概率论与数理统计 第四章 随机变量的数字特征 练习题与答案详解
- 格式:doc
- 大小:418.00 KB
- 文档页数:6
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
第四章随机变量的数字特征试题答案一、 选择(每小题2分)1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=22Y X -=,则34) A C 5A 6、)1=(C ) A .34?B .37C .323?D .326 7、设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,X 与Y 相互独立,则)43(--Y X D =(C )A .-13?B .15C .19?D .238、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )A .6?B .22C .30?D .469、设)31,10(~B X,则)(X E =(C )A .31?B .1C .310?D .1010、设)3,1(~2N X ,则下列选项中,不成立的是(B )A.E (X )=1?B.D (X )=3?C.P (X=1)=0?D.P (X<1)=0.511A .C .12、XY ρ=(D 13x =(B)A .14、(C ) A.-15、为(A .C .21)(,41)(==X D X E ?D .41)(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为则)(XY E =(B )A .91-?B .0 C .91?D .3117、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}22εσεμn n X P ≥<-?B .{}221εσεμn X P -≥<-C .{}221εσεμn X P -≤≥-?D .{}22εσεμn n X P ≤≥-23、设随机变量X 的μ=)(X E ,2)(σ=X D ,用切比雪夫不等式估计{}≥<-σ3)(X E X P (C )A .91?B .31C .98?D .124、设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计{}≤≥-32X P (C )A25A 1234且5x =710 67、设随机变量X 服从参数为3的指数分布,则)12(+X D =948、设二维随机变量);,;,(~),(222121ρσσμμN Y X ,且X 与Y 相互独立,则ρ=0 9、设随机变量序列 ,,,,21n X X X 独立同分布,且μ=)(i X E ,0)(2>=σi X D ,,2,1=i ,则对任意实数x ,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→x n n X P n i i n σμ1lim =)(1x Φ- 10、设随机变量X 具有分布51}{==k XP ,5,4,3,2,1=k ,则)(X E =3 11、设随机变量X 在区间(0,1)上服从均匀分布,Y=3X -2,则E?(?Y?)=-0.5 121314、3=,则cov(X 1516大于1724}=0.6826 附:18、-0.5,19的期望E?(Y)=4,D?(Y?)=9,又E?(XY?)=10,则X ,Y 的相关系数XY ρ=31 20、设随机变量X 服从二项分布31,3(B ,则)(2X E =35 三、计算:每小题5分1、某柜台做顾客调查,设每小时到达柜台的顾客数X 服从泊松分布,则)(~λP X ,若已知}2{}1{===X P XP ,且该柜台销售情况Y (千元),满足2212+=X Y。
第三章 随机变量的数字特征 练习题一、填空题1.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X = 。
2.设随机变量X 在区间[1, 2]-上服从均匀分布,随机变量 1, 0, 0, 0,1, 0,X Y X X >⎧⎪==⎨⎪-<⎩则()D Y = 。
3.设随机变量X 服从参数为λ的指数分布,则当c = 时,(||)E X c -达到最小。
4.设随机变量X 服从参数为λ的指数分布,则(P X >= 。
5.从1,2,3,4,5中任取一个数,记为X ,再从1,2,,X 中任取一个数,记为Y ,则()E Y = 。
6.袋中装有n 只球,每次从中随意取出一球,并放入一个白球,如此交换共进行n 次。
已知袋中白球数的数学期望为a ,那么第1n +次从袋中任取一球为白球的概率是 。
7.设随机变量2(,)X N μσ,则由切比雪夫不等式,有(||3)P X μσ-≥≤ 。
二、解答题1.设10只同种电器元件中有2只废品,装配仪器时,从这批元件中任取一只,若是废品,则扔掉,重新取一只,若仍是废品,则再扔掉再取一只,求在取到正品之前,已取出的废品数X 的概率分布、数学期望及方差。
2.设排球队A 与B 进行比赛,若有一队胜3场,则比赛结束。
假定A 在每场比赛中获胜的概率12p =,求比赛场数X 的数学期望。
3.设随机变量X 和Y 同分布,X 的概率密度为23, 02,()8 0, x x f x ⎧<<⎪=⎨⎪⎩其他,(1)已知事件{}A X a =>和{}B Y a =>独立,且3()4P A B =,求常数a ; (2)求21X 的数学期望。
答案:一、18.4; 89; ln 2λ; 1e ; 2; a n ; 19。
二、1.01248154545⎡⎤⎢⎥⎢⎥⎣⎦,29EX =,88405DX =; 2. 4.125; 3.a =2134E X ⎛⎫= ⎪⎝⎭。
习题4-11、设随机变量X 服从参数为p 的01-分布,求()E X 。
解:据题意知,X 的分布律为根据期望的定义,得()0(1)1E X p p p =⋅-+⋅=。
2、袋中有n 张卡片,记有号码1,2,,n 。
现从中有放回地抽出k 张卡片,求号码之和X 的数学期望。
解:设i X 表示第i 次取到的卡片的号码(1,2,,i k =),则12k X X X X =+++。
因为是有放回地抽出卡片,所以i X 之间相互独立。
所以第i 次抽到号码为m 的卡片的概率为1{},(1,2,,;1,2,,)i P X m m n i k n====,即i X 的分布律为1{},(1,2,,)i P X m m n n===, 所以11()(12)2i n E X n n+=+++=, 所以,1(1)()()2k k n E X E X X +=++=。
注:求复杂随机变量期望时可先引入若干个简单的随机变量,再根据期望的性质即可。
3、某产品的次品率为0.1,检验员每天检验4次。
每次随机地抽取10件产品进行检验,如果发现其中的次品数多于1,就去调整设备,以X 表示一天中调整设备的次数,试求()E X 。
(设诸产品是否是次品是相互独立的。
)解:令Y 表示一次抽检的10件产品的次品数,据题意知,~(10,0.1)Y b ,00101191010{1}1{0}{1}10.10.90.10.90.2639p P Y P Y P Y C C =>=-=-==--=,因此,~(4,0.2639)X b ,从而()40.2639 1.0556E X np ==⋅=。
注:此题必须先求出一天中调整设备的概率。
即p 值。
4、据统计,一位60岁的健康(一般体检未发生病症)者,在5年内仍然活着或自杀身亡的概率为p (01p <<,p 为已知),在五年内非自杀身亡的概率为1p -。
保险公司开办5年人寿保险,条件是参保者需缴纳人寿保费a 元(a 已知),若5年内非自杀死亡,保险公司赔偿b 元(b a >)。
第四章 随机变量的数字特征试题答案一、 选择(每小题2分)1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=0.5,D (X )=0.5? B. E (X )=0.5,D (X )=0.25 C. E (X )=2,D (X )=4? D. E (X )=2,D (X )=22、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D(Z )=? (??C?) A. 1 ?B. 3 C. 5? D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004? B. 0.04? C. 0.4? D. 44、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(?D ) A . D (X+Y )=D (X )+D (Y ) ?B . D (X+C )=D (X )+C C . D (X -Y )=D (X )-D (Y ) ?D . D (X -C )=D (X )5、设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤-<=4,142,122,0)(x x x x x F ,则E(X)=(D )A .31 ?B . 21 C .23?D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)31,12(~B Y ,则)1(+-Y X D =(C )A . 34 ?B . 37C . 323 ?D . 3267、设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,X 与Y 相互独立,则)43(--Y X D =(C )A . -13 ?B . 15C . 19 ?D . 238、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B ) A . 6 ?B . 22 C . 30 ?D . 469、设)31,10(~B X,则)(X E =(C )A . 31 ?B . 1C . 310 ?D . 1010、设)3,1(~2N X ,则下列选项中,不成立的是(B )A. E (X )=1?B. D (X )=3?C. P (X=1)=0?D. P (X<1)=0.5 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C )A .)(X D +)(Y D ?B . )(X D -)(Y DC .)(XD +)(Y D -2),cov(Y X ?D .)(X D +)(Y D +2),cov(Y X 12、设随机变量)21,10(~B X,)10,2(~N Y ,又14)(=XY E ,则X 与Y 的相关系数XY ρ=(D )A . -0.8 ?B . -0.16C . 0.16 ?D . 0.8 13、已知随机变量X 的分布律为25.025.012p P xX i-,且E (X )=1?,则常数x =( B)A . 2 ?B . 4C . 6 ?D . 814、设随机变量X 服从参数为2的指数分布,则随机变量X 的数学期望是(C ) A. -0.5 B. 0 C. 0.5 D. 215、已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--otherx e x12,则X 的均值和方差分别为(?D ) A .4)(,2)(==X D X E ?B . 2)(,4)(==X D X E C .21)(,41)(==X D X E ?D .41)(,21)(==X D X E 16则)(XY E =(B ) A .91- ?B . 0 C . 91 ?D . 31 17、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A . 2- ?B . 0 C .0.5 ?D 218、设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B(6,0.5),则E(X-Y)=( A)A .5.2- ?B . 0.5 C . 2 ?D . 519、设二维随机变量(X ,Y)的协方差cov(X ,Y)=61,且D(X)=4,D(Y)=9,则X 与Y 的相关系数XYρ为(?B ) A .2161 ?B . 361 C . 61 ?D . 1 20、设随机变量X 与Y 相互独立,且X ~N?(0,9),Y ~N?(0,1),令Z=X-2Y , 则D?(Z)=(D ) A . 5 ?B . 7 C . 11 ?D 13 21、设(X ,Y)为二维随机变量,且D?(X)>0,D?(Y)>0,则下列等式成立的是(B ) A . )()()(Y E X E XY E = ? B .)()(),cov(Y D X D Y X XY ⋅=ρC . )()()(YD X D Y X D +=+ ?D . ),cov(2)2,2cov(Y X Y X =22、设n X X X ,,,21Λ是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B )A . {}22εσεμn n X P ≥<- ?B .{}221εσεμn X P -≥<-C . {}221εσεμn X P -≤≥- ?D .{}22εσεμn n X P ≤≥-23、设随机变量X 的μ=)(X E ,2)(σ=X D ,用切比雪夫不等式估计{}≥<-σ3)(X E X P (C )A .91 ?B . 31 C . 98?D . 1 24、设随机变量 X 服从参数为0.5的指数分布,用切比雪夫不等式估计{}≤≥-32X P (C )A .91 ?B . 31 C . 94 ?D 21 25、已知随机变量X ~N(0,1),则随机变量Y=2X-1的方差为(D ) A . 1 ?B .2 C .3 ?D4 二、填空(每小题2分) 1、设X~)21,4(B ,则)(2X E =5 2、设E (X )=2,E (Y )=3,E (XY )=7,则cov (X ,Y )=1 3、已知随机变量X 满足1)(-=X E ,2)(2=X E ,则)(X D =1 4、设随机变量X ,Y 的分布列分别为 且X ,Y 相互独立,则E (XY )=2413-5、随机变量X 的所有可能取值为0和x ,且3.0}0{==X P ,1)(=X E ,则x =710 6、设随机变量X 的分布律为4.03.02.01.02101iP X -,则)(X D =17、设随机变量X 服从参数为3的指数分布,则)12(+X D =94 8、设二维随机变量);,;,(~),(222121ρσσμμN Y X ,且X 与Y 相互独立,则ρ=09、设随机变量序列ΛΛ,,,,21n X X X 独立同分布,且μ=)(i X E ,0)(2>=σi X D ,Λ,2,1=i ,则对任意实数x ,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→x n n X P n i i n σμ1lim =)(1x Φ-10、设随机变量X 具有分布51}{==k XP ,5,4,3,2,1=k ,则)(X E =3 11、设随机变量X 在区间(0,1)上服从均匀分布,Y=3X -2, 则E?(?Y?)=-0.5 12、已知随机变量X 的分布律为2.03.05.0501iP X -,则)}({X E X P <=0.813、已知E (X )= -1?,D (X )=3,则)23(2-X E =1014、设1X ,2X ,Y 均为随机变量,已知1),cov(1-=Y X ,3),cov(2=Y X ,则),2cov(21Y X X +=515、设)1,0(~N X ,)21,16(~B Y,且X ,Y 相互独立,则)2(Y X D +=816、将一枚均匀硬币连掷100次,则利用中心极限定理可知,正面出现的次数大于60的概率近似为0.0228 (附:Φ(2)=0.9772)17、设随机变量X?~?B (100,0.2),应用中心极限定理计算P{16?X ?24}=0.6826 附:Φ(1)=0.841318、设随机变量X ,Y 的期望和方差分别为E(X)=0.5,E(Y)=-0.5,D(X)=D(Y)=0.75,E(XY)=0,则X ,Y 的相关系数XY ρ=31 19、设随机变量X 的期望E?(X?)=2,方差D?(X?)=4,随机变量Y 的期望E?(Y)=4, D?(Y?)=9, 又E?(XY?)=10,则X ,Y 的相关系数XY ρ=31 20、设随机变量X 服从二项分布)31,3(B ,则)(2X E =35 三、计算:每小题5分1、某柜台做顾客调查,设每小时到达柜台的顾客数X 服从泊松分布,则)(~λP X ,若已知}2{}1{===X P X P ,且该柜台销售情况Y (千元),满足2212+=X Y 。
地大概率论与数理统计练习册第四章随机变量的数字特征答案第四章随机变量的数字特征§4.1数学期望§4.2方差二、计算下列各题1.设球直径的测量值在a,b上服从均匀分布,求球体积V的数学期望。
,a某b解设球的直径为某,其概率密度为f(某)ba0,其它某3则球的体积Yg(某),6b11E(Y)Eg(某)某3某4a6ba6ba4baaba2b224112.设随机变量某服从,上的均匀分布,yg某ln某,某0,求0,某0Yg(某)的数学期望和方差。
111,某某的概率密度f(某)22,0,其它解E(Y)Eg某ln某d某121ln2,2ln21,DYln221ln23。
424EY22ln2ln2某d某23.在长度为a的线段上任意取两个点M与N,试求线段MN长度的数学期望。
解:以线段起点为原点,某,Y分别表示点M与N的位置,∴某,YU(0,a),,某(0,a),f某(某)a0,其它11,y(0,a),某,y(0,a),f(某,y)a2,fY(y)a0,其它0,其它令Z某Y,则Z取值于(0,a),这时FZ(z)Pz某Yz1212d某dyzz22aaaz某yz∴22z,0zafZ(z)aa20,其它aE(Z)2121113z(2z)dz2(z2z)aaa2a3a02a2a。
a634.某射手每次命中目标的概率为0.8,连续射击一个目标,直至命中目标一次为止。
求射击次数的期望和方差。
解Ak“第K次命中目标”,K1,2…P某kP(A1A2…Ak1Ak)=P(A1)P(A2)…P(Ak1)P(Ak)(10.8)k10.8k1E(某)k0.2k10.80.8k0.2k1,k1取S(某)k某k1k1k某1某,21某1某k1某1,0.8122k1所以E(某)1.25,E(某)k0.20.80.8k20.2k1,2 0.8(10.2)k1k1取g(某)k2某k1k1某k1某k某2k11某1.875,1某,31某某<1故E某20.810.210.23从而D某E某2E某0.3125。
滨州学院《概率论与数理统计》(公共课)练习题第四章 随机变量的数字特征一、填空题1.已知随机变量X 的分布函数为:()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--=. 若 ,若,若,<若 1 , 1 10 , 0.7501 , 25.01 , 0 x x x x x F 则⎪⎭⎫ ⎝⎛+21X X D = . 2.设随机变量X 分布函数为()x F ,则随机变量⎪⎩⎪⎨⎧<-=>=01,,0 ,0,0,1 X X X Y 若若若的数学期望=EY .3.设随机变量X 服从参数为0.5的泊松分布,则随机变量)1(1X Y +=的数学期望EY = .4.假设无线电测距仪无系统误差,其测量的随机误差服从正态分布.已知随机测量的绝对误差以概率0.95不大于20米,则随机测量误差的标准差σ= .5.设随机变量X 和Y 独立同正态分布()21,0N ,则||Y X D -= .6.100次独立重复试验成功次数的标准差的最大值等于 .7.有若干瓶超过保质期的饮料,假设其中变质的期望瓶数为18瓶,标准差为4瓶.则变质饮料的瓶数X 的概率分布是 .8.假设随机变量X 和Y 的方差都等于1,X 和Y 的相关系数为0.25,则随机变量Y X U +=和Y X V 2-=的协方差为 .9.三名队员投篮的命中率分别为0.45、0.5和0.4,且相互独立,现在让每人各投一次,则三人总进球次数的期望是 .10.设随机变量X 服从参数为λ的指数分布,则}{DX X P >= .11.设随机变量X 在区间[-1,2]上服从均匀分布;随机变量 ⎪⎩⎪⎨⎧<-=>=.01,00,01X X X Y 若若若 则方差=DY .12. 随机变量X ,Y 的联合概率分布为则2X 和2Y 的协方差),(22Y X Cov = .13.设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则Cov(),1Y X = .二、选择题1.对于任意随机变量X 和Y ,如果)()(Y X D Y X D -=+,则( ).(A) X 和Y 独立; (B) X 和Y 不独立;(C) )()()(Y D X D XY D =; (D) )()()(Y E X E XY E =.2.设X 在区间[-1,1]上均匀分布,则X U arcsin 和X V arccos =的相关系数等于( ).(A) 1-; (B) 0; (C) 0.5; (D) 1.3.假设试验E 以概率p 成功,以概率p q -=1失败,分别以X 和Y 表示在n 次独立地重复试验中成功和失败的次数,则X 和Y 的相关系数ρ等于( ).(A)1-; (B) 0; (C) 1/2; (D) 1.4.设随机变量X 的方差存在,且记μ=EX ,则对任意常数C ,必有( ).(A )222)(C EX C X E -=-; (B )22)()(μ-=-X E C X E ;(C )22)()(μ-<-X E C X E ; (D )22)()(μ-≥-X E C X E5.设随机变量X 的概率密度为⎩⎨⎧<<+=其他010)(x bx a x f ,又X 的期望53=EX ,则X 的标准差为( ).(A )15011 ; (B )150121; (C )1511 ; (D )3013. 6.设随机变量X 和Y 的方差存在且为正,则DY DX Y X D +=+)(是X 和Y ( ).(A )不相关的充分条件,但不是必要条件 ;(B )独立的必要条件,但不是充分条件;(C )不相关的充要条件 ;(D )独立的充要条件 .7.设二维随机变量(X ,Y )服从二维正态分布,则随机变量Y X Y X -=+=ηξ与不相关的充要条件为( ).(A )EY EX =; (B )2222)()(EY EY EX EX-=-; (C )22EY EX =; (D )2222)()(EY EY EX EX +=+.8.将一枚硬币重复掷n 次,以X ,Y 分别表示正面向上和反面向上的次数,则X ,Y 的相关系数等于( ).(A )1-; (B )0; (C )1/2; (D )1.三、解答题1.自动生产线加工的零件的内径X (mm)服从正态分布)1,(μN ,内径小于10或大于12mm的为不合格品,其余为合格品.每件产品的成本为10元,内径小于10mm 的可再加工成合格品,尚需费用5元.全部合格品在市场上销售,每件合格品售价20元.问零件的平均内径μ取何值时,销售一个零件的平均销售利润最大?2.假设某季节性商品,适时地售出1kg 可以获利s 元,季后销售每千克净亏损t 元.假设一家商店在季节内该商品的销售量X (kg )是一随机变量,并且在区间),(b a 内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?3.独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p .假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a .4.假设n 个信封内分别装有发给n 个人的通知,但信封上各收信人的地址是随机填写的.以X 表示收到自己通知的人数,求X 的数学期望和方差.5.求}1|,min{|X E ,假设随机变量X 服从柯西分布,其概率密度为()()∞<<∞-+=x x x f 11)(2π. 6.假设一种电器设备的使用寿命X (单位:小时)是一随机变量,服从参数为λ=0.01的指数分布.使用这种电器每小时的费用为C 1=3元,当电器工作正常时每小时可获利润C 2=10元.此设备由一名工人操作,每小时报酬为C 3=4元,并且按约定操作时间为h 小时支付报酬.问约定操作时间h 为多少时,能使期望利润最大?7.一微波线路有两个中间站,其中任何一个出现故障都要引起线路故障.假设两个中间站无故障的时间都服从指数分布,平均无故障工作的时间相应为1和0.5(千小时),试求线路无故障工作时间X 的数学期望.8.设随机变量X ,Y 相互独立,并且都服从正态分布),(2σμN ,求随机变量},min{Y X Z =的数学期望.9.假设随机向量),(Y X 在以点)1,1(),0,1(),1,0(为顶点的三角形区域上服从均匀分布.试求随机变量Y X Z +=的方差.10.假设随机变量X ,Y 的数学期望都等于1,方差都等于2, 其相关系数为0.25,求随机变量Y X U 2+=和Y X V 2-=的相关系数ρ.11.假设随机变量1021,,,X X X 独立同分布,且方差存在.求随机变量 651X X X U +++= 和 1065X X X V +++=的相关系数ρ.12.对于任意二随机事件A 和B ,设随机变量⎩⎨⎧-=,不出现若出现若 ,1, ,1A A X ⎩⎨⎧-=;不出现若出现若 , 1 , ,1B B Y 试证明“随机变量X ,Y 不相关” 当且仅当“事件A 和B 独立”.13.现有10张奖券,其中8张为2元,2张为5元,今某人从中随机无放回地抽取3张,则此人得奖的金额的数学期望为多少.14.某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备. 假设各产品是否为次品是相互独立的,以X 表示一天中调整设备的次数,试求)(X E 和)(X D .15.有3只球, 4只盒子, 盒子的编号为1,2,3,4. 将球逐个独立地, 随机地放入4只盒子中去,以X 表示其中至少有一只球的最小号码(例如X =3表示第1号,第2号盒子是空的,第3号盒子至少有一个球), 试求)(X E 和)(X D .16.某射手每次射击的命中率为)10(<<p p , 他有6发子弹, 准备对一目标进行射击, 一旦打中或子弹打完, 他就立即转移, 求他在转移前平均射击的次数.17.设随机变量X 的概率密度函数为⎩⎨⎧<<=其他0102)(x x x f 试求)2|(|DX EX X P ≥-18.设随机变量X 的分布律为 ,3,2,1,32)(===n n X P n ,试求X Y )1(1-+=的数学期望与方差. 19.设随机变量X ,Y 相互独立,且X 服从[0,2]上的均匀分布,)1,1(~N Y ,求)(XY D20.设随机变量X 的分布列为若随机变量32,X Z X Y ==,(1)试求),(Z Y Cov ,并问Y ,Z 是否相关;(2)求二维随机变量(Y ,Z )的联合分布列;(3)试问Y ,Z 是否独立?为什么?21.已知二维随机变量(Y X ,)的概率密度为 ⎩⎨⎧<<++=其它01,0)1(),(y x xy y C y x f (1)试确定常数C ;(2)试问Y X ,是否相互独立?为什么?(3)试问Y X ,是否不相关?为什么?如果相关的话,其相关系数是多少.22.已知二维随机变量(Y X ,)的概率密度为⎩⎨⎧<≤<=其它01012),(2x y y y x f 试求:(1)2)(Y X E -(2)Y X ,的协方差.23.设n X X X ,,,21 为取自总体X 的一个样本,且2,σμ==DX EX 存在,X 为样本均值,试证明X X i -与X X j -的相关系数为n j i j i n ,,2,1,,,11 =≠--=ρ 24.设随机变量X 服从参数为0>λ(λ待定)的指数分布,)(x F 为其分布函数,若已知21)31(=F ,试确定最小值2)(min C X E C -是多少? 25.随机的向半圆)0(202>-<<a x ax y 抛掷一个点, 点落在任何一个区域的概率与该区域的面积成正比, 设原点与该点的连线与x 轴正向的夹角为θ, 试求θ的数学期望与方差.26.假设一电路由3个同种电子元件,其工作状况相互独立,无故障工作时都服从参数为0>λ的指数分布,当3个元件都无故障工作时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作时间T 的概率分布、数学期望与方差.27.编号为n ,,2,1 的n 张卡片中随机地抽取1张,如果抽出的卡片的号码为k ,则第2张卡片从编号为k ,,2,1 的k 张卡片中抽取.记X 为抽出的第2张卡片的号码,试证:43+=n EX . 28.设随机变量Z Y X ,,相互独立,且X 服从[0,6]上的均匀分布,Y 服从正态分布2(0,2)N , Z 服从参数为31的指数分布,试求2)(Z XY E -和)32(Z Y X D -+. 29.设Y X ,是相互独立,分别服从参数为0>λ和0>μ的指数分布,令⎩⎨⎧>≤=YX Y X Z 2,02,1. 求Z 的分布函数和方差. 30.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=其他002cos 21)(πx x x f ,对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望. 31.游客乘电梯从底层到电视塔顶层观光,电梯于每个整点的第5分钟、25分钟和55分钟从底层起行,假设一游客在早八点的第X 分钟到达底层候梯处,且X 在[0,60]上服从均匀分布,求该游客等候时间的数学期望.32.设n X X X ,,,21 i .i .d ),(~2σμN ,求)||(1∑=-n k k X XE ,其中∑==n k k n X X 1133.供电公司每月可以供应某工厂的电力服从[10,30](单位:万度)上均匀分布,而该工厂每月实际生产所需要的电力服从[10,20]上的均匀分布.如果工厂能从供电公司得到足够的电力,则每一万度电可创造30万元的利润,若工厂从供电公司得不到足够的电力,则不足部分由工厂通过其它途径自行解决,此时,每一万度电只能产生10万元的利润.问该工厂每月的平均利润为多大?34.对于任意二事件A B 与,0101<<<<P A P B (),(),))(1)(())(1)(()()()(B P B P A P A P B P A P AB P ---=ρ称为事件A B 与的相关系数.(1)证明事件A B 与独立的充分必要条件是其相关系数等于0;(2)利用随机变量相关系数的基本性质,证明1||≤ρ.35.设随机变量X 的具有连续的密度函数为)(x f ,令||)(a X E a h -=,试证明:当a 满足21)(=≤a X P 时(此时称a 为X 的中位数),)(a h 达到最小.。
概率论与数理统计作业班级 姓名 学号 任课教师第四章 随机变量的数字特征教学要求:一、理解随机变量数学期望和方差的概念,掌握数学期望和方差的性质与计算方法; 二、了解0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望及方差;三、了解矩、协方差、相关系数的概念及性质,并会计算.重点:数学期望与方差的概念和性质. 难点:相关系数.练习一 一维随机变量的数字特征1. 填空题(1)将三个球随机地放到5个盒子中去,则有球的盒子数的数学期望为 61/25 . (2)若随机变量X 的分布律{})2,1,0(!===k k BAk X P k且a X E =)(,则aeA -=,a B =.(3)设随机变量),(~p n B X ,且45.0)(,5.0)(==X D X E ,则5=n ,1.0=p .(4)已知连续型随机变量X 的概率密度为)(,1)(122+∞<<-∞=-+-x ex f x x π,则=)(X E 1 ,=)(X D 1/ 2 .(5)设随机变量X 表示10次重复独立射击命中目标的次数,且每次射击命中目标的概率为0.4,则=)(2X E ()()[]4.182=+XE X D .(6)设随机变量X 服从参数为λ)0(>λ的泊松分布,且已知1)]2)(1[(=--X X E ,则=λ 1 .2.在射击比赛中,每人射击4次,每次一发子弹,规定4弹全都不中得0分,只中一弹得15分,中2弹得30分,中3弹得55分,中4弹得100分.某人每次射击的命中率为0.6.求他期望得多少分?解:设X 表示射击4次得的分数,则X 的所有可能取值为.1005530150;;;;且 ()()()0256.06.016.0044=-==C X P , ()()()1536.06.016.0153114=-==C X P ,()()()3456.06.016.0302224=-==C X P , ()()()3456.06.016.0551334=-==C X P ,()()()1296.06.016.01000444=-==C X P ,所以()64.441296.01003456.0553456.0301536.0150256.00=⨯+⨯+⨯+⨯+⨯=X E3.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≥<-=.1,0,1,112x x x x f π求)(),(X D X E .解: ()()0111112112=⎥⎥⎦⎤⎢⎢⎣⎡--=-==--∞+∞-⎰⎰ππx dx x xdx x xf X E 由于()()[]dx x xx dx xxdx x f x XE ⎰⎰⎰-+--=-==-+∞∞-1210211222212121πππ21420=⨯+=ππ则()()()[]2122=-=X E XE X D4.已知随机变量X 的概率分布律为:()53)(),(),(22+XE X D X E X E 及求.解: ()()2.03.023.004.021-=⨯+⨯+⨯-==∑+∞=i i ip xX E ;()()8.23.023.004.02222122=⨯+⨯+⨯-==∑+∞=i i ip xXE ;()()()[]76.222=-=X E XE X D ;()()4.1358.23535322=+⨯=+=+XE XE .5.设随机变量X 的概率密度为()⎩⎨⎧≤>=-;0,0,0,x x e x f x 求(1)2Y X =的期望;(2)xeY 2-=的期望.解:(1) ()()()()[]212200=+-===∞++∞-+∞∞-⎰⎰x edx xedx x f x g Y E xx(2) ()()()31310302=⎥⎦⎤⎢⎣⎡-===+∞-+∞--+∞∞-⎰⎰x xxe dx eedx x f x g Y E6.对球的直径做近似测量,设其值均匀分布在区间),(b a 内,求球的体积的均值. 解:设球的直径为X ,球的体积为V ,则361X V π=,且()⎪⎩⎪⎨⎧<<-=其它;,0,1b x a ab x f于是()()()22324161ba b a dx ab x V E ba++=-⋅=⎰ππ.练习二 二维随机变量的数字特征1.填空题(1)设随机变量Y X ,相互独立,方差分别为6和3,则=-)2(Y X D 27 .(2)设随机变量Y X ,相互独立,0)()(==Y E X E ,1)()(==Y D X D ,则=+])[(2Y X E 2 .(3)设随机变量Y X ,相互独立,且)1,0(~),2,1(~N Y N X , 则随机变量32+-=Y X Z 的概率密度)(z f Z =()22325321⨯--⋅x e π.(4)设随机变量X 与Y 相互独立,且]2,0[~U X ,Y 服从参数为3的指数分布,则=)(XY E 31.(5)设二维随机变量Y X ,的相关系数为5.0=XY ρ,X 与Y 的方差分别为4)(=X D ,9)(=Y D ,则=-)32(Y X D 61 .2.设随机变量),(Y X 的概率密度为()⎩⎨⎧≤≤≤=其它;,0,10,12,2x y y y x f 求),(),(Y E X E)(),(),(XY E Y D X D 和)(22Y XE +.解: ()⎰⎰⎰==⋅=104100254412dx x dy y x dx X E x;()⎰⎰⎰==⋅=114253312xdx x dy y y dx Y E ()()()[]7522516454121521002222=-=⎪⎭⎫ ⎝⎛-⋅=-=⎰⎰⎰dx x dy y x dx X E XE X D x()()()[]251259512531251212222=-=⎪⎭⎫ ⎝⎛-⋅=-=⎰⎰⎰dx x dy y y dx Y E YE Y D x;()⎰⎰⎰==⋅=1521021312dx x dy y xy dx XY E x;()()()151652322222=+=+=+Y E X E YXE .3.设随机变量Y X ,相互独立,概率密度分别为()⎩⎨⎧≤≤=其它;,0,10,2x x x f X ⎩⎨⎧≤>=-;5,0,5,)(5y y e y f y Y求)(XY E .解:由于随机变量Y X ,相互独立, 则()()()()()dy yedx x dyy yf dx x xfY E X E XY E yY X⎰⎰⎰⎰+∞-+∞∞-+∞∞-⋅=⋅==15522()[]463213255=⨯=+-=+∞-ye y .4. 随机变量n X X X ,,,21 相互独立,并服从同一分布,数学期望为μ,方差为2σ, 求这些随机变量的算术平均值∑==ni i X nX 11的数学期望及方差.解:由于随机变量n X X X ,,,21 相互独立,且()μ=i X E , ()2σ=X D ,,3,2,1=i …,于是由性质得()()μμ=⨯==⎪⎭⎫⎝⎛=∑∑==n n X E nX nE X E ni ini i 11111,()()nn nX D nX nD X D ni ini i 222121111σσ=⨯==⎪⎭⎫⎝⎛=∑∑==.5.设连续型随机变量Y X ,相互独立,且均服从),21,0(N 求)(Y X E -.解:设Y X Z -=,由于Y X ,相互独立,且均服从),21,0(N 则Z 也服从正态分布,且()()()(),0=-=-=Y E X E Y X E Z E ()()(),12121=+=+=Y D X D Z D即Z ~()1,0N ,于是()()ππππ22222210222222=⎥⎥⎦⎤⎢⎢⎣⎡-====-+∞-∞+--∞+∞-⎰⎰z zze dz zedz ezZ E YX E .综合练习题1.甲乙两台机床生产同一种零件,在一天生产中的次品数分别记为Y X ,,已知Y X ,的概率分布分别下表所示.如果两台机床的产量相同,问哪台机床较好?解:由于()11.032.023.014.00=⨯+⨯+⨯+⨯=X E , ()9.0032.025.013.00=⨯+⨯+⨯+⨯=Y E则甲机床生产中的次品数的均值大于乙机床生产中的次品数,所以乙机床较好。
第 4 章随机变量的数字特征一、填空题1、设X为北方人的身高,Y 为南方人的身高,则“北方人比南方人高”相当于E( X ) E(Y)2、设X为今年任一时刻天津的气温,Y 为今年任一时刻北京的气温,则今年天津的气温变化比北京的大,相当于D(X) D(Y) .3、已知随机变量X 服从二项分布,且E(X ) 2.4, D(X) 1.44 ,则二项分布的参数n= 6 , p= .4、已知X服从(x ) 1 e x2 2x 1,则 . E(X)=1 , D(X)=1/2.5、设X的分布律为X 1 0 1 2P 1 1 1 1 8 4 2 8则 E(2X 1) 9/4 .6、设X ,Y相互独立,则协方差cov( X ,Y ) 0 .这时, X ,Y 之间的相关系数XY 0 .7 、若XY是随机变量 (X,Y)的相关系数,则 | XY| 1的充要条件是P Y aX b 1 .8、XY是随机变量 ( X ,Y ) 的相关系数,当XY 0时,X与Y 不相关,当| XY | 1 时,X 与 Y 几乎线性相关 .9、若D(X) 8, D(Y ) 4 ,且X ,Y相互独立,则 D (2X Y ) 36 .10、若a, b为常数,则D (aX b) a2 D ( X ) .11、若X ,Y相互独立,E( X ) 0, E(Y) 2 ,则 E(XY ) 0 .12、若随机变量X 服从[0,2 ]上的均匀分布,则E( X )π.13、若D(X) 25, D(Y ) 36, XY 0.4 ,则 cov( X ,Y ) 12 , D(X Y) 85,D ( X Y ) 37 .14、已知E( X ) 3,D(X) 5,则E(X 2)2 30 .15、若随机变量X 的概率密度为e x x 0,(x)x,则 E(2X ) 20 0E (e 2 X ) 1/3 .二、计算题1、五个零件中有 1 个次品,进行不放回地检查,每次取 1 个,直到查到次品为止。
概率论与数理统计 第四章 随机变量的数字特征练习题与答案详解(答案在最后)1.假定每个人生日在各个月份的机会是相同的,求三个人中生日在第一季度的人数的平均.2.100个产品中有5个次品,任取10个,求次品个数的数学期望与方差.3.设随机变量X 的概率密度为)(,e 21)(∞<<-∞=-x x p x试求数学期望EX 及方差DX .4.已知随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<≤=,,,,,,4140400)(x x x x x F 试求X 的数学期望EX 方差DX .5.对圆的直径作近似测量,设其值均匀地分布在[]b a ,内,求圆面积的数学期望.6.设随机变量X 概率密度为⎪⎩⎪⎨⎧≤≤=其它,,,,020cos )(πx x x f X试求随机变量DY X Y 的方差2=.7.设随机变量ξ只取非负整数值,其概率为{}0)1(1>+==+a a a k P k k,ξ是常数, 试求ξE 及ξD .8.设独立试验序列中,首次成功所需要的次数ξ服从的分布列为:其中q =9.若事件A 在第i 次试验中出现的概率为,i p 设μ是事件A 在起初n 次独立试验中的出现次数,试求μE 及μD .10.随机变量n ξξξ,,,21 独立,并服从同一分布,数学期望为,μ方差为2σ,求这些随机变量的算术平均值∑==ni i n 11ξξ的数学期望与方差.11.设μ是事件A 在n 次独立试验中的出现次数,在每次试验中,)(p A P =再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD .12.设随机变数ξ之概率分布如下:求: (1) ; ]]1[2[2+ξE (2) ])[(2ξξE E -.13.随机变量,)(~x f X⎪⎩⎪⎨⎧<<-≤≤=其它,,,,,,021210)(x x x x x f试计算n EX n (为正整数).14.随机变量aX Y p n B X e ),,(~=,求随机变量Y 的期望和方差. 15.某种产品每件表面上的疵点数服从泊松分布,平均每件上有8.0个疵点.规定疵点数不超过1个为一等品,价值10元,疵点数大于1不多于4为二等品,价值为8元,4个以上者为废品,求:)1( 产品的废品率;)2( 产品的平均价值.16.一个靶面由五个同心圆组成,半径分别为25,20,15,10,5厘米,假定射击时弹着点的位置为Z Y Z ,),(为弹着点到靶心的距离,且),(Y Z 服从二维正态分布,其密度为200222001),(y x ey x f +-=π,现规定弹着点落入最小的圆域为5分,落入其他各圆域(从小到大)的得分依次为4分,3分,2分,1分,求:)1( 一次射击的平均得分;)2( 弹着点到靶心的平均距离.17.若ξ的密度函数是偶函数,且∞<2ξE ,试证ξ与ξ不相关,但它们不相互独立.18.若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立.答案详解1.每个生日在第一季度的概率是41=p .设X 表示三个人中生日在第一季度的人数,则X 服从二项分布,,⎪⎭⎫⎝⎛B 413从而X 的平均为43413)(=⨯=X E2.5.0=EX ,11045=DX3.x -e 21为偶函数,⋅x x-e 21为奇函数,所以,由积分性质知0d e 21=⋅=-∞∞-⎰x x EX x(奇函数在对称区间上的积分值为零)=DX x x P X E x X d )()]([2⎰∞∞--=⨯=-∞∞-⎰x x xd e 212x x x d e 02-∞⎰)(d )(202x x x x --∞-=-=⎰ x x x d e 200⎰∞-+∞2d e 20==⎰∞-x x x 4.342==DX EX ,5.设圆的直径为随机变量X ,圆的面积为随机变量,Y 则24)(X X f Y π==,随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其它,,,,01)(b x a ab x p X , 于是)(12112 d 14d )()())(()(2232b ab a a b x ab x ab x x x p x f X f E Y E b aX ++=⋅-⋅=-⋅===⎰⎰∞∞-πππ6.2220π-=DY7.⎥⎦⎤⎢⎣⎡++=+⋅=∑∑∞=∞=+101)1(11)1(k k k k k a a k a a a k E ξ, 令,且,则10)1(<<=+p p a a ,211)1()1()(p p p p p p p kp k k kk -='-='=∑∑∞=∞= 故a aa a aaE =+-+⋅+=2)11(111ξ.采用同样的方法并利用a E =ξ得⎥⎦⎤⎢⎣⎡++=∑∞=k k a a k a E )1(11122ξ[]k k p k k a ∑∞=+-+=11)1(11 ∑∑∞=∞=-+++=11)1(1111k k k k p k k a kp a ,2322122)1(21)1(1)(1a a p a p a p p a p a p a p a k k +=-⋅++="⎥⎦⎤⎢⎣⎡-++=''++=∑∞=故)1()2()(2222a a a a a D +=-+=E -E =ξξξ 8.21pqD pE ==ξξ,9.设,21n μμμμ+++= 其中⎩⎨⎧=出现次试验若第出现次试验若第A i A i i ,0,1μ,则∑∑===E =ni i ni i p E 11μμ,由试验独立得诸i μ相互独立,从而知=μD )1(11i ni i ni i p p D -=∑∑==μ10.nD E 2,σξμξ== 11.事件A 出现奇数次的概率记为b ,出现偶数次的概率记为a ,则.,++=++=---3331122200n n n n n n n n q p C pq C b q p C q p C a 利用,,n n p q b a q p b a )(1)(-=-=+=+可解得事件A 出现奇数次的概率为 n n p p q b )21(2121])(1[21--=--=,顺便得到,事件A 出现偶数次的概率为n p a )21(2121-+=.η服从两点分布,由此得,{}{}===出现奇数次事件A P P 1ηn p )21(2121--, {}{}===出现偶数次事件A P P 0ηn p )21(2121-+, 所以,=ηE n p )21(2121--,=ηD ][)21(2121[n p --])21(2121n p -+n p 2)21(4141--=.12.(1) 117; (2) 46513.x x f x EX n n d )(⎰∞∞-=x x x x x x n n d )2(d 2110-⋅+⋅=⎰⎰12)212(012212+-+⋅++=+++n x n x n x n n n)21122212(2122+++-+-+++=++n n n n n n n )2)(1(222++-=+n n n 14.n a n a n a p q p q DY p q EY 22)e ()e ()e (+-+=+=, 15.(1) 0.0014; (2) 9.616.(1) 007.3; (2) π2517.设)(x f 是ξ的密度函数,则)()(x f x f =-,由)(x xf 是奇函数可得,0=ξE 从而0=ξξE E .又由于)(x f x x 是奇函数及,2∞<ξE 得ξξξξE E x x f x x E ===⎰∞∞-0d )(,故ξ与ξ不相关.由于ξ的密度函数是偶函数,故可选0>c 使得当{}10<<P <c ξ时,也有{}10<<P <c ξ,从而可得 {}{}{}{}c c P c P c P c P <<=<≠<<ξξξξξ,,其中等式成立是由于{}{}c c <⊂<ξξ,由此得不独立与ξξ.18.设⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛2,2,1, , 1q p d c p b a q :,:ηξ.作两个随机变量 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=**2211,0, ,0, q p d c d q p b a b :,:ηηξξ, 由ξ与η不相关即ηξξηE E E ⋅=得)(bd d b E E +--=**ξηξηηξbd dE bE E E +--=ξηηξ**=--=ηξηξE E d E b E ))((,而,,,}{)(}{)(} {))((d c P d c b a P b a E E d c b a P d c b a E -=-⋅-=-=-=-=--=********ηξηξηξηξ由上两式值相等,再由0))((≠--d c b a 得,,}{}{}{d c P b a P d c b a P -=-==-=-=****ηξηξ 即}{}{}{c P a P c a P =⋅====ηξηξ,. 同理可证}{}{}{d P a P d a P =⋅====ηξηξ,, }{}{}{c P b P c b P =⋅====ηξηξ,, }{}{}{d P b P d b P =⋅====ηξηξ,,从而ξ与η独立.。
第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为X01P1-p p由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z), 得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2 +1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1] +(-1)2×0.3+12×0.3 =5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2). 解答: 如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx ⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy ⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy ⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615. 习题13设X 和Y 相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY). 解答:解法一 由独立性.E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx∫0+∞ye -(y-5)dy=23×6=4.解法二 令z=y-5, 则E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx ⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X 服从泊松分布,且P(X=1)=P(X=2), 求E(X),D(X). 解答:由题设知,X 的分布律为P{X=k}=λkk!e -λ(λ>0)λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ; Array (C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:X的分布律为P{X=k}=λkk!e-λ,k=0,1,2,⋯,于是由已知条件得3×λ11!e-λ+2×λ22!e-λ=4×λ00!e-λ,\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2 (Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy=E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X 3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200, D(X)=∑i=15D(X i)=225+240+225+265+270=1225 .(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-12001225≤y-12001225=Φ(y-12001225)>0.99.查标准正态分布表得y-12001225=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。
第四章随机变量的数字特征1. (2016)设随机变量X 的概率密度函数2,01(),0,x x f x <<⎧=⎨⎩其他 则2()E X =0.5 .2. (2016)设随机变量X 与Y 满足()1,()2,()4,()9,0.5XY E X E Y D X D Y ρ=====, 则()E XY = 5 .3. (2016)设二维随机变量(,)X Y 的联合分布律为(1) 求,X Y 的边缘分布律; (2) 求,X Y 的相关系数XY ρ; (3) 判断,X Y 是否相关、是否独立? 解答: (1)X 与Y分分(2)2()()3E X E Y ==, 4()()9D X D Y ==, 2()9E XY =, 因此 故 1.2XY ρ===- …...................................4分(3)X 与Y 相关, 不独立. ...............................................................................2分4.(2016)设A 与B 是两个随机事件, 随机变量1,,0,A X A ⎧=⎨⎩出现不出现 1,,0,B Y B ⎧=⎨⎩出现不出现证明: 随机变量X 与Y 不相关的充分必要条件是A 与B 相互独立.证明: X故 ()()E X P A =, 同理, ()()E Y P B =.XY故 ()()E XY P AB =. ...........................................................................................3分XY ρ==因此 X 与Y 不相关0XY ρ⇔=()()()E XY E X E Y ⇔=()()()P AB P A P B ⇔= 即 X 与Y 不相关的充分必要条件是A 与B 相互独立. ..................................2分 5. (2015)设随机变量X 服从参数为2的泊松分布, 则期望2[(1)]E X +=11 . 6. (2015)设随机变量X 服从正态分布2(1,3)N , Y 服从正态分布2(0,4)N , X 与Y的相关系数12XY ρ=-, 设32X YZ =+, 求:(1) Z 数学期望()E Z 及方差()D Z ;(2) X 与Z 的协方差cov(,)X Z 及相关系数XZ ρ. 解答:(1)111()()()323E Z E X E Y =+=;()()32X YD Z D =+1111()()29432XY D X D Y ρ=++⋅⋅2211111342()34394322=⋅+⋅+⋅⋅⋅-⋅⋅=. …...................................…6分(2)cov(,)cov(,)32X YX Z X =+ 11cov(,)cov(,)32X X X Y =+11()32XY D X ρ=+21113(0322=⋅+-=. 故 0XZ ρ=. ............................................................................................……...4分 7. (2014)对球的半径做近似测量, 设测量值均匀分布在区间(2,3)上, 则球的体积的数学期望为653π . 8. (2014)设随机变量X 与Y 的方差均为4, 相关系数12XY ρ=, 2Z X Y =+, 则协方差cov(,)X Z = 8 .9. (2014)设X ,Y 为随机变量, 下列选项中, 不是()()()E XY E X E Y =的充要条件的是 D . (A) cov(,)0X Y = (B) ()D X Y DX DY -=+ (C) X 与Y 不相关(D) X 与Y 独立10. (2014)设连续型随机变量X 的概率密度函数为,01()0,Ax x f x <<⎧=⎨⎩,其他. (1)求常数A ;(2)设随机变量2Y X =, 求Y 的概率密度函数()Y f y ;(3)设随机变量11,,210,.2X Z X ⎧≥⎪⎪=⎨⎪<⎪⎩, 求()E Z .解答:(1)+-()d 1f x x ∞∞=⎰,即+d 1Ax x ∞-∞=⎰,得2A =. ……………………3分(2)法1:2y x =的反函数为x =(01,()0,X XYf f yf y⎧+<<⎪=⎨⎪⎩其它.0,01,0,y⎧+<<⎪=⎨⎪⎩其它.1,01,0,y<<⎧=⎨⎩其它.…………………4分法2:2(){}{}YF y P Y y P X y=≤=≤当0y≤时:()0YF y=,当01y<<时:(){dYF y P X x x y=≤≤==⎰,当1y≥时:()1YF y=.因此1,01,()()0,Y Yyf y F y<<⎧'==⎨⎩其它.……………………………………4分(3)11213{1}{}2d24P Z P X x x==≥==⎰,故3()4E Z=. ………………………3分11.(2014)设某厂生产的某种设备的寿命(单位: 年)X服从指数分布, 其概率密度函数为141e, 0,()40,0.xxf xx-⎧>⎪=⎨⎪≤⎩工厂规定: 若出售的设备在一年内损坏, 则可予以调换. 工厂售出一台设备后, 若在一年内未损坏, 厂方可获利100元, 若在一年内损坏, 厂方则亏损200元.试求厂方售出一台设备的平均利润.解答:设Y为厂方售出一台设备的利润,有114411{1}e d1e4xP X x--<==-⎰,……………………3分则Y平均利润111444()100e200(1e)300e200E Y---=--=-. (3)分。
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验 4次,每次随机地取 10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以 X 表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的)解:设表示一次抽检的 10件产品的次品数为1 —=.从而E ( X )=np =4X =的数学期望不存在. 解:3j—)不绝对收敛,由数学期望的定义知, X 的数学期望不存在.J求 E(X), E(X 2), E(3X 25).解 E (X )=(-2) +0 +2习题4-3 设随机变量 X 的分布律为P =P (调整设备)=P ( E >1)=1 — P ( E W 1)= 1 -[P ( E =0)+ P ( E =1)]查二项分布表因此X 表示一天调整设备的次数时4P ( X =1)= XX =, P ( X =2)=1 4P ( X =3)= XX =, P ( X =4)=X 〜巳4,. 4XX =2 4XX =P ( X =0)=XX习题4-2 设随机变量 X 的分布律为P X23j ,1,2,,说明X由于.13j (1)j 勺一P(X j(1)j1-)-,而级数2 j 1 j• 1 3j- 1)j1- P(X ( 1)j由关于随机变量函数的数学期望的定理,知E(X2)=(-2) 2小2 小2+0 +2E(3X2+5)=[32 2 2(-2) +5] +[3 0 +5] +[3 2+5]如利用数学期望的性质, 则有E(3X2+5)=3E(X2)+5=3 +5=E(X)2 E(X ) E(3X22 0.4 020.3 0.30.2,习题求(1)Y22(2) 0.4 225) 3E(X ) 54-4 设随机变量2X; (2)Y e 2X0.3 2.8,13.4X的概率密度为f(X)的数学期望.(I)E( Y) E(2X) 2xf(x)dx2( 0dx2( xe 0 e x dx) 2e(II )E(Y) E(e 2X) 2x x .e e dx3x dx习题4-5 设(X,Y)的概率密度为f(x,y)求 E(X), E(Y), E(XY), E(X2 Y2).解各数学期望均可按照E[g(X, Y)]在有限区域G:{(x,y)|0E(X)E(Y) 0,xe3xx 0,x 0dx)12y2, 0,y x 1, 其它g(x, y) f (x, y)dxdy 计算。
概率论与数理统计 第四章 随机变量的数字特征练习题与答案详解(答案在最后)1.假定每个人生日在各个月份的机会是相同的,求三个人中生日在第一季度的人数的平均.2.100个产品中有5个次品,任取10个,求次品个数的数学期望与方差.3.设随机变量X 的概率密度为)(,e 21)(∞<<-∞=-x x p x试求数学期望EX 及方差DX .4.已知随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<≤=,,,,,,4140400)(x x x x x F 试求X 的数学期望EX 方差DX .5.对圆的直径作近似测量,设其值均匀地分布在[]b a ,内,求圆面积的数学期望.6.设随机变量X 概率密度为⎪⎩⎪⎨⎧≤≤=其它,,,,020cos )(πx x x f X试求随机变量DY X Y 的方差2=.7.设随机变量ξ只取非负整数值,其概率为{}0)1(1>+==+a a a k P k k,ξ是常数, 试求ξE 及ξD .8.设独立试验序列中,首次成功所需要的次数ξ服从的分布列为:其中q =9.若事件A 在第i 次试验中出现的概率为,i p 设μ是事件A 在起初n 次独立试验中的出现次数,试求μE 及μD .10.随机变量n ξξξ,,,21 独立,并服从同一分布,数学期望为,μ方差为2σ,求这些随机变量的算术平均值∑==ni i n 11ξξ的数学期望与方差.11.设μ是事件A 在n 次独立试验中的出现次数,在每次试验中,)(p A P =再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD .12.设随机变数ξ之概率分布如下:求: (1) ; ]]1[2[2+ξE (2) ])[(2ξξE E -.13.随机变量,)(~x f X⎪⎩⎪⎨⎧<<-≤≤=其它,,,,,,021210)(x x x x x f试计算n EX n (为正整数).14.随机变量aX Y p n B X e ),,(~=,求随机变量Y 的期望和方差. 15.某种产品每件表面上的疵点数服从泊松分布,平均每件上有8.0个疵点.规定疵点数不超过1个为一等品,价值10元,疵点数大于1不多于4为二等品,价值为8元,4个以上者为废品,求:)1( 产品的废品率;)2( 产品的平均价值.16.一个靶面由五个同心圆组成,半径分别为25,20,15,10,5厘米,假定射击时弹着点的位置为Z Y Z ,),(为弹着点到靶心的距离,且),(Y Z 服从二维正态分布,其密度为200222001),(y x ey x f +-=π,现规定弹着点落入最小的圆域为5分,落入其他各圆域(从小到大)的得分依次为4分,3分,2分,1分,求:)1( 一次射击的平均得分;)2( 弹着点到靶心的平均距离.17.若ξ的密度函数是偶函数,且∞<2ξE ,试证ξ与ξ不相关,但它们不相互独立.18.若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立.答案详解1.每个生日在第一季度的概率是41=p .设X 表示三个人中生日在第一季度的人数,则X 服从二项分布,,⎪⎭⎫⎝⎛B 413从而X 的平均为43413)(=⨯=X E2.5.0=EX ,11045=DX3.x -e 21为偶函数,⋅x x-e 21为奇函数,所以,由积分性质知0d e 21=⋅=-∞∞-⎰x x EX x(奇函数在对称区间上的积分值为零)=DX x x P X E x X d )()]([2⎰∞∞--=⨯=-∞∞-⎰x x xd e 212x x x d e 02-∞⎰)(d )(202x x x x --∞-=-=⎰ x x x d e 200⎰∞-+∞2d e 20==⎰∞-x x x 4.342==DX EX ,5.设圆的直径为随机变量X ,圆的面积为随机变量,Y 则24)(X X f Y π==,随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其它,,,,01)(b x a ab x p X , 于是)(12112 d 14d )()())(()(2232b ab a a b x ab x ab x x x p x f X f E Y E b aX ++=⋅-⋅=-⋅===⎰⎰∞∞-πππ6.2220π-=DY7.⎥⎦⎤⎢⎣⎡++=+⋅=∑∑∞=∞=+101)1(11)1(k k k k k a a k a a a k E ξ, 令,且,则10)1(<<=+p p a a ,211)1()1()(p p p p p p p kp k k kk -='-='=∑∑∞=∞= 故a aa a aaE =+-+⋅+=2)11(111ξ.采用同样的方法并利用a E =ξ得⎥⎦⎤⎢⎣⎡++=∑∞=k k a a k a E )1(11122ξ[]k k p k k a ∑∞=+-+=11)1(11 ∑∑∞=∞=-+++=11)1(1111k k k k p k k a kp a ,2322122)1(21)1(1)(1a a p a p a p p a p a p a p a k k +=-⋅++="⎥⎦⎤⎢⎣⎡-++=''++=∑∞=故)1()2()(2222a a a a a D +=-+=E -E =ξξξ 8.21pqD pE ==ξξ,9.设,21n μμμμ+++= 其中⎩⎨⎧=出现次试验若第出现次试验若第A i A i i ,0,1μ,则∑∑===E =ni i ni i p E 11μμ,由试验独立得诸i μ相互独立,从而知=μD )1(11i ni i ni i p p D -=∑∑==μ10.nD E 2,σξμξ== 11.事件A 出现奇数次的概率记为b ,出现偶数次的概率记为a ,则.,++=++=---3331122200n n n n n n n n q p C pq C b q p C q p C a 利用,,n n p q b a q p b a )(1)(-=-=+=+可解得事件A 出现奇数次的概率为 n n p p q b )21(2121])(1[21--=--=,顺便得到,事件A 出现偶数次的概率为n p a )21(2121-+=.η服从两点分布,由此得,{}{}===出现奇数次事件A P P 1ηn p )21(2121--, {}{}===出现偶数次事件A P P 0ηn p )21(2121-+, 所以,=ηE n p )21(2121--,=ηD ][)21(2121[n p --])21(2121n p -+n p 2)21(4141--=.12.(1) 117; (2) 46513.x x f x EX n n d )(⎰∞∞-=x x x x x x n n d )2(d 2110-⋅+⋅=⎰⎰12)212(012212+-+⋅++=+++n x n x n x n n n)21122212(2122+++-+-+++=++n n n n n n n )2)(1(222++-=+n n n 14.n a n a n a p q p q DY p q EY 22)e ()e ()e (+-+=+=, 15.(1) 0.0014; (2) 9.616.(1) 007.3; (2) π2517.设)(x f 是ξ的密度函数,则)()(x f x f =-,由)(x xf 是奇函数可得,0=ξE 从而0=ξξE E .又由于)(x f x x 是奇函数及,2∞<ξE 得ξξξξE E x x f x x E ===⎰∞∞-0d )(,故ξ与ξ不相关.由于ξ的密度函数是偶函数,故可选0>c 使得当{}10<<P <c ξ时,也有{}10<<P <c ξ,从而可得 {}{}{}{}c c P c P c P c P <<=<≠<<ξξξξξ,,其中等式成立是由于{}{}c c <⊂<ξξ,由此得不独立与ξξ.18.设⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛2,2,1, , 1q p d c p b a q :,:ηξ.作两个随机变量 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=**2211,0, ,0, q p d c d q p b a b :,:ηηξξ, 由ξ与η不相关即ηξξηE E E ⋅=得)(bd d b E E +--=**ξηξηηξbd dE bE E E +--=ξηηξ**=--=ηξηξE E d E b E ))((,而,,,}{)(}{)(} {))((d c P d c b a P b a E E d c b a P d c b a E -=-⋅-=-=-=-=--=********ηξηξηξηξ由上两式值相等,再由0))((≠--d c b a 得,,}{}{}{d c P b a P d c b a P -=-==-=-=****ηξηξ 即}{}{}{c P a P c a P =⋅====ηξηξ,. 同理可证}{}{}{d P a P d a P =⋅====ηξηξ,, }{}{}{c P b P c b P =⋅====ηξηξ,, }{}{}{d P b P d b P =⋅====ηξηξ,,从而ξ与η独立.。