反馈作用进行信息传递和问题求解。
蚂蚁在觅食过程中会留下一种称为信息素的物质,用于标记路径的好坏。
蚂蚁选择路径时,会倾向于选择信息素浓度高的路径,从而形成一种积累性的正反馈循环。
在这个过程中,较短路径上的信息素浓度会逐渐增加,吸引更多的蚂蚁选择该路径,集中力量探索更优解。
3. 蚁群算法的改进方法为了提高蚁群算法的搜索效率和求解能力,研究者们提出了多种改进方法。
其中,一些方法采用了参数调整和策略改进的方式,如引入启发式信息和适应性参数。
另一些方法则通过改变信息素更新策略和蚂蚁的移动方式来改进算法性能。
例如,引入局部更新策略和全局更新策略,以增加算法的全局搜索能力和局部搜索能力。
4. 蚁群算法在路线规划中的应用蚁群算法在路线规划中具有很好的应用潜力。
通过模拟蚂蚁在寻找食物过程中的路径选择行为,可以有效地解决旅行推销员问题等路线规划问题。
在实际应用中,蚁群算法已经被用于城市交通规划、船舶调度和智能导航系统等领域,取得了良好的效果。
5. 蚁群算法在图像处理中的应用蚁群算法在图像处理中也有不少应用。
例如,通过模拟蚂蚁的觅食路径选择行为,可以实现图像分割、边缘检测和图像增强等任务。
此外,蚁群算法还可以用于图像压缩、图像重建和图像分类等方面。
摘要自意大利学者M. Dorigo于1991年提出蚁群算法后,该算法引起了学者们的极大关注,在短短十多年的时间里,已在组合优化、网络路由、函数优化、数据挖掘、机器人路径规划等领域获得了广泛应用,并取得了较好的效果。
本文首先讨论了该算法的基本原理,接着介绍了旅行商问题,然后对蚁群算法及其二种改进算法进行了分析,并通过计算机仿真来说明蚁群算法基本原理,然后分析了聚类算法原理和蚁群聚类算法的数学模型,通过调整传统的蚁群算法构建了求解聚类问题的蚁群聚类算法。
最后,本文还研究了一种依赖信息素解决聚类问题的蚁群聚类算法,并把此蚁群聚类算法应用到对人工数据进行分类,还利用该算法对2005年中国24所高校综合实力进行分类,得到的分类结果与实际情况相符,说明了蚁群算法在聚类分析中能够收到较为理想的结果。
【关键词】蚁群算法;计算机仿真;聚类;蚁群聚类Study on Ant Colony Algorithm and its Application inClusteringAbstract:As the ant colony algorithm was proposed by M. Dorigo in 1991,it bringed a extremely large attention of scholars, in past short more than ten years, optimized, the network route, the function in the combination optimizes, domains and so on data mining, robot way plan has obtained the widespread application, and has obtained the good effect.This acticle discussed the basic principle of it at first, then introduced the TSP,this acticle also analysed the ant colony algorithm and its improved algorithm, and explanated it by the computer simulates, then it analysed the clustering algorithm and the ant clustering algorithm, builded the ant clustering algorith to solution the clustering by the traditioned ant algorithm. At last, this article also proposed the ant clustering algorith to soluted the clustering dependent on pheromon. Carry on the classification to the artificial data using this ant clustering algorithm; Use this algorithm to carry on the classification of the synthesize strength of the 2005 Chinese 24 universities; we can obtain the classified result which matches to the actual situation case. In the next work, we also should do the different cluster algorithm respective good and bad points as well as the classified performance aspect the comparison research; distinguish the different performance of different algorithm in the analysis when the dates are different.Key words:Ant colony algorithm; Computer simulation; clustering; Ant clustering目录1 引言 (3)1.1群智能 (2)1.2蚁群算法 (3)1.3聚类问题 (4)1.4本文研究工作 (5)2 蚁群算法原理及算法描述 (5)2.1蚁群算法原理 (5)2.2蚁群优化的原理分析 (8)2.3算法基本流程 (10)2.4蚁群觅食过程计算机动态模拟 (11)2.5人工蚂蚁与真实蚂蚁的对比 (13)2.6本章小结 (14)3 基本蚁群优化算法及其改进 (15)3.1旅行商问题 (15)3.2基本蚁群算法及其典型改进 (15)3.2.1 蚂蚁系统 (15)3.2.2 蚁群系统 (16)3.2.3 最大-最小蚂蚁系统 (16)3.3基本蚁群算法仿真实验 (16)3.3.1 软硬件环境 (16)3.3.2 重要参数设置 (16)3.3.3仿真试验 (17)3.4本章小结 (19)4 蚁群聚类算法及其应用 (20)4.1聚类问题 (20)4.2蚁群聚类算法的数学模型 (21)4.3蚁群聚类算法 (21)4.3.1 蚁群聚类算法分析 (22)4.3.2 蚁群聚类算法流程 (25)4.4蚁群聚类算法在高校分类中的应用 (25)4.5本章小结 (27)5 结论与展望 (28)参考文献 (29)致谢 (31)附录 (32)1 引言下面将介绍群智能以及蚁群算法和聚类问题。
1.1 群智能成群的鸟、鱼、浮游生物、蚂蚁、蜜蜂等都是以集群形式进行筑巢、觅食、迁徙和逃避捕食者等复杂行为,而这些行为是单个个体不可能有足够的能力来指挥完成的。
数以千计的个体如何组成一个群落,又如何相互协调、分工、合作来完成复杂任务的呢?通过生物学家对微生物、群居昆虫、群居动物的调查得出结论,各种社会型生物的各种集体行为似乎都可以找到几个共同的属性[1]:(1)控制充分的分布在许多个体之中;(2)个体之间的交流为局部交流;(3)群体的行为要明显优于个体的行为;(4)群体对外界的变化的反应具有鲁棒性和适应性。
受社会性昆虫行为的启发,计算机工作者通过对它们的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群集智能的研究。
群集智能(Swarm Intelligence)中的群体(Swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解”。
而所谓群集智能指的是“无智能的主体通过合作表现出智能行为的特性”。
群集智能在没有集中控制并且不提供全局模型的前提下,为寻找复杂的分布式问题的解决方案提供了基础。
概括地说,使得社会型生物的个体相互协作而实现神奇的群体行为的答案是个体进行相互合作时体现的自组织行为[2]。
自组织是一些动态环境条件的连续变化。
Krieger 等用这种蚂蚁的阈值模型为一群在活动场地聚集目标物体的机器人定义了一个劳力分配的分布式系统[3,4]。
在他们的实验中,由基于阈值行为活动控制的机器人能够完成聚集任务,同时这个系统作为一个整体显示了固有的容错性和功能衰减。
一个或多个人行为的自适应,导致整体功能仅仅略微的降低。
最重要的是,在系统设计时在机器人之间并没有外在的交流机制,同时在机器人的控制程序里没有明确包含在错误的环境里的应对措施。
尽管这个实验是在大学的实验室条件下完成的,但它足以显示这种方法对于在开放的环境下控制工业机器人的变换是有很大的潜力的。
由此可见,群智能有着以下几个方面的特点[1,3]:(1)由于系统中单个个体的能力比较简单,这样每个个体的执行时间比较短,实现起来比较方便,具有简单性;(2)单个个体具有改变环境的能力和系统自调节性;(3)无中心控制和数据源。
这样的系统更具有鲁棒性,不会由于某一个或者某几个个体的故障而影响整个问题的求解;(4)群体中相互合作的个体是分布的。
这个特点与计算机网络的工作环境非常相似;(5)各个体通过对环境的感知进行合作,个体的增加或减少都不会加大系统通信的开销。
这样,系统具有更好的可扩展性,同时也具有更好的安全性。
根据其特点,群智能能够被用于解决大多数优化问题或者能够转化用领域已扩展到各种工程优化问题,如电信路由选择、TSP 问题、车间调度问题、二次分配问题等等,并取得了意想不到的收获。
虽说群智能的研究还处于初级阶段,并且存在着许多困难,但是可以预言群智能的研究代表了以后计算机研究发展的一个重要方向。
本文所讨论的蚁群算法就是一种群智能算法[2]。
1.2 蚁群算法蚁群觅食过程是一种典型的群智能行为过程[5],蚁群寻找食物时会派出一些蚂蚁分头在四周游荡,如果一只蚂蚁找到食物,它就返回巢中通知同伴并沿途留下“信息素”(pheromone)作为蚁群前往食物所在地的标记。
信息素会逐渐挥发,如果两只蚂蚁同时找到同一食物,又采取不同路线回到巢中,那么比较绕远的一条路上信息素的气味会比较淡,蚁群将倾向于沿另一条更近的路线前往食物所在地。
受到蚂蚁觅食时的通信机制的启发,90年代Dorigo提出了蚁群算法(ant colony algorithm,ACA)来解决计算机算法学中经典的“旅行商问题”--如果有n 个城市,需要对所有n个城市进行访问且只访问一次的最短距离。
在解决旅行商问题时,蚁群算法设计虚拟的“蚂蚁”将摸索不同路线,并留下会随时间逐渐消失的虚拟“信息素”。
虚拟“信息素”也会挥发,每只蚂蚁每次随机选择要走的路径,他们倾向于选择路径比较短的、信息素比较浓的路径。
根据“信息素较浓的路线更近”的原则,即可以选择出最佳路线。
由于这个算法利用了正反馈机制,使得较短的路线能够有较大的机会得到选择并且采用了概率算法,所以它能够不局限于局部最优解。
蚁群算法对于解决旅行商问题并不是目前最好的方法,但首先它提出了一种解决旅行商问题的新思路;其次由于这种算法特有的解决方法,它已经成功的被应用于解决组合优化问题。
作为通用型随机优化算法,蚁群算法自问世以来表现了强大的生命力,较之以往的启发式算法不论在搜索效率上,还是在算法的时间复杂度方面都取得了令人满意的效果,现在已经陆续应用到组合优化、人工智能、通讯数据挖掘、机器人路径规划等多个领域。
另外蚁群算法的正反馈性和协同性使其可用于分布式系统,隐含的并行性更使之具有较强的发展潜力。