小学数学和倍、差倍、和差问题详解,解题思路、方法
- 格式:docx
- 大小:79.20 KB
- 文档页数:5
和倍问题学法指导已知两个数的和及它们之间的倍数关系,求这两个数各是多少的应用题叫做和倍应用题,简称和倍问题。
首先我们要并清几个问题:两个数相比,以被比的数为标准,这个被比的数称为一倍数,比的数里有几个这样的一倍数,就是几倍数,我们就说一个数是另一个数的几倍。
它们之间的数量关系式是: 一倍数×倍数=几倍数t几倍数÷一倍数=倍数几倍数÷倍数=一倍数在解决和倍问题时,先要确定一个数为标准(通常以较小的数为标准),即一倍数,再根据较大的数与较小的数之间的倍数关系,确定总和相当于一倍数(较小的数)的多少倍,然后求出一倍数(较小的数),再算出其他各数量。
和倍问题的数量关系式是:和÷(倍数+1)=一倍数即较小的数和一较小的数=较大的数,或较小的数×倍数=较大的数甲、乙两车间共有工人664人,甲车间的人数是乙的3倍,甲、乙两车间各有工人多少人?【分析与解答】我们可以用线段图表示题中的已知条件与问题:乙车间:甲车间:从上图看出,甲车间的人数是乙的3倍,那么把乙车间的人数看作1份,甲就有这样的3份,总人数664人占了1+3 =4份,把664人平均分成4份,l份就是乙车间的人数,3份就是甲车间的人数。
664÷(1+3) =166(人)166 x3 =498(人)或664 —166= 498(人)答:甲车间有工人498人,乙车间有166人.试一试1华强和建军共有图书84本,华强的图书本数是建军的3倍。
华强和建军各有图书多少本?果园里有梨树、苹果树、桃树共207棵,其中梨树的棵数是苹果树的3倍,苹果树的棵数是桃树的2倍。
三种果树各多少棵?【分析与解答】我们把桃树的棵数看作1份,苹果树的棵数就是这样的2份,梨树的棵数就是桃树的2 x3 =6倍,三种果树的总棵数就是桃树的6 +2 +1 =9倍。
可以先求出桃树有207÷9=23(棵),苹果树有23×2 =46(棵),梨树就是46 x3 =138(棵)。
和倍差倍知识结构一、和倍问题(1)和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题.(2)解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。
(3)和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.和倍问题的数量关系式是:和÷(倍数+1)=小数小数×倍数=大数或和一小数=大数(1)如果要求两个数的差,要先求1份数:l份数×(倍数-1)=两数差.(2)解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。
二、差倍问题(1)差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题.(2)差倍问题的特点与和倍问题类似。
解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到。
(3)解题思路:首先要在题目中找到1倍量,然后画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量(4)差倍问题的基本关系式:差÷(倍数-1)=1倍数(较小数)1倍数×几倍=几倍数(较大数)或较小数+差=较大数(5)解决差倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系.(6)年龄问题的和差问题主要利用的年龄差不变。
例题精讲【例 1】师、徒两人共加工105个零件,师傅加工的个数比徒弟的3倍还多5个,师傅和徒弟各加工零件多少个?【考点】和倍问题【难度】3星【题型】解答【解析】引导学生画图时,一定要注意“多5个”的画图方法,并找和与份数之间的关系.从线段图上可以看出,把徒弟加工的个数看作1份数,师傅加工的个数就比3份数还多5个,如果师傅少加工5个,两人加工的总数就少5个,总数变为(1055)-个,这样这道题就转化为例5类型的题目,就可以求出师傅和徒弟各加工多少个了.列式:如果师傅少做5个,师、徒共做: 1055100-=(个),徒弟做了:100(31)25÷+=(个),师傅做了:253580⨯+=(个).【答案】师傅80个,徒弟25个【巩固】二⑴班的图书角里有故事书和连环画共47本,如果故事书拿走7本后,故事书的本数就是连环画的4倍.原有连环画和故事书各有多少本?【考点】和倍问题【难度】3星【题型】解答【解析】可引导学生,让他们自己画图来分析,教师辅导指正.从线段图可以看出,如果故事书拿走7本以后,则正好是连环画的4倍.这时故事书与连环画总数应减少7本,列式成47740-=(本),正好是连环画本数的(1+4)倍.⑴如果故事书拿走7本,总本数为: 47740-=(本)⑵现在连环画与故事书的倍数和为:4+1=5⑶连环画有:4058÷=(本)⑷故事书有:84739⨯+=(本)【答案】连环画有8本,故事书有39本。
三年级奥数,什么是和差、差倍、和倍,具体到应用题该如何做?近年来虽然国家一直在禁止奥数培训,但各种奥数班仍层出不穷,其主要原因还是在于奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。
而奥数中的思想也是多种多样,这里我们看一下奥数中常见的和差、差倍、和倍概念。
和差:已知两数的和及它们的差(一般指:大数-小数),求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
和差问题的解题规律为:小数加上两数差就是大数,两数和加上两数差便是大数的2倍;大数减去两数差就是小数,两数和减去两数差是小数的2倍。
因此,用两数和加上两数差,再除以2,就可求出其中的大数;用两数和减去两数差,再除以2,就可求出小数。
写成公式为:(和+差)÷2=大数(和-差)÷2=小数如何理解呢?我们通过例题来看:已知三年级一班女生比男生少5人,男生和女生共31人,问三年级一班有多少男生多少女生。
解:如果列方程则假设三年级一班男生数量为x,女生数量为y则 x+y=31;x-y=5;合并化简有x=(31+5)÷2=18;y=(31-5)/2=13;即三年级一班有18位男生,13位女生。
这里,男生数量相当于大数,女生数量相当于小数,5为两数的差,31为两数的和。
同类问题还有哪些呢?1、小山羊有青草丸子和地瓜丸子共30颗,其中青草丸子要比地瓜丸子多8颗,那么小山羊有__________颗地瓜丸子。
2、有两筐水果共重150千克,第一框比第二框多8千克,问第一框个共有__________水果。
稍微变形;两筐苹果共有120个,如果从第一个筐中拿10个放入第二个筐中,那么两个筐中的苹果个数相等,问两筐原来各有多少苹果?分析:还是不是和差问题呢?是!两数之和不变为120;初始时两数之差为20,大数是第一个筐内苹果数量,小数是第二个筐内苹果数量。
注意类似这种整体内移动时经常会涉及一加一减的两倍问题。
小数的和倍,差倍应用题小数的和倍、差倍应用题是数学中常见的问题类型。
这类问题主要考察学生对于小数运算的理解和应用。
下面,我将详细介绍这类问题的解题思路和解决方法。
一、解题思路1. 理解问题背景:首先,要明确问题的背景和所涉及的数学概念。
小数的和倍、差倍问题主要涉及到小数的加法、减法、乘法和除法运算。
2. 确定解题步骤:在理解问题背景的基础上,确定解题步骤。
对于小数的和倍问题,通常需要先求出两个小数的和,然后再求出它们的倍数。
对于小数的差倍问题,通常需要先求出两个小数的差,然后再求出它们的倍数。
3. 运用数学公式:根据问题类型,运用相应的数学公式进行计算。
对于小数的和倍问题,通常使用小数加法的公式;对于小数的差倍问题,通常使用小数减法的公式。
二、解决方法1. 确定已知量和未知量:在解题前,首先要明确题目中的已知量和未知量。
例如,在和倍问题中,已知两个小数的和,要求它们的倍数;在差倍问题中,已知两个小数的差,要求它们的倍数。
2. 运用数学模型:根据已知量和未知量,建立相应的数学模型。
例如,在和倍问题中,可以通过小数加法公式建立方程;在差倍问题中,可以通过小数减法公式建立方程。
3. 求解方程:根据建立的数学模型,求解方程得到答案。
可以使用代数方法或计算器进行计算。
三、注意事项1. 细心审题:在解题前要认真审题,确保理解题意和要求。
2. 规范计算:在计算过程中要规范操作,避免出现计算错误或格式错误。
3. 检验答案:在得到答案后要进行检验,确保答案的正确性和合理性。
总之,小数的和倍、差倍应用题是数学中常见的题型之一。
通过掌握解题思路和解决方法,可以帮助学生更好地理解和解决这类问题。
同时,要注意细心审题、规范计算和检验答案等方面的问题,以确保解题的准确性和效率。
三年级奥数:和倍问题,和差问题,差倍问题,周期问题,时间问题和倍问题,就是已知几个数的和与这几个数之间的倍数关系,求这几个数各是多少的应用题。
解和倍问题的关键是要找准“和”与“倍”,并能借助线段图来解决问题。
解和倍问题的一般思路是:(1)读题,找出最小的一个数,把它看成1倍量;(2)画图,用线段图表示出数与数之间的倍数关系;(3)比较,观察图形准确判断“和”里面一共是几倍或几倍多几(几倍少几),即判断“和”相当于几个1倍量,并求出1倍量;(4)代入,根据1倍量与几个数之间的倍数关系求出其他的数。
已知两个数的倍数关系,把较小的数看成1份,较大的数就是较小数的几倍,较大的数就是几份。
下面我们来看例题1。
例题1解决这类和倍问题时,首先根据倍数关系画出线段图,以较小量为一段,先画出较小的的量,然后找到和相当于多少份,求出一份数。
一份的数知道了,其他的问题也就好解决了。
例题2我们知道,平均数(每份数)=总数÷总份数。
师傅和徒弟的总份数根据题意可以看成是和徒弟加工个数一样的4份。
当两个量的和与倍数关系不对应时,先求出与倍数关系对应的和,再画线段图求出两个量。
例题3求三个量的和倍问题时,先比较三个数的大小,再找出1倍量,画出线段图,然后通过“剪尾巴”或“填坑”找到三个数的和相当于多少份,求出1份数。
通过以上的例子,详细大家已经对和倍问题有了一定的了解,下面我就给大家出一些相关的练习1、甲乙两人共有150张画片,甲的张数比乙的2倍多30张。
两人各有多少张画片?2、四、五年级共有165人,四年级学生比五年级学生人数的2倍少6人。
四五年级各有学生多少人?3、小丽有红、黄、白三种颜色的珠子54粒,红珠子是黄珠子的2倍,白珠子是黄珠子的3倍。
三种颜色的珠子各有多少粒?和差问题与和倍问题、差倍问题一起统称“和差倍问题”,是小学阶段尤其是中年级常见的典型应用题。
和差问题的特点是已知几个数的和与这几个数的差,求这几个数各是多少的应用题。
和倍、差倍、和差问题【知识概述】和倍问题:已知几个数的和与这几个数之间的倍数关系求这几个数的应用题。
基本公式和÷(倍数+1)=较小数(一倍数)较小数×倍数=较大数或:和-较小数=较大数。
差倍问题:已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
基本公式差÷(倍数-1)=较小的数较小的数×倍数=较大的数和差问题:已知两个数的和与差,反过来求这两个数。
基本公式(和+差)÷2 = 较大的数(和-差)÷2 = 较小的数温馨提示:为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示几种量间的这种关系,以便于找到解题的途径。
【典型例题】例1 甲班和乙班共有图书160本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?例2 师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个,师、徒各生产多少个?例3 妈妈的年龄比小刚大24岁,今年妈妈的年龄正好是小刚年龄的3倍,今年妈妈和小刚各是几岁。
例4 两个数的和为36,差为22, 则较大的数是多少?较小的数是多少?例5 甲乙丙三数的和是1600,乙数是甲数的2倍,丙数比乙数的2倍多60, 甲乙丙三数各是多少?【巩固训练】1.妹妹有课外书20本,姐姐有课外书25本,姐姐给妹妹()本后,妹妹课外书是姐姐的2倍。
2.弟弟有图书30本, 哥哥有图书90本, 哥哥给弟弟( )本后, 哥哥的图书是弟弟的2倍。
3.被除数、除数和商三个数的和是181,商是12,被除数是()。
4.小明、小红两人集邮,小明的邮票比小红多15张,小明的张数是小红的4倍,小明集邮()张,小红集邮()张。
5.名士基地种的花生是白薯的16倍,现在已经知道种的花生和白薯一共是102棵,种花生()棵, 白薯()棵。
6.小利的科技书和故事书一共75本,但是科技书比故事书少 35本,小利有科技书( )本,故事书( )本。
和差问题、和倍问题、差倍问题本次课我们研究和差问题、和倍问题、差倍问题,旨在能够正确运用相关公式,解决实际问题。
其中,教学重点在于分清题目类型,正确运用不同类型的数量关系。
而教学难点则在于理清题意,准确判断题目属于哪一类,然后正确运用相关的数量关系。
本课程需要4个课时。
一、和差问题是指已知两个数的和与差,求出这两个数各是多少的应用题。
基本数量关系是:(和+差)÷2=大数,(和-差)÷2=小数。
解答和差应用题的关键在于选择合适的数作为标准,将若干个不相等的数变为相等的数。
有些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。
例如,有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?根据公式,我们需要找出两个数的和与差,才能解决问题。
由题意可知:堆煤共重52吨,因此两数和是52;甲比乙多4吨,因此两数差是4.甲的煤多,甲是大数,乙是小数。
故解法如下:甲:(52+4)÷2=28(吨),乙:28-4=24(吨)。
二、和倍问题是指已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少。
解决和倍问题的基本方法是将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。
基本数量关系是:小数=和÷(n+1),大数=小数×倍数或和-小数=大数。
例如,甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。
因此,乙:160÷(3+1)=40(本),甲:160-40=120(本)。
练:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、XXX和XXX两人今年的年龄是23岁,4年后,XXX 比XXX3岁,问XXX和XXX今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。
小学数学“和差问题、和倍问题、差倍问题、倍比问题”总结+解题思路+例题整理一、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解:甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。
由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。
二、和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
和差,和倍,差倍问题公式
和差问题、和倍问题和差倍问题是指在代数运算中,针对两个或
多个数的和、差、乘积之间的关系进行求解的问题。
1.和差问题公式:
(1)两个数的和:设两个数分别为a和b,那么它们的和为a+b。
(2)两个数的差:设两个数分别为a和b,那么它们的差为a-b。
2.和倍问题公式:
(1)一个数的n倍:将某个数a乘以n,即为a的n倍。
(2)两个数的和的n倍:设两个数分别为a和b,它们的和为a+b,那么它们的和的n倍为n(a+b)。
3.差倍问题公式:
(1)两个数的差的n倍:设两个数分别为a和b,它们的差为a-b,那么它们的差的n倍为n(a-b)。
拓展:
除了上述提到的和差问题、和倍问题和差倍问题,还有其他类似的代数问题,如积问题、商问题等。
这些问题涉及到数之间的乘积和除法运算,可以利用相应的公式来求解。
例如:
1.积问题公式:
(1)两个数的乘积:设两个数分别为a和b,它们的乘积为a*b。
2.商问题公式:
(1)两个数的商:设两个数分别为a和b,它们的商为a/b。
需要注意的是,除数b不能为零。
这些公式和问题常用于求解代数方程和解决实际问题,通过应用适当的公式,我们可以准确地计算出数之间的关系。
差倍及和差问题【知识要点】差倍问题:已知两个数的差及倍数关系,求这两个数分别是多少的问题。
和差问题:已知两个数的和与差,求这两个数分别是多少的问题。
其规律如下:差倍问题 和差问题已知条件 两个数的差与倍数 两个数的和与差公式 ①差÷(倍数-1)=较小数 ②较小数×倍数=较大数 ③较小数+差=较大数①(和-差)÷2=较小数②(和+差)÷2=较大数掌握基本差倍、和差问题的公式,进而会处理多个量之间的差倍、和差问题。
重点学习如何利用线段图表示数量关系。
学会分析较为隐藏的差倍及和差问题,进一步掌握画线段图的方法,学会利用不变量进行分析的方法。
处理多个量的差倍及和差问题时,注意选取合适的单位“1”。
【典型例题】一、差倍问题(1)一般差倍问题例1.甲房地产公司有资金100亿元,乙房地产公司有资金40亿元,两公司联合投资一块地皮,用去同样多的资金后,甲公司剩下的资金是乙公司的5倍。
请问:两公司投资这块地皮共用去多少亿元?解:原来甲公司比乙公司多1004060-=亿元,因为他们用去同样多的资金,所以甲剩下的资金仍比乙公司多60亿元,又甲剩下的资金是乙公司的5倍,那么乙公司剩下的资金为:()605115÷-=亿元所以乙公司投资地皮用去:401525-=亿元则两公司投资地皮共用去:25250⨯=亿元例2. 甲、乙两个数,如果甲数加上320就等于乙数,如果乙数加上460就等于甲数的3倍。
求两个数各是多少?解:用一条小线段表示甲数,如图根据线段图可以看出:320460780+=由两条小线段表示那么每条小线段表示:7802390÷=即甲为390,那么乙为:390320710+=(2)差倍多问题例3.小悦和阿奇在操场上练习跑步.一段时间过后,阿奇跑的距离比小悦跑的3 倍还多80 米.如果小悦比阿奇少跑了500 米,那么小悦和阿奇分别跑了多少米?解:选小悦跑的为“1”,用一条小线段表示,如图根据线段图可以看出:50080420-=米由两条小线段表示,那么每条小线段表示+=米÷=米,即小悦跑了210米,那么阿奇跑了2105007104202210(3)差倍少问题例 4.小悦和阿奇在操场上练习跑步.一段时间过后,阿奇跑的距离比小悦跑的3 倍少80米.如果小悦比阿奇少跑了500 米,那么小悦和阿奇分别跑了多少米?解:如图根据线段图可以看出,小悦的2倍为:50080580+=米那么小悦跑了5802290÷=米那么阿奇跑了290500790+=米三、和差问题例5. 冬冬在玩具店看中了两件汽车模型.如果两件都买,一共需要400 元.已知较贵的模型比便宜的模型贵60 元,这两件模型各要多少钱?解:如图,根据线段图可以看出,便宜的模型的2倍为:40060340-=元那么便宜的价钱为:3402170÷=元贵的为:17060230+=元例6.登月行动地面控制室的成员由两组专家组成,两组共有专家125 人.原来第一组人数较多,所以从第一组调了20 人到第二组,即使这样第一组人数仍比第二组多5 人.原来第一组有多少名专家?解:如图根据线段图知,原来第一组比第二组多2020545++=人那么原来第一组人数的两倍为:12545170+=人,则第一组原来的人数为:170285÷=人练习题1.有两块布,第一块长74 米,第二块长50 米,两块布各剪去同样长的一块布后,剩下的第一块米数是第二块的3 倍,问每块布各剪去多少米?2.甲、乙两校教师的人数相等,由于工作需要,从甲校调30 人到乙校去,这时乙校教师人数正好是甲校教师人数的3 倍,求甲、乙两校原有教师各多少人?3.菜站运来的白菜是萝卜的3 倍,卖出白菜1800 千克,萝卜300 千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?4.有两款数码相机,一款是高档专业相机,一款是普通家用相机.家用相机价格较低,比专业相机便宜了4600元.买1 台专业相机的钱足够买4 台家用相机,而且还能剩下100 元.请问:专业相机的价格是多少钱?5.甲、乙两筐苹果重量相等.现在从甲筐拿12 千克苹果放入乙筐,结果乙筐苹果的重量就比甲筐的3 倍少2千克.两筐苹果原来各有多少千克?。
和差问题、和倍问题、差倍问题(实用)在日常生活中,我们往往需要进行一些简单的数学计算,如何求解两个数之间的和、差或是倍数?下面就让我们来看看分别如何解决和差问题、和倍问题、差倍问题。
一、和差问题1. 两个数的和两个数的和可以用加法运算来求解,如若有两个数a和b,则它们的和可以表达为:a +b = ?例如,若有a=2,b=3,则它们的和为:2 +3 = 52. 两个数的差两个数的差可以用减法运算来求解,如若有两个数a和b,则它们的差可以表达为:a -b = ?例如,若有a=5,b=2,则它们的差为:5 - 2 = 33. 两个数的绝对值差两个数的绝对值差可以用绝对值运算来求解,如若有两个数a和b,则它们的绝对值差可以表达为:|a - b| = ?例如,若有a=5,b=2,则它们的绝对值差为:|5 - 2| = 3二、和倍问题1. 两个数的和的倍数如果需要求两个数之和的部分倍数,我们可以先得到它们的和,然后再去乘一个倍数系数,如若有两个数a和b,需要求它们的和的2倍,则可以这样做:2 * (a + b) = ?例如,若有a=2,b=3,则它们的和的2倍为:2 * (2 + 3) = 102. 两个数的差的倍数如果需要求两个数之差的部分倍数,我们可以先得到它们的差,然后再去乘一个倍数系数,如若有两个数a和b,需要求它们的差的3倍,则可以这样做:3 * (a - b) = ?例如,若有a=5,b=2,则它们的差的3倍为:3 * (5 - 2) = 9三、差倍问题1. 两个数的差的倍数与和的关系若需要求两个数之差的部分倍数与和的关系,可以先将它们的差乘上一个倍数系数,然后再去加上它们的和,如若有两个数a和b,需要求它们的差的4倍与和的关系,则可以这样做:4 * (a - b) + (a + b) = ?例如,若有a=5,b=2,则它们的差的4倍与和的关系为:4 * (5 - 2) + (5 + 2) = 212. 两个数中点与差的关系若需要求两个数中点与差的关系,可以先得到它们的和,然后再除以2,即可得到它们的中点,如若有两个数a和b,需要求它们的中点与差的关系,则可以这样做:(a + b) / 2 = ?例如,若有a=5,b=2,则它们的中点为:(5 + 2) / 2 = 3.5它们的差为:5 - 2 = 3以上就是本文介绍的和差问题、和倍问题与差倍问题。
【解题方法】小学数学有关和、差、倍问题有效解题法汇总,收藏备用!和、差、倍是两个数之间最基本的数量关系,这三个关系中只要知道任意两个,我们都可以求出相应的两个数。
已知“和”与“差”是和差问题,已知“和”与“倍”是和倍问题,已知“差”与“倍”是差倍问题,都有相应的大招,和差倍问题是小学的重点和难点。
在很多题目中,往往不直接告诉我们和、差、倍,需要我们自己慢慢观察得出答案。
和差问题定义:已知两个数的“和”与“差”,求这两个数各是多少,这类应用题叫做和差问题。
解题思路:简单的题目可以直接套用公式,复杂的题目变通后再用公式~小数=(和-差)÷2大数=(和+差)÷2例题解析:类型一:直接给和与差甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:和:98人差:6人甲班人数:(98+6)÷2=52(人)乙班人数:(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
类型二:暗差型甲班和乙班一起上体育课,甲班和乙班一共63人,如果甲班分5人到乙班,甲班还比乙班多3人,这两班分别有多少人?解:和:63人差:5+5+3=13(人)甲班人数:(63+13)÷2=38(人)乙班人数:(63-13)÷2=25(人)答:甲班有38人,乙班有25人。
类型三:暗和型小春和弟弟两人今年的年龄和是24岁,四年后,小春比弟弟大12岁。
小春和弟弟四年后各多少岁?解:四年后的和:24+4+4=32(岁)四年后的差:12岁小春:(32+12)÷2=22(岁)弟弟:(32-12)÷2=10(岁)答:小春四年后22岁,弟弟四年后10岁。
和倍问题定义:已知两个数的“和”与“倍数”,求这两个数各是多少,这类应用题叫做和倍问题。
解题思路:简单的题目可以直接套用公式,复杂的题目变通后再用公式。
一份数=和÷(倍数+1)例题解析:类型一:直接给和、倍数两熊一共吃了36个包子,熊大吃的包子是熊二的3倍,熊大、熊二各吃多少个?解:和:36个倍数:3熊二:36÷(3+1)=9(个)熊大:9×3=27(个)答:熊大吃了27个,熊二吃了9个。
五年级上册-和差、和倍、差倍问题一、知识梳理和倍问题:和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题差倍问题:差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题.和差问题:已知两个数的和与差,反过来求这两个数.二、方法归纳和倍问题:基本公式和÷(倍数+1)=较小数(一倍数)较小数×倍数=较大数或:和-较小数=较大数.差倍问题:基本公式:差÷(倍数-1)=较小的数较小的数×倍数=较大的数差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题.差倍问题的特点与和倍问题类似.解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到.和差问题:基本公式(和+差)÷2 = 较大的数(和-差)÷2 = 较小的数温馨提示:为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示几种量间的这种关系,以便于找到解题的途径.【和倍问题】例1甲班和乙班共有图书160本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?练习一、1.根据线段图列式:2.小敏有14元,小花有10元,小花给小敏几元,小敏的钱数就是小花的2倍?3.小华和爷爷今年共72岁,爷爷的岁数是小华的7倍.爷爷比小华大多少岁?例2 有两根铁丝,第一根长18米,第二根长10米,两根铁丝用去同样长的一段后,第一根剩下的长度是第二根剩下长度的3倍,两根铁丝各剩下多少米?练习二、4.有两条纸带,一条长21厘米,一条长13厘米,两条纸带都剪下同样的一段后,长纸带剩下的长度是短纸带剩下的3倍,问剪下的一段有多长?5.二⑴班的图书角里有故事书和连环画共47本,如果故事书拿走7本后,故事书的本数就是连环画的4倍.原有连环画和故事书各有多少本?例3 有两盘苹果,如果从第一盘中拿2个放到第二个盘里,那么两盘的苹果数相同;如果从第二个盘中拿2个放到第一盘里,那么第一盘的苹果数是第二盘的2倍.第一盘有苹果多少个?练习三、6.一个长方形的周长是36厘米,长是宽的2倍,这个长方形的面积是多少平方厘米?7.5箱苹果和5箱葡萄共重75千克,每箱苹果是每箱葡萄重量的2倍.每箱苹果和每箱葡萄各重多少千克?例4 师、徒两人共加工105个零件,师傅加工的个数比徒弟的3倍还多5个,师傅和徒弟各加工零件多少个?练习四、8.实验小学共有学生956人,男生比女生2倍少4人.问:实验小学男学生和女学生各有多少人?【差倍问题】例5 李爷爷家养的鸭比鹅多18只,鸭的只数是鹅的3倍,你知道李爷爷家养的鸭和鹅各有多少只吗?练习五、9.甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?例6 某小学原来参加室外活动的人数比参加室内活动的人数多480人,现在把室内活动的50人改为室外活动,这样室外活动的人数正好是室内人数的5倍,则参加室内、室外活动的共有多少人?【和差问题】例7王亮期中考试语文语文和数学的平均分时94分,数学没考好,语文比数学多8分.问王亮的语文数学各得了多少分?练习七、10.两个数的和为36,差为22, 则较大的数为(), 较小的数为().11. 在一个减法算式里, 被减数、减数与差三个数的和是388, 减数比差大16, 则减数等于( ).12. 两筐水果共重124千克, 第一筐比第二筐多8千克, 两筐水果各重( )千克和( )千克.例8 有大中小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍.大中小三筐共有苹果多少千克?练习八、13.如果鱼尾重4千克,鱼头重量等于鱼尾加上鱼身一半的重量,鱼身重量等于鱼头加鱼尾的重量,这条鱼有几千克重?四、讲练结合题1.一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?2.果园里有梨树和苹果树共54棵,苹果树的棵数是梨树的5倍,苹果树比梨树多多少棵?3.师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个,师、徒各生产多少个?4. 甲有36本课外书,乙有24本课外书,两人捐出同样多的本数后,甲剩下的数是乙剩下本数的3倍,两人各捐出多少本书?5. 四年级甲班为筹办红领巾图书室号召同学捐送书籍,共收到科技书和故事书320笨,其中科技书是故事书的3倍,四年级甲班同学捐送的科技书和故事书各是多少本?6. 某车间共有工人77名,其中女工人数比徒工人数的2倍还多4人,男工人数比徒工和女工人数之和的2倍少7人,问:这个车间徒工,女工,男工各多少人?7.某保险公司为鼓励工作成绩好的职工,决定将4200元奖金分给三名优秀职工,已知第一名比第二名多得800元,第二名比第三名多得500元,三名优秀职工各得多少元奖金?课后练习一1、明明星期天上街买衣服,花75元钱买了一条裤子和一件上衣,已知上衣比裤子贵15元,明明买上衣花多少元.2.小梅与张芳今年的年龄和是39岁,小梅比张芳大3岁,张芳今年几岁.3.买一支自动铅笔与一支钢笔共用10元,已知铅笔比钢笔便宜6元,那么买铅笔、钢笔各花多少元.4.学校做扫除,张娟和陈芳一共擦玻璃31块,又知张娟比陈芳少擦9块,张娟、陈芳各擦玻璃多少块.5.小兰期末考试时语文和数学平均分是96分,数学比语文多4分,问小兰语文分,数学多少分.6.一个两位数是质数(除1与本身外,不能被其它数整除,这样的数叫质数)由两个数字组成,两个数字之和是8,两个数字之差是2,这个数是多少.7.今年弟弟16岁,哥哥20岁,当两人的年龄和是52时,弟弟几岁.8.两个水桶共盛水50千克,如果把第一桶里的水倒出6千克,两个水桶中的水就一样多了.第一桶原盛水多少千克.9、甲筐里有苹果30千克,乙筐里有桔子若干千克,如果从乙筐里取出12千克桔子,苹果就比桔子多10千克,乙筐原有桔子多少千克.10.甲乙两船共载客623人,若甲船增加34人,乙船减少57人,这时两船乘客同样多,甲船原有乘客几人.课后练习二、1、学校图书馆有文艺书与科技书共605本,文艺书的本数比科技书的3倍多50本,图书馆有文艺书和科技书各多少本?2、禽养场今年养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场今年的鸡鸭各多少只?3、姐姐和妹妹共做了340朵小红花,后来姐姐把她做的红花送给了小明30朵,妹妹自己又做了20朵,这时姐姐做的小红花是妹妹的5倍。
小学数学“和差,和倍,差倍,倍比”一、和差问题已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。
基本数量关系是:(和+差)÷2=大数(和-差)÷2=小数和差问题:相加一半是大数、相减一半是小数和差问题,就是已知两数之和、两数之差,求两数。
例题:小红的班级一共有41名同学,其中男生比女生多5人,请问班级里男生和女生各有多少人?这是典型的和差问题,题目中只有两个数字信息,一个是“和=41”,一个是“差=5”,下面我们运用口诀“相加一半是大数、相减一半是小数”对问题进行解答。
注意口诀中的相加、相减,指的是题目中的“和”和“差”。
根据口诀列式:较大数=(和+ 差)÷2 =(41 + 5)÷2 = 23 (人)较小数=(和- 差)÷2 =(41 - 5)÷2 = 18 (人)答:男生有23人,女生有18人。
验证:23+18=41,23-18=5二、和倍问题和倍问题,是指已知两数之和,并且知道其中一数是另一数几倍,求两数。
已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。
解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。
基本数量关系:小数=和÷(n+1)大数=小数×倍数或和-小数=大数和倍问题:小数和除倍加一例题:小刚和小明玩拍球游戏,两人一共拍了84下,小刚拍球数是小明的2倍,求两人各拍了多少下?在这道题目中,已知两个数的和是84,一数是另一数的2倍,一个“和”一个“倍”,这就要用和倍口诀来解题了。
小数和除倍加一,列出算式就是:较小数= 和÷(倍数+ 1)= 84 ÷(2 + 1)= 28 (下)求出其中的较小数,再求另一数就十分简单了,根据题意,可以使用减法或乘法求解:较大数= 和- 较小数= 84 - 28 = 56(下)较大数= 较小数×倍数= 28 ×2 = 56(下)答:小刚拍了56下,小明拍了28下。
小学数学和倍问题、和差问题的解题技巧
和倍问题
和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。
求出倍数和之后,再求出标准的数量是多少。
根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数标准数×倍数=另一个数
例:汽车运输场有大小货车115 辆,大货车比小货车的 5 倍多7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多7 辆,这7 辆也在总数115 辆内,为了使总数与(5+1 )倍对应,总车辆数应(115-7 )辆。
列式为(115-7 )÷(5+1 )=18 (辆),18 × 5+7=97 (辆)
差倍问题
差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数标准数×倍数=另一个数。
例:甲乙两根绳子,甲绳长63 米,乙绳长29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3 倍,甲乙两绳所剩长度各多少米?各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多(3-1 )倍,以乙绳的长度为标准数。
列式(63-29 )÷(3-1 )=17 (米)…乙绳剩下的长度,17 × 3=51 (米)…甲绳剩下的长度,29-17=12 (米)…剪去的长度。
小学数学和倍、差倍、和差问题详解,解题思路、方法题目:班里有男生、女生共45人。
男生的人数是女生的4倍。
男生和女生各有多少人?其实这就是最简单的和倍问题。
已知两个数的和及这两个数的倍数关系,求这两个数分别是多少,就是和倍问题。
低年级的和倍问题解题思路:分析: 1.先找出1份(1倍数)——女生的人数。
则男生就是4份(4倍数)。
2.再看男生女生的和是45 ,相对应的份数是4+1=5份。
3.最后用45÷(4+1)=9(人),算出1份的(1倍数)是多少,然后就可以根据倍数关系4×9=36(人)。
高年级方程方法反而理解起来更简单。
方程法:设女生的人数为人。
那么男生的人数就是4x人。
x+4x=45进行解答就可以了。
x=9(人)——女生人数‘男生4x=36(人)和倍问题的数量关系:和÷(倍数+1)=1倍数。
2 几倍数=和-1倍数或者1倍数×倍数。
二、差倍问题已知两个数的差及这两个数的倍数关系,求这两个数分别是多少的问题就是差倍的问题。
题目:王奶奶家养的鸡比鸭多60只,鸡的只数是鸭的7倍。
鸡和鸭个有多少只?低年级的一般思路:分析:1. 先找出1份(1倍数)——鸭,那么鸡就是7份(7倍数)2.再看鸡和鸭的只数差是60,相对应的鸡和鸭的份数差是(7-1)=6份(6倍数)3.最后用60÷(7-1)算出的1份(1倍数)是10也就是鸭的只数。
鸡的只数就是7×10=70(只)或者10+60=70(只)方程法:设鸭有x只,那么鸡就是7x只。
方程为7x-x=60 则x=10(只)鸭为70只。
差倍是数量关系:1.差÷(倍数-1)=1 倍数。
2.几倍数=差+1倍数或者几倍数=1倍数×倍数。
三和差的问题已知两个数的和及这两个数的差,求这两个数的各是多少,就是和差问题。
题目:王奶奶家养了鸡和鸭共80只,鸡比鸭多60只。
鸡和鸭分别有多少只?分析思路:1.假设鸭和鸡同样多,则鸡和假设的鸭的总数就是80+60=140(只)140÷2=70(只)就是鸡的只数。
小学数学和倍、差倍、和差问题详解,解题思路、方法
题目:班里有男生、女生共45人。
男生的人数是女生的4倍。
男生和女生各有多少人?
其实这就是最简单的和倍问题。
已知两个数的和及这两个数的倍数关系,求这两个数分别是多少,就是和倍问题。
低年级的和倍问题解题思路:
分析: 1.先找出1份(1倍数)——女生的人数。
则男生就是4份(4倍数)。
2.再看男生女生的和是45 ,相对应的份数是4+1=5份。
3.最后用45÷(4+1)=9(人),算出1份的(1倍数)是多少,然后就可以根据倍数关系4×9=36(人)。
高年级方程方法反而理解起来更简单。
方程法:设女生的人数为人。
那么男生的人数就是4x人。
x+4x=45进行解答就可以了。
x=9(人)——女生人数‘男生4x=36(人)
和倍问题的数量关系:
和÷(倍数+1)=1倍数。
2 几倍数=和-1倍数或者1倍数×倍数。
二、差倍问题
已知两个数的差及这两个数的倍数关系,求这两个数分别是多少的问题就是差倍的问题。
题目:王奶奶家养的鸡比鸭多60只,鸡的只数是鸭的7倍。
鸡和鸭个有多少只?
低年级的一般思路:
分析:1. 先找出1份(1倍数)——鸭,那么鸡就是7份(7倍数)
2.再看鸡和鸭的只数差是60,相对应的鸡和鸭的份数差是(7-1)=6份(6倍数)
3.最后用60÷(7-1)算出的1份(1倍数)是10也就是鸭的只数。
鸡的只数就是7×10=70(只)或者10+60=70(只)
方程法:
设鸭有x只,那么鸡就是7x只。
方程为7x-x=60 则x=10(只)鸭为70只。
差倍是数量关系:
1.差÷(倍数-1)=1 倍数。
2.几倍数=差+1倍数或者几倍数=1倍数×倍数。
三和差的问题
已知两个数的和及这两个数的差,求这两个数的各是多少,就是和差问题。
题目:王奶奶家养了鸡和鸭共80只,鸡比鸭多60只。
鸡和鸭分别有多少只?
分析思路:
1.假设鸭和鸡同样多,则鸡和假设的鸭的总数就是80+60=140(只)140÷2=70(只)就是鸡的只数。
2.假设鸡和鸭同样多。
则鸭和假设鸡的总数就是80-60=20(只)则鸭有20÷2=10(只)
和差问题的基本数量关系:1.(和+差)÷2=大数2.(和-差)÷2=小数。