秘密共享方案ppt
- 格式:ppt
- 大小:3.34 MB
- 文档页数:38
本栏目责任编辑:梁书计算机工程应用技术安全公平理性秘密共享方案周全兴,吴冬妮,李秋贤(凯里学院,贵州凯里556011)摘要:传统秘密共享方案因未考虑参与者的自利行为而导致方案的效率较低。
为了提高秘密共享的通信效率和安全性,结合博弈论与双线性映射技术,设计公平的理性秘密共享方案。
首先,在博弈论框架下引入理性参与者并设计理性秘密共享博弈模型;其次,利用双线性映射技术保证方案和理性参与者的可验证性和公平性;最后,通过对方案进行性能分析,表明了该方案不仅保证了安全性,并且有较高的秘密共享通信效率。
关键词:理性秘密共享;博弈论;双线性映射;公平性;通信效率中图分类号:TP309文献标识码:A文章编号:1009-3044(2021)05-0250-02开放科学(资源服务)标识码(OSID ):Safe and Fair Rational Secret Sharing Scheme ZHOU Quan-xing,WU Dong-ni,LI Qiu-xian(Kaili University,Kaili 556011,China)Abstract :Traditional secret sharing schemes do not take into account the self-interested behavior of participants,which leads to low efficiency of the scheme.In order to improve the communication efficiency of secret sharing,game theory and bilinear mapping technology are combined to design a fair and rational secret sharing scheme.Firstly,introduce rational participants and design a ra⁃tional secret sharing game model under the framework of game theory.Secondly,this paper uses bilinear mapping technology to en⁃sure the verifiability and fairness of the solution and rational participants.Finally,the performance analysis of the scheme shows that the scheme not only guarantees safety,but also has higher communication efficiency.Key words:rational secret sharing;game theory;bilinear pairings;fairness;communication efficiency1引言近年来,秘密共享[1]已成为现代密码学的重要研究领域,在研究各类密码协议中起着越来越重要的作用。
新型有效的秘密共享方案石润华;黄刘生;杨威;仲红【摘要】提出了一种新的秘密共享方案.该方案分两层实现:上层,基于Stern-Brocot树把一个大的秘密拆分为t个小整数(子秘密);底层,借鉴一维元胞自动机模型中的进化方法,把上层的t个子秘密作为初始状态,动态生成各参与者的共享.特别地,该方案能够动态扩展参与者,动态调整门限值,动态更新秘密和共享.另外,还具有计算简单,各参与者共享份额短的优点.分析结果表明,该方案安全、有效.%A novel secret sharing scheme was proposed. This scheme consisted of two layer protocols: in the first layer, a larger secret was split into / smaller integers (sub-secrets) based on the Stern-Brocot tree; in the lower layer, (sub-secrets obtained from the first layer were regarded as t initial states in one-dimensional cellular automaton model, and then from the t initial states it could dynamic create all participants' shares according to the simple fixed rule. This scheme could dynamic add new member, adjust the threshold value and renew the secret and the shares. Besides, there were still other advantages that the costs of the computation were very low and the size of the shares was very small. The results of analysis show that it was secure and very efficient.【期刊名称】《通信学报》【年(卷),期】2012(033)001【总页数】7页(P10-16)【关键词】秘密共享;门限;动态;Stern-Brocot树【作者】石润华;黄刘生;杨威;仲红【作者单位】安徽大学计算机科学与技术学院,安徽合肥230039;中国科学技术大学计算机科学与技术系国家高性能计算中心,安徽合肥230026;中国科学技术大学苏州研究院,江苏苏州215123;中国科学技术大学计算机科学与技术系国家高性能计算中心,安徽合肥230026;中国科学技术大学苏州研究院,江苏苏州215123;中国科学技术大学计算机科学与技术系国家高性能计算中心,安徽合肥230026;安徽大学计算机科学与技术学院,安徽合肥230039【正文语种】中文【中图分类】TP3091 引言秘密共享在现实生活中有着非常重要的应用。
第十章機密共享機制本章摘要10.1 機密共享機制之設計考量10.2 一般化機密共享機制設計理念10.3 小結本章前言秘密共享在密鑰管理的方法上是一個很重要的課題,尤其是當人類生活愈仰賴電子通訊,使用電子方式儲存重要檔案也愈來愈普遍。
隨之而產生對各種不同檔案加解密鑰如何加以管理,也成了很大的問題。
假設有一大型系統,此系統內有許多檔案,依據不同類別、等級,系統使用不同密鑰加以保護。
為了操作方便起見,所有密鑰更以一主密鑰來加以保護。
若將此主密鑰交給單獨一位系統管理者保管,在操作上可能會出現弊端,或者是將此主密鑰複雜多份,交給多位系統管理者,雖然減少了主密鑰遺失的機會,但對系統安全的危害機會卻大幅提高,因此,為了解決這一方面的問題,本章主要探討機密共享機制,並針對機密共享機制之設計考量與一般化機密共享機制設計理念作一整體性介紹,期以讀者能一窺機密共享機制之全貌。
學習路徑機密共享機制允許分派者(dealer)將秘密(secret)分割(divide)成若干個子秘密(或稱秘密影子)(shadows)給予多個互相不信任的參與者(participants)共享,使得這些參與者在出示足夠個數或滿足預先定義之資格子集合(qualified subset)的子秘密後才可重建(reconstruct)共享的秘密,其應用領域包括分享作業系統supervisor的權力、分享資料庫或網路管理者的權力,與資料或文件保全。
本章主要探討機密共享機制之設計考量與一般化機密共享機制設計理念,其中並藉由數篇機密共享相關文獻來探討機密共享機制可能遭受到的一些攻擊與解決方法,並提出一套完整的一般化機密共享機制,包括設置系統、產生子秘密、產生票證與詰問,與重建秘密等階段。
藏寶圖子圖藏寶圖本章內容10.1 機密共享機制之設計考量所謂機密共享,是指分派者將秘密分割成若干個子秘密給予多個互相不信任的參與者共享,使得這些參與者在出示足夠個數或滿足預先定義之資格子集合的子秘密後才可重建共享的秘密,如圖10-1所示。
秘密共享作为密码学的一个原语(primitive ),广泛应用在各种密码系统的构造,比如:安全多方计算[1-2]、组认证[3]、门限密码系统[4-5]等。
最早在1979年,由Shamir [6]和Blakley [7]提出的门限秘密共享的概念。
通常来说,门限秘密共享是用来保护秘密一种手段,通过将秘密分割成n 份子份额(share ),其中任意的t 份组合在一起可以恢复出秘密。
到目前为止,提出的门限秘密共享方案,主要分为以下几类,一类是Shamir 提出的用拉格朗日差值多项式实现的门限秘密共享。
一类是Massey [8]提出的使用线性码来实现门限秘密共享。
还有一类是Mignotte [9]和Asmuth-Bloom [10]提出的用中国剩余定理实现的门限秘密共享方案。
在门限秘密共享中,任意的t 个子份额的组合能够恢复出秘密。
当参与者人数为k (k >t )个时,实际只需要用到t 个份额就可以恢复秘密。
多出的子份额对恢复秘密没有任何帮助。
这就会带来问题,当k (k >t )个参与者参与恢复秘密时,这t 个子份额到底由谁出。
在理想的通信模型下,k (k >t )个参与者同时发送子份额,就会假定k (k >t )个参与者会同时收到除自身以外的k -1个理想型(t ,k ,n )紧耦合秘密共享构造白建峰,苗付友中国科学技术大学计算机科学与技术学院,合肥230027摘要:在(t ,n )门限秘密共享恢复过程中,任意多于t 个的参与者可以恢复得到秘密。
但是在实际的应用过程中,当参与者人数为k (t ≤k ≤n )时,只需获得t 个参与者的份额(share )即可恢复秘密,即使其中的k -t 个参与者不提供子份额。
(t ,k ,n )紧耦合秘密共享是指在(t ,n )门限秘密共享中,当参与者人数为k 时,k 个参与者作为一个整体,其中的每个人均参与到秘密恢复中,任意的k -1个参与者无法获取秘密的任何信息。