(全国版)2019版高考数学一轮复习 第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用增分练
- 格式:doc
- 大小:61.57 KB
- 文档页数:6
2.10导数的概念及运算[知识梳理]1.变化率与导数(1)平均变化率(2)导数2.导数的运算[诊断自测] 1.概念思辨(1)f ′(x 0)与(f (x 0))′表示的意义相同.( )(2)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( )答案 (1)× (2)× (3)× (4)×2.教材衍化(1)(选修A2-2P 6例1)若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( )A .4B .4xC .4+2ΔxD .4+2(Δx )2答案 C解析 Δy =(1+Δy )-1=f (1+Δx )-f (1)=2(1+Δx )2-1-1=2(Δx )2+4Δx ,∴错误!=2Δx +4,故选C.(2)(选修A2-2P 18T 7)f (x )=cos x 在错误!处的切线的倾斜角为________. 答案错误!解析 f ′(x )=(cos x )′=-sin x ,f ′错误!=-1, tan α=-1,所以α=3π4. 3.小题热身(1)(2014·全国卷Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.3答案D解析y′=a-错误!,当x=0时,y′=a-1=2,∴a=3,故选D.(2)(2017·太原模拟)函数f(x)=x e x的图象在点(1,f(1))处的切线方程是________.答案y=2e x-e解析∵f(x)=x e x,∴f(1)=e,f′(x)=e x+x e x,∴f′(1)=2e,∴f(x)的图象在点(1,f(1))处的切线方程为y -e=2e(x-1),即y=2e x-e.题型1导数的定义及应用错误!已知函数f(x)=错误!+1,则错误!错误!的值为()A.-错误! B.错误! C.错误!D.0用定义法.答案A解析由导数定义,错误!错误!=-错误!错误!=-f′(1),而f′(1)=错误!,故选A。
第11节导数的简单应用课时训练练题感提知能【选题明细表】A组一、选择题1.函数f(x)=4x3-3x2-6x+2的极小值为( B )(A)3 (B)-3 (C)(D)-解析:f′(x)=12x2-6x-6=6(x-1)(2x+1),因此f(x)在(-∞,-),(1,+∞)上为增函数,在(-,1)上为减函数,所以函数f(x)在x=1处取到极小值f(1)=-3.故选B.2.(2013广东省六校质检)已知y=x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值范围是( D )(A)b<-1或b>2 (B)b≤-1或b≥2(C)-1<b<2 (D)-1≤b≤2解析:函数y=x3+bx2+(b+2)x+3是R上的增函数,即为其导函数y′=x2+2bx+b+2≥0,x∈R恒成立,所以Δ=4b2-4(b+2)≤0,解得-1≤b≤2,故选D.3.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于( C )(A)11或18 (B)11(C)18 (D)17或18解析:∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,∴f(1)=10,且f′(1)=0,即解得或而当时,函数在x=1处无极值,故舍去.∴f(x)=x3+4x2-11x+16,∴f(2)=18.故选C.4.函数f(x)=x+2cos x在[0,]上取得最大值时x的值为( B )(A)0 (B)(C)(D)解析:由于f′(x)=1-2sin x,令f′(x)=0得,sin x=,又x∈[0,],所以x=.且f()=+,又f(0)=2,f()=,所以f()为最大值.故选B.5.(2013济宁模拟)若函数h(x)=2x-+在(1,+∞)上是增函数,则实数k的取值范围是( A )(A)[-2,+∞) (B)[2,+∞)(C)(-∞,-2] (D)(-∞,2]解析:因为h′(x)=2+,若h(x)在(1,+∞)上是增函数,则h′(x)≥0在(1,+∞)上恒成立,故2+≥0恒成立,即k≥-2x2恒成立.又x>1,∴-2x2<-2,因此,需k≥-2,故选A.6.(2013湛江毕业班调研)已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c等于( A )(A)-2或2 (B)-9或3(C)-1或1 (D)-3或1解析:∵y′=3(x+1)(x-1),∴当x=-1或x=1时取得极值,由题意得f(1)=0或f(-1)=0,即c-2=0或c+2=0,解得c=2或c=-2.故选A.7.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为( D )(A)(B) (C)+1 (D)-1解析:f′(x)==,当x>时,f′(x)<0,f(x)单调递减,当-<x<时,f′(x)>0,f(x)单调递增,当x=时,令f(x)==,=<1,不合题意.∴f(x)max=f(1)==,a=-1,故选D.二、填空题8.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为.解析:∵f′(x)=6x2-12x=6x(x-2),∴f(x)在(-2,0)上单调递增,在(0,2)上单调递减,因此,当x=0时,f(x)取得最大值,即f(0)=m=3,然而f(-2)=-37,f(2)=-5,因此f(x)min=f(-2)=-37.答案:-379.已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m= . 解析:由已知得,m2-4=0,∴m=±2.若g(x)在(-∞,+∞)内单调递减,则g′(x)≤0恒成立,即-3x2+4x+m≤0恒成立,亦即3x2-4x-m≥0恒成立.∴Δ=16+12m≤0,解得m≤-,故m=-2.答案:-210.函数f(x)=x3+3ax2+3[(a+2)x+1]有极大值又有极小值,则a的取值范围是.解析:∵f′(x)=3x2+6ax+3(a+2),令f′(x)=0得,x2+2ax+a+2=0,若f(x)有极大值和极小值,则方程x2+2ax+a+2=0有两个不等实数根,∴Δ=4a2-4(a+2)>0.解得a>2或a<-1.答案:(-∞,-1)∪(2,+∞)11.做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积的价格为b元,当造价最低时,锅炉的底面直径与高的比为.解析:设圆柱底面半径为R,高为h,则V=πR2h,则总造价y=2πR2a+2πRhb=2πR2a+2πRb·=2πaR2+,故y′=4πaR-,令y′=0得=.故当=时y取最小值.答案:三、解答题12.(2013浙江五校联考)已知函数f(x)=x3+ax2+bx+c(x∈[-1,2]),且函数f(x)在x=1和x=-处都取得极值.(1)求a,b的值;(2)求函数f(x)的单调递增区间.解:(1)由于f′(x)=3x2+2ax+b,依题意知,f′(1)=0且f′(-)=0,所以解得(2)由(1)知,f(x)=x3-x2-2x+c,f′(x)=3x2-x-2=(3x+2)(x-1).f′(x)>0得,x>1或x<-.又x∈[-1,2],所以f(x)的单调增区间为[-1,- ),(1,2].13.(2013汕头市金山中学第一学期期中考试)某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:实际销售价x(元)每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系:Q=(1)求总利润(利润=销售额-成本)y(元)与实际销售价x(元)的函数关系式;(2)试问:当实际销售价为多少元时,总利润最大.解:(1)依题意得y==(2)由(1)得,当5<x<7时,y=39·(2x3-39x2+252x-535)y′=234(x2-13x+42)=234(x-6)(x-7),当5<x<6时,y′>0,y=f(x)为增函数,当6<x<7时,y′<0,y=f(x)为减函数,所以f(x)max=f(6)=195.当7≤x<8时,y=6(33-x)∈(150,156],当8≤x≤13时,y=-10(x-9)2+160,当x=9时,y max=160.综上知,当x=6时,总利润最大,最大值为195元.14.设函数f(x)=a2ln x-x2+ax,a>0.(1)求f(x)的单调区间;(2)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.(注:e为自然对数的底数)解:(1)因为f(x)=a2ln x-x2+ax,其中x>0,所以f′(x)=-2x+a=-.由于a>0,所以f(x)的单调增区间为(0,a),单调减区间为(a,+∞).(2)由题意得f(1)=a-1≥e-1,即a≥e.由(1)知f(x)在[1,e]内单调递增,要使e-1≤f(x)≤e2对x∈[1,e]恒成立.只要解得a=e.B组15.(2013潮州市质检)定义域为R的奇函数f(x),当x∈(-∞,0)时,f(x)+xf′(x)<0恒成立,若a=3f(3),b=(logπ3)·f(logπ3),c=-2f(-2),则( A )(A)a>c>b (B)c>b>a(C)c>a>b (D)a>b>c解析:设g(x)=xf(x),依题意得g(x)是偶函数.当x∈(-∞,0)时,f(x)+xf′(x)<0恒成立,即g′(x)<0恒成立,故g(x)在(-∞,0)上单调递减,则g(x)在(0,+∞)上单调递增,a=3f(3)=g(3),b=(logπ3)·f(logπ3)=g(logπ3),c=-2f(-2)=g(-2)=g(2).又logπ3<1<2<3,故a>c>b.故选A.16.(2013中山市期末统考)已知函数f(x)的导数f′(x)=a(x+1)(x-a), 若f(x)在x=a处取得极大值,则a的取值范围为.解析:若a>0时,则x∈(-1,a)时,f′(x)<0,f(x)单调递减;x∈(a,+∞)时,f′(x)>0,f(x)单调递增,所以f(x)在x=a处取得极小值,不适合题意,舍去.若-1<a<0时,则x∈(-1,a)时,f′(x)>0,f(x)单调递增;x∈(a,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)在x=a 处取得极大值,适合题意.若a=-1时,函数没有极值点,不适合题意.若a<-1时,则x∈(-∞,a)时,f′(x)<0,f(x)单调递减;x∈(a,-1)时,f′(x)>0,f(x)单调递增,所以f(x)在x=a处取得极小值,不适合题意.故适合题意的a的取值范围是-1<a<0.答案:(-1,0)。
(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第11讲导数在研究函数中的应用学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第2章函数、导数及其应用第11讲导数在研究函数中的应用学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第11讲导数在研究函数中的应用学案的全部内容。
第11讲导数在研究函数中的应用板块一知识梳理·自主学习[必备知识]考点1 函数的导数与单调性的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.考点2 函数的极值与导数1.函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,且f′(a)=0,而且在x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值;2.函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,且f′(b)=0,而且在x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.考点3 函数的最值与导数1.函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.2.求y=f(x)在[a,b]上的最大(小)值的步骤(1)求函数y=f(x)在(a,b)内的极值.(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[必会结论]1.若函数f(x)的图象连续不断,则f(x)在[a,b]内一定有最值.2.若函数f(x)在[a,b]内是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在开区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.[考点自测]1.判断下列结论的正误.(正确的打“√",错误的打“×")(1)函数y=错误!x2-ln x的单调减区间为(-1,1).()(2)在函数y=f(x)中,若f′(x0)=0,则x=x0一定是函数y=f(x)的极值.()(3)函数的极大值不一定比极小值大.( )(4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()答案(1)×(2)×(3)√(4)√2.[课本改编]函数y=x2(x-3)的单调递减区间是( )A.(-∞,0) B.(2,+∞)C.(0,2)D.(-2,2)答案C解析y′=3x2-6x,由y′<0,得0<x<2。
重点强化课(一)函数的图像与性质(对应学生用书笫26页)[复习导读]函数是中学数学的核心概念,函数的图像与性质既是中学数学教学的重点,又 是高考考查的重点与热点,题型以选择题、填空题为主,既重视三基,又注重思想方法的考 查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数 与方程思想、数形结合思想、分类讨论思想的应用意识.重点1函数图像的应用1 COS n X. 0, ~»例11己知为偶函数,当时,f^x )=< 2x —L 十 gfd —的解集为()I 3 当 X>-时,令 f\x ) =2x — 1W ㊁,解得-1 Q故有§£/0才因为心是偶函数,所以的解集为一扌,—扣片,彳,故 心一1)諾的解集为[母题探究1]在本例条件下,若关于X 的方程fg=k 有2个不同的实数解,求实数斤的则不等式当0WxW*时,令f3=cos “W ,解得是€;取值范围.[解]由函数代力的图像(图略)可知,当Q0或Q1时,方程fXx) =k 有2个不同的实 数解,即实数&的取值范圉是或Q1.[母题探究2]在本例条件下,若函数y=f(x)~k\x\恰有两个零点,求实数£的取值范围. [解]函数y= f^x) —k\x\恰有两个零点,即函数y= f(x)的图像与y=k\x\的图像恰有 两个交点,借助函数图像(图略)可知斤$2或斤=0,即实数斤的取值范围为斤=0或k22. [规律方法]1.利用函数的图像研究函数的性质,一定要注意其对应关系,如:图像的左 右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.2. 有关方程解的个数问题常常转化为两个熟悉的函数图像的交点个数;利用此法也可市 解的个数求参数值或范圉.3. 有关不等式的问题常常转化为两个函数图像的上、下关系来解.[对点训练]已知函数/U)的图像是圆/+/=2上的两段弧,如图1所示,则不等式 f(x) >/'(-%) 一2/ 的解集是 ___________________ .【导学号:00090046](-l,0)U (l,、但][由图像可知,函数玖方为奇函数,故原不等式可等价转化为fg_x,在同一直角坐标系中分别画出y=f{x)与尸一JV 的 图像,由图像可知不等式的解集为(-1,0) U (l,、但].]重点2两数性质的综合应用⑴(2017・石家庄质检(二))下列函数屮,既是偶函数又在(0, +oo)上单调递增的是(B. y=lg %C. y=\x\—l (2)已知fd)是定义在R 上的偶函数,且在区问(一g, 0)上单调递增.若实数々满足代2“角度1 单调性与奇偶性结合A. y=~)>f(—德),则日的取值范围是()(1)C (2)C [(1)函数丄是奇函数,排除A ;函数y=lg%既不是奇函数,也不是偶函X1是偶函数,且在(0, +8)上单调递增,故选C. ⑵因为是定义在R 上的偶函数,且在区间(一IO)上单调递增,所以 且 f(0 在(0, + oo)上单调递减.由 f(2“H) > f(—£), f(-y/2) = f(y/2)可得 2ia -11<V2,1 1 Q即 | a~ 1 | 所以7;V a<~ ] 角度2奇偶性与周期性结合若函数 f(x) =asin 2x+ Man x+1,且 f( —3)=5,则 f (兀+3)= _.—3 [令g(x)=wsin 2x+ Z?tan x,则g(x)是奇函数,且最小正周期是兀,由/( —3)= g(_3) + l=5,得 &(一3)=4,则 &(3) = —&(一3) = —4,则 f(兀+3) =g5+3)+1 = g(3)+l = _4+l = _3.] 角度3单调性、奇他性与周期性结合已知定义在R 上的奇函数代劝满足f(x —4)= —f(x),且在区间[0,2]上是增函 数,贝虹 )【导学号:00090047】A. f(—25) Vf(ll) Vf(80)B. /(80)</(11)</(-25)C. f(ll) Vf(80) Vf(—25)D. /(-25)<A8O)</'(11)D [因为 f(x)满足 f(x —4) = — /(%),所以fO-8) =/U),所以函数fd)是以8为周期的周期函数,则代一25) =f( — l), A80) =f(o), All) = A3).由fd)是定义在R 上的奇函数,且满足fd —4)= —f(0,得A11)=A3)=-A-1) = Al).因为代方在区间[0, 2]上是增函数,f(0在R 上是奇函数,所以fd)在区间[一2, 2]上是增函数,所以 A-lXAOXAl),即 /(-25)</(80)</(11).]数,排除B ; 当 xG (0, + °°)时,排除D ;函数y=\x\ — 2-2 2-3 函数y= ”单调递减,[规律方法]函数性质综合应用问题的常见类型及解题方法(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图像的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化口变量所在的区间,然后利用奇偶性和单调性求解.。
(全国版)2019版高考数学一轮复习 第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用增分练1.函数y =x 4-4x +3在区间[-2,3]上的最小值为( ) A .72 B .36 C .12 D .0答案 D解析 因为y ′=4x 3-4,令y ′=0即4x 3-4=0,解得x =1.当x <1时,y ′<0,当x >1时,y ′>0,在[-2,3]上只有一个极值点,所以函数的极小值为y |x =1=0,所以y min =0.2.[2018·南阳模拟]已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞)B .(0,1)和(2,+∞) C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)答案 C解析 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12,(2,+∞). 3.[2018·无锡模拟]设函数f (x )=x e x,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点 答案 D解析 f ′(x )=(x +1)e x,当x <-1时,f ′(x )<0,当x >-1时,f ′(x )>0,所以x =-1为f (x )的极小值点.故选D.4.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上恰好有( )A .0个零点B .1个零点C .2个零点D .3个零点答案 B解析 ∵f ′(x )=x 2-2ax ,且a >2, ∴当x ∈(0,2)时,f ′(x )<0, 即f (x )在(0,2)上是单调减函数. 又∵f (0)=1>0,f (2)=113-4a <0,∴f (x )在(0,2)上恰好有1个零点.故选B.5.[2018·珠海模拟]设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )+g (a )>g (x )+f (a )D .f (x )+g (b )>g (x )+f (b ) 答案 C解析 ∵f ′(x )>g ′(x ),∴[f (x )-g (x )]′>0. ∴f (x )-g (x )在[a ,b ]上是增函数. ∴f (a )-g (a )<f (x )-g (x ). 即f (x )+g (a )>g (x )+f (a ).6.已知函数f (x )=kx 3+3(k -1)x 2-k 2+1(k >0).(1)若f (x )的单调递减区间是(0,4),则实数k 的值为________; (2)若f (x )在(0,4)上为减函数,则实数k 的取值范围是________. 答案 (1)13 (2)⎝ ⎛⎦⎥⎤0,13 解析 (1)f ′(x )=3kx 2+6(k -1)x ,由题意知f ′(4)=0,解得k =13.(2)由f ′(x )=3kx 2+6(k -1)x ≤0并结合导函数的图象可知,必有-k -k≥4,解得k ≤13.又k >0,故0<k ≤13.7.若函数f (x )的定义域为R ,且满足f (2)=2,f ′(x )>1,则不等式f (x )-x >0的解集为________.答案 (2,+∞)解析 令g (x )=f (x )-x , ∴g ′(x )=f ′(x )-1.由题意知g ′(x )>0,∴g (x )为增函数. ∵g (2)=f (2)-2=0,∴g (x )>0的解集为(2,+∞).8.[2018·西宁模拟]若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-19,+∞ 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.9.[2018·广西模拟]已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.解(1)由题意知f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)随x的变化情况如下:所以,f(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上单调递减,在[k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.10.[2018·金华模拟]函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)f′(x)=a+ln x+1,f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,即f′(x) =ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.∴f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为f(x)=m+1在(0,+∞)内有两个不同的根,也可转化为y=f(x)与y=m+1的图象有两个不同的交点,由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1即m>-2,①当0<x<1时,f(x)=x(-1+ln x)<0;当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞(或者举例:当x=e2时,f(e2)=e2>0).如图,由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1.故m的取值范围为(-2,-1).[B 级 知能提升]1.[2016·四川高考]已知a 为函数f (x )=x 3-12x 的极小值点,则a =( ) A .-4 B .-2 C .4 D .2答案 D解析 由题意可得f ′(x )=3x 2-12=3(x -2)(x +2), 令f ′(x )=0,得x =-2或x =2, 则f ′(x ),f (x )随x 的变化情况如下表:2.[2018·山东师大附中检测]已知函数f (x )=x e x,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-1e ,+∞ B .[-1,+∞)C .[-e ,+∞) D.⎣⎢⎡⎭⎪⎫-1e ,+∞答案 D解析 f ′(x )=e x+x e x=(1+x )e x,当x >-1时,f ′(x )>0,函数单调递增;当x <-1时,f ′(x )<0,函数单调递减.所以当x =-1时,f (x )取得极小值即最小值,f (-1)=-1e .函数g (x )的最大值为a .若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则有g (x )的最大值大于或等于f (x )的最小值,即a ≥-1e.故选D.3.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.答案 (1,2)解析 ∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,∴所求不等式变形为f (1-x )<f (x 2-1),∵导函数值恒大于0,∴原函数在定义域上单调递增,又f (x )的定义域为(-1,1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).4.[2018·沈阳模拟]已知函数f (x )=(2x -4)e x +a (x +2)2.(a ∈R ,e 为自然对数的底数)(1)当a =1时,求曲线y =f (x )在点P (0,f (0))处的切线方程; (2)当x ≥0时,不等式f (x )≥4a -4恒成立,求实数a 的取值范围. 解 (1)当a =1时,f (x )=(2x -4)e x+(x +2)2, 则f ′(x )=(2x -2)e x+2x +4,f ′(0)=-2+4=2. 又因为f (0)=-4+4=0,所以曲线y =f (x )在点P (0,f (0))处的切线方程为y -0=2(x -0),即y =2x . (2)因为f ′(x )=(2x -2)e x+2a (x +2),令g (x )=f ′(x )=(2x -2)e x+2a (x +2), 有g ′(x )=2x ·e x+2a 且函数y =g ′(x )在[0,+∞)上单调递增,当2a ≥0时,有g ′(x )≥0,此时函数y =f ′(x )在[0,+∞)上单调递增,则f ′(x )≥f ′(0)=4a -2.①若4a -2≥0即a ≥12时,函数y =f (x )在[0,+∞)上单调递增,则f (x )min =f (0)=4a -4,不等式恒成立;②若4a -2<0即0≤a <12时,则在[0,+∞)上存在f ′(x 0)=0,此时函数y =f (x )在x ∈(0,x 0)上单调递减,在(x 0,+∞)上单调递增且f (0)=4a -4, 所以不等式不可能恒成立,故不符合题意.当2a <0时,有g ′(0)=2a <0,则在[0,+∞)上存在g ′(x 1)=0,此时g (x )在(0,x 1)上单调递减,在(x 1,+∞)上单调递增,所以函数y =f ′(x )在x ∈[0,+∞)上先减后增.又f ′(0)=-2+4a <0,则函数y =f (x )在x ∈[0,+∞)上先减后增. 又f (0)=4a -4,所以不等式不可能恒成立,故不符合题意.综上所述,实数a 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥12. 5.已知函数f (x )=12ax 2+ln x ,其中a ∈R .(1)求f (x )的单调区间;(2)若f (x )在(0,1]上的最大值是-1,求a 的值.解 (1)f ′(x )=ax 2+1x,x ∈(0,+∞).当a ≥0时,f ′(x )>0,从而函数f (x )在(0,+∞)上单调递增; 当a <0时,令f ′(x )=0,解得x =-1a 或x =--1a(舍去).此时,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝⎛⎭⎪⎫0,-1a ,单调减区间是⎝⎛-1a,+∞ ).(2)①当a ≥0时,由(1)得函数f (x )在(0,1]上的最大值为f (1)=a2.令a2=-1,得a =-2,这与a ≥0矛盾,不合题意. ②当-1≤a <0时,-1a ≥1,由(1)得函数f (x )在(0,1]上的最大值为f (1)=a 2. 令a2=-1,得a =-2,这与-1≤a <0矛盾,不合题意.③当a <-1时,0< -1a<1,由(1)得函数f (x )在(0,1]上的最大值为f ⎝⎛⎭⎪⎫-1a .令f ⎝⎛⎭⎪⎫-1a =-1,解得a =-e ,符合a <-1.综上,当f (x )在(0,1]上的最大值是-1时,a =-e.。