数电-1逻辑代数基础
- 格式:pdf
- 大小:1.18 MB
- 文档页数:118
第一章 逻辑代数基础 例题1.与(10000111)BCD 相等的十进制数是87, 二进制数是1010111 十六进制数是57,2.AB+CD=0(约束项)求 的最简与或表达式。
解:D C A C B A Z +=,见图1-1, 得3.若F(A,B,C,D)=∑m(0,1,2,3,4,7,15)的函数可化简为: 则可能存在的约束项为( 3 )。
见图1-21.逻辑函数式Y A B C D =++()的反演式为 D C B A + 2. 在下列不同进制的数中,数值最大的数是( D )1051A.() .101010B 2() 163E C.() D.(01011001)8421BCD 码 3、用卡诺图化简下式为最简与或式。
D C B A ++ Y(A,B,C,D)= ∑m(0,2,4,5,6,8,9)+ ∑d(10,11,12,13,14,15) 4.已知F ABC CD =+选出下列可以肯定使F=0的情况( D )A. A=0,BC=1B. B=C=1C. D=0,C=1D. BC=1,D=1 5、是8421BCD 码的是( B )。
A 、1010 B C 、1100 D 、11016、欲对全班43个学生以二进制代码编码表示,最少需要二进制码的位数是( B )。
A 、5B 、6C 、8D 、437、逻辑函数F(A,B,C) = AB+B C+C A 的最小项标准式为( D )。
A 、F(A,B,C)=∑m(0,2,4)B 、F(A,B,C)=∑m(1,5,6,7)C 、F(A,B,C)=∑m (0,2,3,4)D 、F(A,B,C)=∑m(3,4,6,7)Z A BC A B AC D =++Z Z AC AC =+()B C D C D ++1..2..3..4..AC A DA C AB A D A B A B B C++++8、用代数法化简下式为最简与或式。
A+CC B BC C B A BCD A A F ++++=判断题1.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。
数电基础---逻辑代数介绍逻辑代数中基本的逻辑运算,基本公式,常⽤公式和基本定理。
逻辑门简单的逻辑门逻辑代数的基本运算有与(AND),或(OR),⾮(NOT)三种。
“与”门只有决定事物结果的全部条件同时具备时,结果才发⽣,这种因果关系称为逻辑与,或者称逻辑相乘。
逻辑真值表为A B Y000010100111其中A,B为输⼊,Y为输出。
在逻辑代数中,以“⋅”表⽰与运算。
A与B进⾏与逻辑运算时可以写成Y=A⋅B表⽰符号为为了简化书写,允许将A⋅B简写成AB,略去逻辑相乘的运算符号“⋅”。
"或"门在决定事物结果的诸条件中只要有任何⼀个满⾜,结果就会发⽣,这种因果关系称为逻辑或,或者称逻辑相加。
逻辑真值表为A B Y000011101111其中A,B为输⼊,Y为输出。
在逻辑代数中,以“+”表⽰或运算。
A与B进⾏或逻辑运算时可以写成Y=A+B表⽰符号为"⾮"门只要条件具备了,结果就不会发⽣,⽽条件不具备时,结果就⼀定发⽣,这种因果关系称为逻辑⾮,或者称逻辑相反。
逻辑真值表为A Y0110其中A为输⼊,Y为输出。
在逻辑代数中,以“′”表⽰⾮运算。
A进⾏⾮逻辑运算时可以写成Y=A′表⽰符号为复合逻辑门最常见的复合逻辑运算有与⾮(NAND),或⾮(NOR),与或⾮(AND-NOR),异或(EXCLUSIVE OR//XOR),同或(EXCLUSIVE NOR//XNOR )等。
“与⾮”门与⾮操作,将A,B先进⾏与运算,然后将结果求反,最后得到的即为A,B的与⾮运算结果。
(先与后⾮)逻辑真值表A B Y001011101110其中A,B为输⼊,Y为输出。
A与B进⾏与⾮逻辑运算时可以写成Y=(A⋅B)′表⽰符号为实际上可以把与⾮运算看作是与运算和⾮运算的组合,图形符号上的⼩圆圈表⽰⾮运算。
(后⾯会提到,可以将图像上的⼩圆圈看成⼀个⾮门) "或⾮"门或⾮操作,将A,B先进⾏或运算,然后将结果求反,最后得到的即为A,B的或⾮运算结果。