当前位置:文档之家› 鄂尔多斯盆地元城地区储层微观孔隙结构特征

鄂尔多斯盆地元城地区储层微观孔隙结构特征

鄂尔多斯盆地元城地区储层微观孔隙结构特征
鄂尔多斯盆地元城地区储层微观孔隙结构特征

第二节 储层岩石的孔隙性

第二节储层岩石的孔隙性 一、名词解释。 1.孔喉比(pore/throat ratio): 2.有效孔隙度(effective porosity): 3.流动孔隙度(flow porosity): 4.孔隙结构(pore structure): 5.岩石的压缩系数 C(rock compressibility coefficient): f 6.岩石综合压缩系数C(rock total compressibility): 7.弹性采油量(elastic oil production): 8.原始含油饱和度(initial oil saturation): 9.残余油饱和度(residual oil saturation): 10.束缚水饱和度(irreducible water saturation): 二.判断题。 1.储层埋藏愈深,则孔隙度愈大。() 2.油藏总弹性能量中流体弹性能量一定大于岩石骨架的弹性能量。() 3.饱和煤油法测出的孔隙度是流动孔隙度。() 4.岩石中有效孔隙体积指连通的孔隙体积。() 5.比面越大,束缚水饱和度越大。() 三.选择题。 1.若Φa.Φe.Φd分别为岩石的绝对孔隙度,有效孔隙度,流动孔隙度,则 三者的关系为

A.Φa>Φe>Φd B.Φe>Φd>Φa C.Φd>Φa>Φe D.Φa>Φd>Φe ( ) 2.随地层压力下降,储层岩石孔隙体积将,地层液体体积将。 A.膨胀,膨胀 B.膨胀,收缩 C.收缩,膨胀 D.收缩,收缩( ) 3.岩石的埋藏深度愈,胶结物含量愈,则岩石的绝对孔隙度愈小。 A.深,高 B.深,低 C.浅,高 D.浅,低( ) 4.若C f ,C o ,C w 分别为岩石,地层油,地层水的压缩系数,则三者关系为 A. C f >C o >C w B. C o >C w >C f C. C w >C f >C o , D. C o >C f >C w ( ) 5.饱和煤油法测岩样孔隙度时,若W1,W2 ,W3分别为干岩样在空气中,饱和煤油后岩样在空气中,饱和煤油后岩样在煤油中的重量,W为煤油重度,则(W2-W1)/W,(W2-W3)/W分别为。 A.外表体积,骨架体积 B.骨架体积,孔隙体积 C.孔隙体积,外表体积 D.外表体积,孔隙体积( ) 6.饱和煤油法测得的孔隙体积为孔隙体积,离心法测得的孔隙体积为孔隙体积 A.总,有效 B.总,流动

鄂尔多斯盆地下寺湾地区三叠系下组合地层石油地质特征及勘探方向

第44卷 第4期西北地质Vol.44 No.42011年(总180期)NORTHWESTERN GEOLOGY 2011(Sum180) 文章编号:1009-6248(2011)04-0122-10 鄂尔多斯盆地下寺湾地区三叠系下组合地层 石油地质特征及勘探方向 宋和平1,张炜2 (1.延长油田股份有限公司下寺湾采油厂,陕西延安 716100; 2.陕西省地质矿产勘查开发局物化探队,陕西西安 710043) 摘 要:三叠系延长组上组合地层作为下寺湾油田的主力油层段,经过数十年的勘探开发,其后备资 源日显不足。通过对近年来下寺湾地区探井含油层段的分析研究,发现三叠系延长组下组合地层长7 -长10段具有较好的油气显示。本文针对延长组下组合地层长7、8段,对其沉积微相、砂体形态、 储盖组合、构造形态、岩性组合特征进行分析探讨,为下寺湾油田持续稳步发展寻找到层系接替 资源。 关键词:三叠系延长组;层系接替;储层特征;构造形态 中图分类号:P618.130.2 文献标识码:A 下寺湾油田位于陕西省延安市甘泉县境内,构造上处于鄂尔多斯盆地为一西倾单伊陕斜坡的南部(杨俊杰,2002)(图1)。是鄂尔多斯盆地中生界油气比较富集的地区之一,面积约2 285km2。该油田经历了3个勘探开发阶段,第一阶段是1970年长庆石油勘探局对甘泉县桥镇以东、王坪以西一带进行了勘探验证,钻探127口井,其中试油108口井,87口井获工业油流,主要含油层位为延长组长1、长2和延安组延7、延9、延10油层,探明含油面积84km2,地质储量2 127×104t;第二阶段是1987年组建延长油矿管理局下寺湾钻采公司,采取“滚动开发,以油养油”的战略,主要围绕已有探井扩大生产规模,到2001年先后在柳洛峪南部、雨岔西部、张岔、北沟、川道-龙咀沟、道镇等区块对延长组长2、长3、长6油组进行了勘探,累计探明含油面积408km2,已探明地质储量11 600.8×104t;第三阶段是2008年开始对延长组下组合地层进行勘探,相继发现了柳洛峪区块延长组长8,雨岔区块延长组长7、长8、长10,川道-龙咀沟区块延长组的长7、长8油层组。 随着三叠系上统延长组上组合地层开发状况的日趋饱和,可用于继续勘探开发的后备资源面积日渐减少。笔者依据近年来在下寺湾地区探井钻遇油层特征,主要针对三叠系下组合地层进行综合地质研究,为下寺湾油田稳步增长寻找到接替性油藏资源(裘亦楠等,1994,1998;李道品,2002)。 1 区域概况 鄂尔多斯盆地是一个整体升降、拗陷迁移、构造简单的大型多旋回克拉通盆地。基底为太古宇和下元古界变质岩系。经过长期的地质发展演化,形  收稿日期:2011-05-24;修回日期:2011-11-21  基金项目:下寺湾采油厂“下寺湾地区三叠系下组合地层石油地质综合评价”(2008年度科研项目)  作者简介:宋和平(1966-),男,陕西甘泉县人,1991年毕业于西安石油大学,高级工程师,现主要从事油田开发技术应用及研究工作。E-mail:shp663@163.com

鄂尔多斯盆地地层组基本特征

鄂尔多斯盆地地层组基本特征 第四系:第四系自下向上包括更新统和全新统。晚第三纪末,受喜山运动的影响,鄂尔多斯盆地曾一度抬升,大约以北纬38°为界,北部为一套河湖相沉积,南部为黄土沉积,黄土分布广,厚度大,构成塬、梁、峁的物质主体,与下伏新近系呈不整合接触。第四纪主要是人类的出现并有多期冰期,可见人类化石、旧石器与大量相伴生的哺乳动物化石和鸟类化石。 新近系:曾称新第三系、上第三系,自下而上包括中新统和上新统。中国新近系仍以陆相为主,仅在大陆边缘,如台湾、西藏等地有海相沉积。 古近系:曾称老第三系,自下而上包括古新统、始新统和渐新统,主要分布在河套、银川、六盘山等盆地。鄂尔多斯盆地早第三纪古新世,盆地继承了晚白垩世的挤压应力状态,断裂活动性强,沉积速度快,多发育冲积扇、水下扇等各种扇体。地层厚度厚50~300米左右,岩性主要为红色泥岩、砂质泥岩夹泥灰岩。 白垩系:主要出露下白垩统,又称志丹群,分六个组,从上往下为泾川组、罗汉洞组、环河组、华池组、洛河组及宜君组。 泾川组:命名地点在甘肃省泾川县。地层厚100-400米,岩性主要为暗紫、浅棕红、浅灰、浅灰绿色等杂色砂质泥岩、泥页岩、灰质泥岩与泥质粉砂岩互层,夹浅灰、浅紫红色灰

岩和浅灰色、浅黄色砂岩,与下伏罗汉洞组呈整合接触。 罗汉洞组:命名地点在甘肃省泾川县罗汉洞。主要为河流相的砂泥岩沉积。地层厚度100~260米,上部为发育巨大斜层理的红色细至粗粒长石砂岩,含细砾和泥砾;中部以紫红色为主的泥岩及泥质粉砂岩,夹发育斜层理的细粒长石砂岩为主;下部岩性以紫红色为主的泥岩底部为发育巨大斜层理的黄色中至粗粒长石砂岩为主,与下伏环河组呈整合接触。 环河组:命名地点在甘肃省环县环江。地层厚240米左右,岩性为黄绿色砂质泥岩与灰白色、暗棕黄色砂岩、粉砂岩互层,与下伏华池组呈整合接触。 华池组:命名地点在甘肃省华池县。地层厚290米左右,岩性以灰紫、浅棕色砂岩夹灰紫、灰绿色泥岩为主,含中华弓鳍鱼、狼鳍鱼、原始星介、女星介等化石,与下伏洛河组呈整合接触。 洛河组:旧称“洛河砂岩”,命名地点在陕西省志丹县北洛河。地层厚度250~400米,从西南往东北变厚,在黄陵沮水以南与宜君组为连续沉积;在沮水以北,宜君组缺失,假整合于侏罗系之上。岩性以河流相的紫红、桔红、灰紫色块状、发育巨型斜层理的粗一中粒长石砂岩为主,局部发育夹较多的砾岩、砾状砂岩。含介形类、狼鳍鱼、达尔文虫等化石。 宜君组:主要分布在黄陵沮水、宜君、旬邑、彬县一带,

鄂尔多斯盆地地质特征

鄂尔多斯盆地地质特征鄂尔多斯盆地,北起、大青山,南抵,西至贺兰山、六盘山,东达、太行山,总面积37万平方公里,是我国第二大。 鄂尔多斯盆地是上的名称,也称陕甘宁盆地,横跨陕、甘、宁、蒙、晋五省(区)。“”意为“宫殿部落群”和“水草肥美的地方”。权威的解释,“鄂尔多斯”是“官帐”的意思。由蒙语翰尔朵(官帐的意思)的复数演变而来。但也有人把成吉思汗死后,其使用过的物品被安放在八个白室中供奉,专门的护陵人繁衍并逐渐形成了一个新的蒙古部落鄂尔多斯部落。其后几百年间,鄂尔多斯部落的按时祭奠,一直没有离开此地。这样久而久之,这一地区就叫做鄂尔多斯了。历史上的鄂尔多斯地区包括今日伊克昭盟全境,还包括的河套及宁夏和的一部分地区。鄂尔多斯地区西、北、东三面环水,南与相接,形成一个巨大的套子,因此也被称为“河套”。从所跨地域 鄂尔多斯盆地,其地域跨蒙汉广大地域,而且绝大部分地域是汉族居住区,为什么把该“盆地”叫蒙语“鄂尔多斯”盆地,而不叫汉语名称。据传说1905年前后,英国人到此地域勘探,最早进入现在的,就是最先踏入的立足地,另外在西方人眼里,亚洲人都是属于序列。所以,自然而然地就把该盆地称之为鄂尔多斯盆地,但也无法考证。 “陕甘宁”盆地在长庆油田会战初期叫得比较响,但随着市场经济的缘故,人们都喜欢“新奇”,“陕甘宁”盆地叫的人越来越少了,加上赶时髦,伊克昭盟改为“鄂尔多斯”市,叫“陕甘宁”盆地的人就更少了。

“陕甘宁”也不确切,因为“盆地”跨陕、甘、宁、蒙、晋五省(区)地域。总之,这也不是个什么大问题,在和谐的今天,叫什么都无所谓。 从地质特性看,鄂尔多斯盆地是一个整体升降、坳陷迁移、构造简单的大型多旋回克拉通盆地,基底为太古界及下变质岩系,沉积盖层有长城系、蓟县系、震旦系、寒武系、、石炭系、、三叠系、、白垩系、第三系、第四系等,总厚5000—10000m。主要油气产层是三叠系、侏罗系和奥陶系上古升界和下。 从盆地构造特征看 鄂尔多斯盆地石油开发示意图 从盆地构造特征看,西降,东高西低,非常平缓,每公里坡降不足1°。从盆地油气聚集特征讲是半盆油,满盆气,北气、上油下气。具体讲,面积大、分布广、复合连片、多层系。纵向说含油层系有“四层楼”之说,因此,这个盆地有之誉。 鄂尔多斯盆地地形模型 鄂尔多斯盆地位于中国中西部地区,为中国第二大,其、、三种资源探明储量均居全国首位,石油资源居全国第四位。此外,还含有、、、水泥灰岩、、、、等其他矿产资源。 盆地具有地域面积大、广、能源矿种齐全、资源潜力大、储量规模大等特点。盆地内石油总约为86亿吨,主要分布于盆地南部10万平方公里的范围内,其中占总储量78.7%,占总储量19.2%,宁夏占总储量2.1%。天然气总资源量约11万亿立方米,储量超过千亿立方米的天然气大气田就有5个。埋深2000米以内的煤炭总资源量约为4万亿吨;埋深1500米

储层微观孔隙结构研究

储层微观孔隙结构研究进展 1.储层微观孔隙结构的影响因素和成因分析 储层微观孔隙结构受多因素影响,成因分析是储层孔隙结构研究的最基本的内容,它能帮助研究者从深层次准确把握储层孔隙结构的特征,受到研究者的高度重视。 1.1地质作用对储层微观孔隙结构的影响 储层物性受沉积作用、成岩作用、构造作用的共同控制。沉积作用对碎屑岩结构、分选、磨圆、杂基含量等起到明显的控制作用,不同的沉积环境对碳酸盐岩的结构组分影响很大。从沉积物脱离水环境之后,随着埋藏深度的不断加深,一系列的成岩作用使得储层物性进一步复杂化。一般而言,压实作用、压溶作用、胶结作用对储层物性起破坏性作用;交代作用、重结晶作用、溶蚀作用对储层物性起到建设性作用。而构造作用产生的裂缝等对物性的改造有较为显著地影响,使储层的非均质性更加明显,而这一点在碳酸盐岩储层中尤为突出。 1.2油气田开发对储层微观孔隙结构的影响 储层孔隙结构影响着储层的注采开发,同时,随着注水、压裂等一系列油气田开发增产措施的实施,储层孔隙结构也相应发生了变化。王美娜等研究了注水开发对胜坨油田坨断块沙二段储层性质的影响,发现注水开发一定程度上改善了储层孔隙结构。唐洪明等以辽河高升油田莲花油层为例,研究了蒸汽驱对储层孔隙结构和矿物组成的影响。结果表明,蒸汽驱导致储层孔隙度、孔隙直径增大,喉道半径、渗透率减小,增强了孔喉分布的非均质性。 2.储层微孔隙结构研究方法 2.1成岩作用方法 该方法通过对各种成岩作用在储层孔隙结构演化中的作用进行梳理,从而了解储层孔隙结构对应发生的变化。该方法的优点是对孔隙结构的成因可以有比较深入的认识,缺点是偏向于定性分析,难以有效的定量化表征。刘林玉等对白马南地区长砂岩成岩作用进行了分析,认为压实作用和胶结作用强烈地破坏了砂岩的原生孔隙结构,溶蚀作用和破裂作用则有效地改善了砂岩的孔隙结构。 2.2铸体薄片观察法 该方法是将带色的有机玻璃或环氧树脂注入岩石的储集空间中,待树脂凝固

鄂尔多斯盆地沉积及构造

鄂尔多斯盆地沉积——构造演化及油气勘探新领域 2002年9月

目录 前言 一.地质背景与构造演化 (一)地质背景 (1) (二)构造演化 (2) 二.鄂尔多斯盆地古生代—中生代沉积演化 (一)奥陶系沉积体系划分及岩相古地理演化 (4) (二)石炭—二叠纪沉积体系划分及岩相古地理演化 (10) (三)中生界沉积体系划分及岩相古地理演化 (18) 三.鄂尔多斯盆地下古生界奥陶系生、储、盖特征及天然气富集规律(三)烃源岩特征 (25) (四)储集岩特征 (33) (五)盖层特征 (44) (六)天然气富集规律……………………………………………………四.尔多斯盆地上古生界生、储特征及天然气富集规律 (一)烃源岩特征 (55) (二)储集岩特征 (56) (三)天然气富集规律 (69) 五.鄂尔多斯盆地中生界生、储特征及石油资源评价 (一)烃源岩特征………………………………………………………… (二)储集岩特征………………………………………………………… (三)石油成藏规律………………………………………………………

前言 本课题以新理论、新思路为指导,以收集、综合分析和总结已有成果为主,重点野外调查和岩芯观察为辅,深化、综合、总结前人研究成果,研究盆地沉积演化历史,确定生储盖组合、结合研究和总结石油地质规律和油气勘探新领域。 为了完成有关研究内容,课题组成员自合同鉴定之后进行了大量的资料收集,露头剖面观测,钻井岩芯观察等工作,完成了大量工作量,具体见表1。 表1 完成工作量一览表 通过一年的工作取得了如下认识 1.确定了奥陶系、石炭—二叠系、中生界三叠—侏罗系沉积体系类型,其中奥陶系主要为碳酸岩沉积,包括4大沉积体系,石炭—二叠系主要为陆源碎屑岩沉积,包括6大沉积体系,中生界侏罗系包括三大沉积体系。 2.详细讨论了各时期岩相古地理特征及演化 3.深入论述了奥陶系、石炭—二叠系及中生界生储留特征,特别是详细讨论了各时代储集岩特征 4.在上述基础上分别讨论了奥陶系、石炭—二叠系及中生界的油气有无勘探目标区,认为今后不同时代油气勘探具有重要的指导意义。

第二节 储层岩石的孔隙度

第二节 储层岩石的孔隙性(3学时) 一、教学目的 掌握孔隙的分类、定义、 测量方法和影响因素。 二、教学重点、难点 教学重点 1、孔隙的分类和定义 教学难点 1、孔隙的分类和定义 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的数据和图表 四、教学内容 本节主要介绍四个方面的问题: 一、孔隙度的定义和分类 二、孔隙度的测量 三、影响孔隙度的因素 (一)、孔隙度的定义和分类 1、孔隙度的定义 岩石的孔隙度是指岩石的孔隙体积与岩石外观体积的比值,常用百分数表示,记为φ 式中: Vr——岩石的骨架体积,米3,cm3 Vp——岩石的孔隙体积,米3,cm3 V f——岩石的视体积,米3,cm3 φ——岩石的孔隙度,% 2、孔隙度的分类 我们已知讲过,孔隙空间可以分为有效孔隙和无效孔隙,所以相应地,孔隙度也可以分为: A、绝对孔隙度,φa 绝对孔隙度是指岩石所有孔隙体积(有效+无效)与岩石视体积之比。 Vap——总孔隙体积,=V有效+V无效 V f——岩石的视体积 φa——岩石的绝对孔隙度

B、有效孔隙度 由于储油岩石孔隙的复杂性,所以在岩石孔隙中,并非所有的孔隙都是有用的,比如说函端孔隙和孔道半径很小(r<0.0001mm)的孔隙,这样的孔隙实际上对流体的流动毫无价值,所以人们将流体能在其中流动且相互连通的孔道称为有效孔隙,有效孔隙与岩石视体积的比值称为有效孔隙度。 Vep——岩石有效孔隙体积 V f——岩石的外观体积 φe——岩石的有效孔隙度 大家值得注意的是:由于流体只能在大于0.0001mm半径的孔道中流动,因此,孔道小于0.0001mm的那些孔隙也被看作是死孔隙,同样被这些微小孔道包围的大孔道当然也属于死孔隙之列。 另外,从上面的分析中我们不难看出,还应当存在一种孔隙度。 C、流动孔隙度φm Vmp——流动孔隙度 V f——岩石的外观体积 φm——流动体积 很显然,流动体积是指有效孔隙中,允许流何流动的那一部分孔道体积。它不仅排除了死孔隙,也包括束缚水占据的部分以及岩石表面吸附流体所占据的孔道部分。可见,在相互连通的孔隙中并不是全部孔道都能让流体流动。直得注意的是被吸附流体的厚度有时相当可观,可把原来流动的孔道堵住,或者使渗重能力下降,这一点在三次采油中尤为重要。 综合上述的三种孔隙度不难看出: φa>φe>φm 对于砂岩:φa≈φe>φm 泥质砂岩:φa>>φe>φm 泥岩:φa>>>φe>φm 岩石孔隙度在油田中应用极广,通常在地质储量计算中用有效孔隙度φe,在计算可采储量时要用流动孔隙度,而绝对孔隙度只有岩石学上的意义,应用很少。 利用岩石的孔隙度(有效孔隙度)还可以用来进行油层评价,一般砂岩φe=10~25% φ 评价 5~10% 差

鄂尔多斯盆地构造演化及古地理特征研究进展讲解

卷 (Vo l um e ) 35 ,期 (N u m b e r ) 2 ,总 ( S U M ) 129 大 地 构 造 与 成 矿 学 Geo t ec t on i ca e t M e t a l l ogen i a 页 ( Pages ) 190 ~197 , 2011 , 5 (M a y, 2011 ) 鄂尔多斯盆地古生代中央古隆起形成演化与油气勘探 邓昆 1 , 2 , 张哨楠 1 , 周立发 3 , 刘燕 4 ( 1. 成都理工大学 油气藏地质及开发工程国家重点实验室 ,四川 成都 610059; 2. 山东省沉积成矿作用与沉 积矿产重点实验室 ,山东 青岛 266510; 3. 西北大学 地质系 ,陕西 西安 710069; 4. 中石油 长庆油田分公司 勘探开发研究院 ,陕西 西安 710021 ) 摘 要 :鄂尔多斯盆地古生代中央古隆起形成演化对该地区构造格局和油气勘探具有重要意义 。通过对古生代构 造背景 、地层体残余厚度 、奥陶系顶面构造演化等特征分析 ,刻画中央古隆起在不同沉积期构造演化特点 ,大体分 为 3个演化阶段 :初始演化阶段 :相对独立的中央古隆起形成于中晚寒武世 ; 发育阶段 : 中央古隆起在早奥陶世马 家沟期反映最为明显 ,为隆升剥蚀过程 ;调整 、消亡阶段 :石炭纪 - 二叠纪山西期古隆起仍有明显的显示 ,但其形态 与位置均发生了较大变化 ,与马家沟期的中央古隆起有较大差别 ,为低缓隆起 。晚二叠世以来不存在中央古隆起 。 中央古隆起对油气地质条件的控制作用体现在对沉积格局 、残余生烃坳陷 、储集条件 、盖层圈闭条件及油气运聚等 方面 。 关键词 :鄂尔多斯盆地 ; 中央古隆起 ; 形成演化 ; 油气勘探 文章编号 : 1001 21552 ( 2011 ) 022******* 中图分类号 : P618. 13 文献标志码 : A 组之上 ,香 1 井是山西组不整合于蓟县系之上 ,镇探 1井为太原组不整合于罗圈组之上等 (图 1 ) , 对中 央古隆起原先“L ”形展布形态及分布范围进行了修 正 ,其隆起的构造高点明显向西偏移 。在环县 、龙门 至宁县一带形成一个寒武系 、奥陶系缺失的三角形 隆起区 , 其面积约 11000 k m 2 。运用古构造图 、构造 顶面图 、构造演化史等构造解析方法 ,认为其形成于 中寒武世 ,并对构造演化阶段进行了划分 。 图 2显示 :古隆起顶部在镇探 1 井一线 ,不只缺 失奥陶系 ,而且还缺失寒武系 ,甚至可能缺失部分元 古界 。但是 ,地层的缺失不等于古隆起的存在 ,地层 缺失仅表示地质历史中的隆起 ,并不代表现今的隆 起 。下古生界展布特点表明 ,存在一个加里东期 - 早华力西期的古隆起是无疑的 。但它并不代表这个 古隆起在地质历史时期始终存在 。在拉平的石炭系 底面构造剖面图上存在一个削顶的隆起构造 ,说明 0 引 言 古隆起是沉积盆地内重要的构造单元 ,同时也 是控制油气聚集的地质因素之一 。关于鄂尔多斯盆 地中央古隆起形成演化等 ,前人已有大量研究 ,给出 了多种解释和不同的观点 。主要分歧体现在 : 古隆 起形成时代 、分布特征 、演化阶段和形成机制等 ,形 成于中新元古代 (汤显明和惠斌耀 , 1993 ) 、早寒武 世 (黄 建 松 等 , 2005 ) , 早 奥 陶 世 (张 吉 森 等 , 1995 ) 、中奥 陶 世 (解 国 爱 等 , 2003 , 2005 ) 、石 炭 纪 (王庆飞等 , 2005 ) 。形成机制的观点有 : 伸展背 景 下均衡 翘 升 (赵 重 远 , 1993① ; 何 登 发 和 谢 晓 安 , 1997 ) ,构造地体拼 贴 (任 文军 等 , 1999; 解国 爱等 , 2003 , 2005 ) ,继 承基 底 构造 格局 (贾 进 斗 等 , 1997; 安作相 , 1998 ) 。本文结合最新钻井 、测井及地震资 料分析的基础上 ,如灵 1 井是太原组不整合于长山 收稿日期 : 2010 203 216;改回日期 : 2010 205 217 项目资助 : 国家重点基础研究发展项目 ( 973 项目 ) ( 2003CB214601 )资助 。 第一作者简介 : 邓昆 ( 1968 - ) ,男 ,博士 ,讲师 ,主要从事石油地质教学及科研工作 。 Em a i l: dk_dengk@ 126. co m ①赵重远. 1993. 陕甘宁盆地中央古隆起及其形成演化. 西北大学.

鄂尔多斯盆地地质特征

鄂尔多斯盆地地质特征 鄂尔多斯盆地,北起阴山、大青山,南抵岭,西至贺兰山、六盘山,东达吕梁山、太行山,总面积37万平方公里,是我国第二大沉积盆地。 鄂尔多斯盆地是地质学上的名称,也称陕甘宁盆地,行政区域横跨陕、甘、宁、蒙、晋五省(区)。“鄂尔多斯”意为“宫殿部落群”和“水草肥美的地方”。权威的解释,“鄂尔多斯”是蒙语“官帐”的意思。由蒙语翰尔朵(官帐的意思)的复数演变而来。但也有人把成吉思汗死后,其使用过的物品被安放在八个白室中供奉,专门的护陵人繁衍并逐渐形成了一个新的蒙古部落鄂尔多斯部落。其后几百年间,鄂尔多斯部落的蒙古人按时祭奠成吉思汗陵,一直没有离开此地。这样久而久之,这一地区就叫做鄂尔多斯了。历史上的鄂尔多斯地区包括今日伊克昭盟全境,还包括巴彦淖尔盟的河套及和陕北的一部分地区。鄂尔多斯地区西、北、东三面环水,南与古长城相接,形成一个巨大的套子,因此也被称为“河套”。 从所跨地域 鄂尔多斯盆地,其地域跨蒙汉广域,而且绝大部分地域是汉族居住区,为什么把该“盆地”叫蒙语“鄂尔多斯”盆地,而不叫汉语名称。

据传说1905年前后,英国人到此地域勘探石油,最早进入现在的伊克昭盟,鄂尔多斯大草原就是最先踏入的立足地,另外在西方人眼里,亚洲人都是属于蒙古人种序列。所以,自然而然地就把该盆地称之为鄂尔多斯盆地,但也无法考证。 “陕甘宁”盆地在长庆油田会战初期叫得比较响,但随着市场经济的缘故,人们都喜欢“新奇”,“陕甘宁”盆地叫的人越来越少了,加上赶时髦,伊克昭盟改为“鄂尔多斯”市,叫“陕甘宁”盆地的人就更少了。“陕甘宁”也不确切,因为“盆地”跨陕、甘、宁、蒙、晋五省(区)地域。总之,这也不是个什么大问题,在中国民族和谐的今天,叫什么都无所谓。 从地质特性看,鄂尔多斯盆地是一个整体升降、坳陷迁移、构造简单的大型多旋回克拉通盆地,基底为太古界及下元古界变质岩系,沉积盖层有长城系、蓟县系、震旦系、寒武系、奥系、石炭系、二叠系、三叠系、侏罗系、白垩系、第三系、第四系等,总厚5000—10000m。主要油气产层是三叠系、侏罗系和奥系上古升界和下古生界。 从盆地构造特征看 鄂尔多斯盆地石油开发示意图 从盆地构造特征看,西降东升,东高西低,非常平缓,每公里坡降

鄂尔多斯白垩纪地质特征

鄂尔多斯盆地白垩系地质特征 院系:油气资源学院 班级:勘探0703 学号:200711010313 姓名:洪文璞

鄂尔多斯盆地白垩纪地质特征 摘要: 鄂尔多斯盆地,北起阴山、大青山,南抵秦岭,西至贺兰山、六盘山,东达吕梁山、太行山。总面积37万平方公里,是中国第二大沉积盆地。鄂尔多斯盆地是地质学上的名称,也称陕甘宁盆地,行政区域横跨陕、甘、宁、蒙、晋五省(区)。“鄂尔多斯”意为“宫殿部落群”和“水草肥美的地方”。权威的解释,“鄂尔多斯”是蒙语“官帐”的意思。由蒙语翰尔朵(官帐的意思)的复数演变而来。但也有人把成吉思汗死后,其使用过的物品被安放在八个白室中供奉,专门的护陵人繁衍并逐渐形成了一个新的蒙古部落鄂尔多斯部落。其后几百年间,鄂尔多斯部落的蒙古人按时祭奠成吉思汗陵,一直没有离开此地。这样久而久之,这一地区就叫做鄂尔多斯了。历史上的鄂尔多斯地区包括今日伊克昭盟全境,还包括巴彦淖尔盟的河套及宁夏和陕北的一部分地区。鄂尔多斯地区西、北、东三面环水,南与古长城相接,形成一个巨大的套子,因此也被称为“河套”。 关键词: 鄂尔多斯;白垩系构造特征;沉积特征;岩性;地层特征 鄂尔多斯盆地是中国大型沉积盆地,面积约25×104km2,目前已成为重要的多种矿产资源聚集区和大型能源基地,但其地表是世界上最严重的干旱缺水区之一。近期研究表明,鄂尔多斯盆地白垩系含水系统是目前世界上罕见的又一特大型自流水盆地,地下水资源分布规律、水化学以及赋存运动状态与盆地沉积特征、岩性分布以及盆地演化规

律密切相关。然而长期以来,由于盆地内白垩系地层尚未发现能源和其他重要矿产资源,有关研究一直不被重视。近年来,随着盆内勘探技术和程度的提高以及地质信息丰富,已经普遍认识到,尽快了解地下水运动规律与盆地结构对包括水在内的各种资源开发以及人类生存环境至关重要,但由于早白垩世时盆地外围区域构造背景复杂,盆内地层分布范围广、层系厚度大,沉积体系类型多,岩性组分、岩相组合及剖面层序复杂,致使对于白垩系沉积时盆地特征认识不够,或者观点分歧,这不仅影响了人们对该盆地岩性分布特征和盆地演化规律的系统了解,也制约了对白垩系含水岩组和地下水运动特性的正确认识。基于此,笔者试图通过盆地沉积背景、沉积相和古地理特征、岩性发育类型和组分变化以及控制因素系统分析,探循白垩系岩性、含水层和砂体展布规律与盆地演化的关系,进而为查明白垩系地下水赋存运动规律并正确评价水资源奠定坚实的地质理论基础。 1 岩石主要地层单位及沉积特征 根据陕西省地层划分方案,将鄂尔多斯盆地白垩纪自下而上划分为洛河组、环河华池组、罗汉洞组和泾川组。(见表1)

储层岩石微观孔隙结构的实验和理论研究

储层岩石微观孔隙结构的实验和理论研究 张雁 (大庆石油学院地球科学学院黑龙江大庆163318) 【摘要】储层岩石的微观孔隙结构直接影响着储层的储集渗流能力,并最终决定油气藏产能分布的差异。因此,对其详细地研究,探寻各种储层岩石的微观孔隙结构的特点及其分布规律,从而为油气藏的勘探、开发及准确确定注水开发油田不同开发阶段剩余油分布提供科学的依据,具有重要的研究意义。本文介绍了实验上和理论上研究储层岩石微观孔隙结构的方法及进展,并且对其研究的发展趋势和用纳米科技关键仪器-扫描探针显微镜表征储层岩石微观孔隙结构进行了展望。 【关键词】储层岩石;微观孔隙结构;扫描探针显微术 大量的勘探开发实践表明,储层岩石的微观孔隙结构直接影响着储层的储集渗流能力,并最终决定着油气藏产能的差异分布。不同类型的储层具有不同的微观孔隙结构特征,储层岩石孔隙结构参数、含油气性是储层评价的重要指标,如何客观地确定这些参数,是很多石油学家一直努力解决的问题。储层岩石的微观孔隙结构不仅对油气储量,而且对油气井的产能和最终采收率都有影响。详细研究储层的微观孔隙结构特征,有利于对储层进行合理的分类评价,有助于查明储层的分布规律,从而为油气藏的勘探开发提供科学的理论依据。在油气田开发后期,储层的渗流能力的强弱直接受微观孔隙结构特征及其分布规律的影响,因此,确定储层内部微观孔隙结构的特征及分布对了解剩余油形成机理,查明剩余油分布规律具有极为重要的意义。 1.岩石孔隙结构特征的描述方法 孔隙结构是岩石所具有的孔隙和喉道的几何形状、大小、分布及其相互连通关系的总和。孔隙反映了岩石对流体的储集能力,而喉道的形状、大小、孔喉比则控制了孔隙对流体的储集和渗透能力。由于不同沉积相的水动力条件不同,导致砂体的粒度、分选、组成以及发育程度的差异性,加之后期成岩作用对沉积物原始孔隙改造强烈,因此,微观孔隙结构具有复杂多样性。尤其对于孔渗性差、非均质性强的储层而言,详细研究微观孔隙结构特征一方面有利于经济有效地开发低渗透油气资源,另一方面在开发后期的油气挖潜工作中,有助于查明剩余油分布规律,设计提高采收率方案。因此该项研究对石油工业乃至整个国民经济的发展均具有重要意义。这项工作中,由于储层岩石孔隙极其微小和结构的变化,很大一部分流体在渗流过程中被毛管力和粘滞力所束缚不能参与流动,因此客观评价低渗透油田和驱后油田储层的微观孔隙结构特征,研究微观孔隙结构对油气分布的影响具有极为现实的意义。目前评价工作主要集中在利用勘探开发资料的实验和理论模拟两个方面。 1.1储层微观孔隙结构实验分析常规岩石孔隙结构特征的描述方法主要包括:测井资料现场评价法和室内实验方法。室内实验方法是目前最主要,也是应用最广泛的描述和评价岩石孔隙结构特征的方法,主要包括:毛管压力曲线法(半渗透隔板法、压汞法和离心机法等)、铸体薄片法、扫描电镜法、X-CT扫描法及核磁共振法等。 传统的压汞资料分析表明,中孔细喉结构主要发育在水下分支河道及滩坝砂体中;低孔细喉结构主要发育在前缘席状砂及扇三角洲前缘滑塌浊积砂体中[1]。而通过对压汞曲线进行重新变换,以汞饱和度除以压力为纵坐标,汞饱和度为横坐标,绘制成图,会发现峰点,所对应的孔喉半径称为峰点孔喉半径,该值对油气圈闭具有重要意义[2]。而先进的核磁共振实验结果表明,微裂缝发育程度、粘土充填孔隙程度及原生孔隙发育程度等微观孔隙结构特征是低渗透油田可动流体的主要影响因素[3]。而在某些地区,次生孔隙发育带也是天然气高产富集带[4]。同时利用这项技术,可以实时观察渗透和高渗透沉积岩的渗流情况[5]。而这种微观的流体在油气混合地带的运动是极其不能忽视的,否则会得出错误的储层评价结论[6]。经过长期注水开发的储集层的孔隙结构将发生改变,注水冲刷使微观喉道特征变好,退汞效率增高,因此随着冲刷的不断进行,会使大孔隙越来越大,对小孔隙影响则不明显。喉道分选性对驱油效率影响机理较为复杂。总体上储层驱油效率随储集物性的变好而增加[9]。但是驱油效率并不总是和渗透率呈正相关关系,它还受储层孔喉分布和孔喉结构非均质性的影响[10]。扫描电镜可用于研究孔隙和喉道的立体形态及配置关系[11],可以证实储层低孔、低渗并不是造成注水开发效果差的主要原因,而较强的微观孔隙结构非均质性,是造成注入水波及效率不高、水驱油效率较低的主要原因[12]。 1.2储层微观孔隙结构理论解释-分形特征储层岩石的孔隙空间具有良好的分形特征,孔隙结构的分形维数可以定量描述孔隙结构的复杂程度和非均质性。应用分形几何的原理,对低渗透储层岩石的孔隙结构进行研究,可以建立毛管压力和孔隙大小概率密度分布的分形几何模型。并根据毛管压力曲线资料计算孔隙结构的分形维数和孔径大小概率密度分布。计算结果表明,用该方法研究孔隙结构不仅简单易行,而且精度很高[13]。另外,利用分形理论可以模拟各种岩石毛管压力曲线,从而解释岩石之间物性的不同[14]。用岩样孔喉分布的分形维数能更合理地描述多孔介质微观孔喉分布的非均质性[15]。Krohn提出小尺度的孔隙体积具有分形特征,并受孔隙间矿物和胶结物生长控制,研究微观孔隙分形特征可用来表征成岩过程中岩石表面蚀变和改性的程度[16]。同时结合扫描电镜和小角中子散射(Small-AngleNeutron Scattering,SANS)可以确定岩石微观孔隙在10A。~50μm范围内是分形的[17]。并且这种分形的维度随着岩石的种类不同而发生从2.8~2.3的变化[18]。对于砂岩来讲,分形的维度应介于2与3之间。当其接近于2时,砂岩储集性能极好;而接近于3时,砂岩储集性能极差[19]。大量的研究表明,利用分形理论进行储层岩石微观孔隙结构的表征,与目前不同开发阶段实际效果基本吻合,因此这种方法可以作为评价储层油气藏孔隙结构及储集性的一个主要手段。 2.储层岩石微观孔隙结构研究发展趋势 虽然储层岩石微观孔隙结构的研究取得了很大进展,但是还有很多亟待解决的问题,主要集中在以下几个方面: (1)微米或亚微米孔隙结构的表征以往的研究主要集中在几微米以上的孔隙或孔喉的表征,而客观评价储层产能规律,需要进行这方面的研究,尤其是孔隙-岩石界面的形态分布,包括曲率,粗糙度等的评价,因为这是影响储层渗流特征的本质属性。 (2)利用微观孔隙结构分布特性解释储层反常现象例如水驱油效率与渗透率之间不存在密切关系,甚至出现驱油效率与渗透率呈反比关系的现象。到目前为止,这些由实验发现的反常现象还没有得到合理的解释。 (3)储层岩石分形维度的研究岩石孔隙的分维值是岩石孔隙结构的一个重要的独立参数,它与岩石的渗透率有复杂的关系,需要进一步深入研究。 (4)三维孔隙结构成像三维孔隙结构在微米或亚微米分辨尺度上快速成像技术的研究。目前用同步辐射、X-CT和激光共聚焦等三维成像技术只能达到几微米分辨,不能满足微观孔隙结构评价的要求,因此,需要开发新的实验手段和方法。 这些问题的解决,用目前现有的仪器和方法都有一定都困难,因此需要先进的仪器、实验方法和理论去实现。 3.扫描探针显微术表征储层岩石微观孔隙结构的展望 目前,国内外采用的常规描述岩石孔隙结构特征的测井资料现场评价方法及实验方法各有优缺点。比如测井资料现场评价方法虽然具有纵向上的连续性,但由于受到仪器、环境、流体等多种因素的影响,同时测井资料数据繁多,解释起来人为因素较大,描述储层宏观特征尚可,但用于微观孔隙结构研究其数据精度和解释精度都无法保证。一例[21])研究储层岩石微观孔隙结构。寻找一种能够弥补上述方法缺点的表征手段成为必然要求。 扫描探针显微术(ScanningProbeMicroscopy,SPM)是上世纪八十年代中期发展起来的区别于以往显微手段(包括扫描电子显微镜)的 42

东濮凹陷三叠系裂缝性砂岩储层微观孔隙结构特征

第18卷第2期 2007年东濮凹陷北部文明寨、卫城等地区的三叠 系发现了裂缝性砂岩油气藏,油气主要富集在砂岩裂缝中,基质不含油,裂缝既是储集空间又是渗流通道。砂岩裂缝型储集空间与灰岩相似,但溶洞发育程度较灰岩弱,此类油气藏在国内尚属首次发现。探讨该类油气藏储层微观孔隙结构特征对于深入认识此类油气藏,深化我国陆相储层孔隙结构理论具有重要意义,同时也丰富了储层微观物理研究的内容[1-7]。 1储层概况 东濮凹陷位于渤海湾盆地西南部的豫东北—鲁西 南地区,夹持在内黄隆起与鲁西隆起之间、北窄南宽,呈琵琶状北东向展布。东濮凹陷中生界不太发育,缺乏 上三叠统—白垩系地层。钻井资料显示,三叠系地层为内陆河湖相红色砂泥岩互层,岩性致密,视电阻率高,俗称“高阻红”。岩心物性资料分析显示,三叠系砂岩基质孔隙度一般为1.00%~6.00%,基质基本不具备储集能力。砂岩裂缝发育,局部沿裂缝发育溶蚀孔洞,油气主要富集在裂缝中。依据储集空间类型,研究区三叠系油气藏为裂缝性砂岩储层油气藏。 岩心薄片资料显示,储层砂岩碎屑颗粒粒度为 60~500μm ,岩性为含灰质细粒、中粒岩屑粗粉砂岩。 石英体积分数为58%~66%,长石9%~13%,火成岩、变质岩等岩屑占15%~22%,磨圆度为次棱—次圆状,分选性中—好,胶结物以灰质为主(体积分数20%~ 25%),其次为泥质(体积分数6%~10%)。 摘要通过扫描电镜、岩石薄片、铸体薄片、荧光薄片、常规压汞等技术方法,对东濮凹陷北部三叠系裂缝性砂岩储层的 微观孔隙结构特征进行研究。结果表明,东濮凹陷三叠系砂岩储层裂缝、微裂缝发育,裂缝性砂岩储层孔隙由岩石基质孔隙与缝洞孔隙两部分组成,缝洞孔隙是油气储集的有效孔隙,孔隙类型主要为原生粒间孔隙、粒内孔隙,碎屑颗粒之间以点-线式接触为主。砂岩基质结构致密,孔隙性差。储层基质喉道以微喉为主,压汞实验的排驱压力较高,储层基质渗透率较低,储层基质的储、渗性能差。关键词 三叠系;裂缝性砂岩储层;微观孔隙结构特征;荧光薄片;微裂缝;东濮凹陷 中图分类号:TE122.2+3 文献标志码:A 东濮凹陷三叠系裂缝性砂岩储层微观孔隙结构特征 国殿斌 (中原油田分公司勘探开发科学研究院,河南濮阳457001) 文章编号:1005-8907(2011)02-191-04 Characteristics of micropore structure of Triassic sandstone reservoir in Dongpu Depression Guo Dianbin (Research Institute of Exploration and Development,Zhongyuan Oilfield Company,SINOPEC,Puyang 457001,China) Abstract:By the methods of scanning electron microscopy,rock thin section,cast thin section,microscopic fluorescence and conventional murcury injection and so on,the characteristics of microscopic pore structure of Triassic sandstone reservoir in Dongpu Depression were studied.The research shows that the fracture and microfracture were developed well in Triassic sandstone reservoir of Dongpu Depression,the pore system is composed of the rock matrix pores and the fracture-cave pores,which are the effective pore of hydrocarbon storage.The pore type is mainly the primary intergranular pores and intragranular dissolution pores.The contacted relation is mainly the dop-line type among clastic particles,and the porosity is low.The matrix pore of reservoir is mainly the microthoat.The discharge pressure is high in mercury injection experiment.The permeability of matrix rock is low,with the storage and permeability being poor in matrix rock. Key words:Triassic;fractured sandstone reservoir;characteristics of micropore structure;microscopic fluorescence;microfracture;Dongpu Depression 引用格式:国殿斌.东濮凹陷三叠系裂缝性砂岩储层微观孔隙结构特征[J ].断块油气田,2011,18(2):191-194. Guo Dianbin.Characteristics of micropore structure of Triassic sandstone reservoir in Dongpu Depression [J ].Fault-Block Oil &Gas Field ,2011,18(2):191-194. 断块油气田FAULT-BLOCK OIL &GAS FIELD 2011年3月191

鄂尔多斯盆地地质概况

鄂尔多斯盆地区域地质概况 一、概况 鄂尔多斯盆地的广义地理界线:北起阴山,南到秦岭,东自吕梁山,西至贺兰山,六盘山一线。 盆地含油气地层主要为侏罗系的延安组合三叠系富含延长植物群的一套地层。 盆地内出露的地层包括:太古界至奥陶系,石炭系至白垩系,第三系和第四系,以陆相中生代地层和第四系黄土最为发育且广泛分布,缺失志留系和泥盆系。 二、区域地质构造,构造演化(鄂尔多斯盆地天然气地质) 独立成盆时间应为中侏罗纪末。 太古代—早元古代基底形成阶段:基底岩系由两部分组成:下部为太古界和下元古界下部的结晶岩系,上部为下元古界上部的褶皱岩系,这使得基底具备结晶—褶皱的双重构造。对基地形成起重要作用的构造事件是早元古代早期的五台运动和早元古代晚期的吕梁—中条运动。 中晚元古代坳拉槽发育阶段:这个时期形成了向北收敛向南敞开的贺兰坳拉槽和向北东方向收敛,南西方向敞开的彬县临县坳拉槽,二者时间夹峙着向南倾伏的乌审旗庆阳槽间台地。 早古生代克拉通坳陷阶段: 寒武纪的构造面貌是:初始继承中、晚元古代构造格局,表现为北高南低,中隆(乌审旗一庆阳巾央古隆起带)东、西凹;晚期(晚寒武世)变为南北高、中间低,中凹(盐池、米脂凹陷)南北隆(坏县一庆阳隆起、乌兰格尔隆起)的形态。后者是新的构造体制控制下的构造变形。 奥防纪初始,克拉通整体台升成陆,海水进一步退缩,冶里—亮甲山组仅分布在古陆四周,为厚度数十米至200m的含隧石结核或条带的深灰色白云岩夹灰岩。 早奥陶世的古构造面貌,基本继承晚寒武世的构造轮廓。由于内蒙海槽活动性增强的影响,克拉通北部的乌兰格尔古隆起带仍保持古陆形式,而南部环县一庆阳古隆起则表现为相对校低的水下隆起。

储层孔隙压力的变化

储层孔隙压力的变化 在油田投入开发之前,原始地层压力在同一水动力系统构造上的分布符合连通器的原理。一旦油藏投入开发,原始地层压力的平衡状态将被破坏,地层压力的分布状况就会发生变化,而且这种变化将贯穿于油田开发的全过程。采油时,随着储层中碳氢化合物的提取,地层压力将降低,尤其是在开采井附近压力下降更大。当向储层中注水时,地层压力将升高,特别是在注入井附近,注入流体流动的障碍可能会在储层的横向和纵向上引起不同的压力。 岩石物理实验结果表明,压力变化对岩石速度的影响是明显的。当上覆地层压力一定时,无论岩石孔隙为水或油饱和或者为干岩石(气饱和),砂岩纵波速度均随孔隙压力的增加而减小,且孔隙压力越高,速度随压力变化的幅度越大(见图2)[8]。由此可知,采油井处孔隙压力的降低必然会引起储层岩石速度的增加;而注水井处孔隙压力的升高将导致储层岩石速度的降低。尽管注水可在一定程度上缓减地层压力的降低,但就大多数油藏而言,地层压力变化的总趋势是降低的。这种压力的降低将使得岩石速度增加,其效果与流体替换是一致的,因此从这个意义上讲,储层压力的变化对监测是有利的。特别是当孔隙压力较高(即低有效压力)时,即使是对于图2所示低孔隙砂岩,其分别饱含油和饱含水时的纵波速度之间的差异也是相当可观的。当孔隙压力大于60MPa时,纵波速度的相对变化率大于2.8%;当孔隙压力大于80MPa,纵波速度的相对变化率将大于5.8%;当孔隙压力大于90MPa,纵波速度的相对变化率将大 于7.8%。 图2Weber砂岩纵波速度对孔隙压力的关系储层温度变化在油藏注采过程中,储层温度的变化主要与三种物理过程有关,即热传导、对流和扼流[9]。其中,热传导是指不同温度组分接触的热交换;对流是指岩石孔隙空间流体位移引起的热移动;扼流即焦耳—汤姆森效应,它是指在孔隙介质中流体运动时的热吸收。储层内热场或温度场的变化是三种热效应共同影响的结果。一般来说,油藏开采前,地层中的热分布主要与热传导性的迁移有关,而且岩石的层理(即各向异性)对其导热性起决定作用。在油田开采阶段,当油气和水流经孔隙介质时,首先出现的是对流与扼流过程。在开采的最后阶段,对流热交换比扼流和传导过程占优势。井停产后,热分子迁移(传导)占优势,且沿储集层走向温度场的分布比沿油藏高程的变化要占优势。就注水驱油而言,在注水前缘到达采油井之前,油在孔隙介质中流动时,扼流效应将使地层温度略有升高;在注入井处,地表冷水注入到地下温热的油藏之中,对流常会造成地层温度的降低,至少在注水井附近,地层的温度应比临近储层的温度要低。这将使得注水层中原油与岩石发生冷却,原油黏度降低。来自大庆油田的岩石物理实验结果表明[10],随温度增加,砂岩速度近似线性减小,见图3。这是由于温度增加,岩石软化,可压缩性增加,因而速度降低。由此可知,在采油井处,由于温度的升高,砂岩速度将略有降低;而在注水井处,由于温度的降低,砂岩速度将有所升高。也就是说,因注水而引起的温度变化对岩石速度的影响与流体替换是一致的。相比之下,压力的影响较温度的影响要大得多。

相关主题
文本预览
相关文档 最新文档