宝山区09学年第一学期初三期末数学试卷2[1]
- 格式:doc
- 大小:784.00 KB
- 文档页数:14
虹口区2009学年度第一学期初三年级数学学科期终教学质量监控测试卷(满分150分,考试时间100分钟) 2010.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.如果:1:2x y =,那么下列各式中不成立的是( )A .32x y y += ; B . 12y x y -=; C .21y x =; D .1213x y +=+.2.在锐角ABC ∆中,如果各边长都扩大2倍,则A ∠的正弦值( ) A .扩大2倍; B .缩小2倍; C .大小不变; D .不能确定.3.下列抛物线中,过原点的抛物线是( )A .221y x =-;B .22y x x =+;C .22(1)y x =+;D .221y x =+.4. 把抛物线2y x =-向上平移3个单位,则平移后抛物线的解析式为( )A .2(3)y x =--;B .2(3)y x =-+;C .23y x =--;D .23y x =-+.5.如图1,已知123////l l l ,如果:2:3AB BC =,4DE =,则EF 的长是( )A .103; B .6; C .4; D .25. 6.下列命题中,正确的是( )A .如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线一定平行于三角形的第三边;B .不同向量的单位向量的长度都相等,方向也都相同;C .一般来说,一条线段的黄金分割点有两个;D .相似三角形的中线的比等于相似比.二、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置]7. 抛物线242y x x =-+与y 轴的交点坐标是__________.8. 如果抛物线2(1)4y k x x =-+的开口向下,那么k 的取值范围是_____________. 9. 已知1sin 2α=,那么锐角α的度数是_____________. 10. 在△ABC 中,90=∠C ,4AB =,1AC = , 则cos A 的值是 .11. 在△ABC 中,90=∠C ,1cot 2B =,2BC =,则AC 的长是____________. 12. 在ABC ∆中,中线AD 与中线BE 相交于点G , 若6AD =,则GD = . 13. 已知ABC ∆∽A B C '''∆,顶点A 、B 、C 分别与A '、B '、C '对应,且55A ∠=︒,75B ∠=︒,则C '∠的度数是___________.14. 如果两个相似三角形的面积的比等于1∶9,那么它们的对应边上的高的比等于 .15.如图2,已知在平行四边形ABCD 中,点E 、F 分别在线段 BD 、AB 上,EF ∥AD ,DE ∶EB =2∶3,EF =9,那么BC 的长为 .16. 如图3,一辆汽车沿着坡度3:1=i 的斜坡向下行驶50米,则它距离地面的垂直高度下降了 米.17.某抛物线型拱桥的示意图如图4,已知该抛物线的函数表达式为211248y x =-+,为保护该桥的安全,在该抛物线上的点E 、F 处要安装两盏警示灯(点E 、F 关于y 轴对称),图3C图2 A B CE 3l2l 图1D 1lF这两盏灯的水平距离EF 是24米,则警示灯F 距水面AB 的高度是______________米.18. 将三角形纸片(ABC ∆)按如图5所示的方式折叠,使点B 落在边AC 上,记为点B ',折痕为EF .已知2AB AC ==,3cos 4C =,若以点B '、F 、C 为顶点的三角形与ABC ∆相似,那么BF 的长度是 __.三、解答题(本大题共7题,满分78分) 19.(本题满分10分)求值:30cot )45cot 21(60cos 30tan 360sin -⋅+20.(本题满分10分)已知:如图6,在ABC ∆中,AB AC =,D 为CB 延长线上一点,E 为BC 延长线上一点,且满足2AB DB CE =⋅.求证:ADB ∆∽EAC ∆.DE图6yO图4图5A21.(本题满分10分)如图7,已知平行四边形ABCD 中,点E 、F 分别是边AD 、BC 的中点,CE 、AF 分别与对角线BD 相交于点G 、H .设AB a =,AD b =,分别求向量AF 、DH 关于a 、b 的分解式.22.(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知二次函数223y x x =+-,解答下列问题:(1)用配方法将该函数解析式化为2()y a x m k =++的形式;(2)指出该函数图像的开口方向、顶点坐标、对称轴,以及它的变化情况.23.(本题满分12分)如图8,沙泾河的一段两岸a 、b 互相平行,C 、D 是河岸a 上间隔60米的两个电线杆.小明在河岸b 上的A 处测得35DAB ∠=︒,然后沿河岸b 走了120米到达B 处,测得70CBF ∠=︒,求该段河流的宽度CF 的值.(结果精确到0.1米,计算中可能用到的数据如下表)角度α sin α cos α tan α 35° 0.57 0.82 0.70 70°0.94 0.34 2.75ACDEFGH图7abA F图8C D24.(本题满分12分,第(1)小题满分6分,第(2)小题满分3分,第(3)小题满分3分)如图9,在平面直角坐标系中,矩形OABC 的顶点A (3,0),C (0,1).将矩形OABC 绕原点逆时针旋转90°,得到矩形C B A O '''.设直线B B '与x 轴交于点M 、与y 轴交于点N ,抛物线2y ax bx c =++的图像经过点C '、M 、N .解答下列问题:(1)求出该抛物线所表示的函数解析式; (2)将△MON 沿直线B B '翻折,点O 落在点P 处,请你判断点P 是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O ,求出所有符合要求的新抛物线的解析式.25.(本题满分14分,第(1)小题满分5分,第(2)小题满分4分,第(3)小题满分5分)如图10,已知//AM BN ,90A B ∠=∠=︒,4AB =,点D 是射线AM 上的一个动点(点D 与点A 不重合),点E 是线段AB 上的一个动点(点E 与点A 、B 不重合),联结DE ,过点E 作DE 的垂线,交射线BN 于点C ,联结DC .设AE x =,BC y =.(1)当1AD =时,求y 关于x 的函数关系式,并写出它的定义域;(2)在(1)的条件下,取线段DC 的中点F ,联结EF ,若 2.5EF =,求AE 的长; (3)如果动点D 、E 在运动时,始终满足条件AD DE AB +=,那么请探究:BCE ∆的周长是否随着动点D 、E 的运动而发生变化?请说明理由.BM备用图图10A A虹口区2009学年度第一学期初三年级数学学科 期终教学质量监控测试卷参考答案及评分建议2010.1说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5.评分时,给分或扣分均以1分为基本单位.一、选择题:1.D ; 2.C ; 3.B ; 4.D ; 5.B ; 6.C .二、填空题:7.(0, 2); 8.1k <; 9.30; 10.14; 11.4; 12.2. 13.50 ; 14. 13; 15.15; 16.25; 17. 9; 18.65.三、解答题19.13+ ……………………………………………………………(5分)=(3分) =1-……………………………………………………………………………(2分)20.证明:AB AC =ABC ACB ∠=∠∴ ……………………………………………………………(3分) ABD ACE ∠=∠∴ …………………………………………………………(2分)2AB DB CE =⋅ AB DB CEAB=∴AB DB CEAC=∴……………………………………………………………………(4分)∴ADB ∆∽EAC ∆…………………………………………………………………(1分)21.解F ABCD :是的边BC 的中点,1122BF BC AD ∴== 1+2AF AB BF a b ∴=+=…………………………………………………………(4分)//2DH ADAD BF HB BF==又由得:…………………………………………………(1分)23DH DB ∴=………………………………………………………………………(1分)22(D)33DH DB AB A ∴==-……………………………………………………(2分) 222=()=333a b a b --………………………………………………………(2分)22.解:2214y x x =++-(1)…………………………………………………………(1分)2=14x +-()……………………………………………………………(2分)10, 1 , 4a m k =>==-(2)∴该函数图像的开口向上;顶点坐标是(-1,-4);对称轴是直线1x =-;图像在直线1x =-左侧部分是下降的,右侧的部分是上升的. …………(1分,2分,2分,2分)23.解:过C 作//CE AD , 交AB E 于.(如图)………………………………………(1分)//, //CD AE CE AD∴ 四边形AECD 是平行四边形…………(2分)60 , 1206060,35AE DC BE CEB DAB ∴===-=∠=∠= 7035CBF ECB ∠=∴∠=又60BC BE ∴==……………………………………………………………………(4分)sin 70600.9456.4Rt CFB CF CB ∴=⋅=⨯≈在中,(米)…………………(4分) 答:河流的宽度CF 的值约为56.4米. …………………………………………………(1分)24.解(1) 可以求出点'5(-1 , 0), (0 , ), (5 , 0)2C N M ……………………………(3分)205 22550a b c y ax bx cc a b c -+=⎧⎪⎪=++=⎨⎪++=⎪⎩代入 得 12252a b c ⎧=-⎪⎪=⎨⎪⎪=⎩解得:…………………………………………………………………(2分)∴所求抛物线的解析式为215222y x x =-++……………………………………(1分) (2)不存在,理由如下:可求出点(2, 4)P ……………………………………………………………………(2分)21592 -24222x y x x y ==++=≠把代入 得:∴点P 不在该抛物线上………………………………………………………………(1分) (3)2215192=(2) , 2222y x x x =-++--+又'5, 1 , =52NO C O MO ==∴ 所求的抛物线的解析式为:221951(2)22222y x x x =--+-=-+……………………………………………(1分)35︒a b70︒35︒FE D CB A22191(21)3222y x x x =---+=-+或……………………………………………(1分)22191(25)3222y x x x =--++=--或…………………………………………(1分)25.解:(1)可证AED △∽BCE △……………………………………………………(1分)AD AE BE BC∴=…………………………………………………………………………(1分) ,,4,1AE x BC y AB AD ==== 4BE x ∴=-14x x y∴=- 24 (04)y x x x ∴=-+<<……………………(2分,1分) 90DE ECDEC ⊥∴∠=(2)DF FC =又22 2.5=5DC EF ∴==⨯……………………………………(1分)过D 点作DH BN H ⊥于, 则4DH AB ==Rt DHC HC ∴=中,134BC BH HC ∴=+=+=………………………………………………………(1分)4y =即244x x ∴-+=………………………………………………………………………(1分)解得:122x x ==2AE ∴=………………………………………………………………………………(1分)(3) BCE ∴△的周长不变,理由如下:4,4AEDCAE DE AD x BE x =++=+=-,…………………………………(1分)设AD m =,则4DE m =-,22290A DE AE AD ∠=∴=+2224-m x m =+即,()NMH FEDCBA2168x m -∴= 由(1)知:AED △∽BCE △2164848ADE BCEx C AD x CBE x -+∴===-…………………………………………………(2分) 88(4)844BCEADECC x xx∴==+=++………………………………………(1分) BCE ∴△的周长不变.……………………………………………………………(1分)。
2016学年宝山区第一学期期末考试九年级数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分) 1、已知30,A ∠=︒下列判断正确的是( )1.sin 2A A =1.cos 2B A =1.tan 2C A =1.cot 2D A =2、如果C 是线段AB 的黄金分割点C ,并且,1,AC CB AB >=那么AC 的长度为( )2.3A1.2B.C.D 3、二次函数223y x x =++的定义域为( ).A 0x >.B x 为一切实数.C 2y >.D y 为一切实数4、已知非零向量a b 、r r 之间满足3a b =-r r,下列判断正确的是( ).A a r的模为3.B a r 与b r的模之比为3:1- .C a r 与b r平行且方向相同.D a r 与b r平行且方向相反5、如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( ).A 南偏西30°方向.B 南偏西60°方向 .C 南偏东30°方向 .D 南偏东60°方向6、二次函数2()y a x m n =++的图像如图,则一次函数y mx n =+的图像经过( ).A 第一、二、三象限.B 第一、二、四象限 .C 第二、三、四象限 .D 第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分) 7、已知23a b =,那么_______.ab= 8、如果两个相似三角形的相似比为1:4,那么它们的面积比为__________.9、如图,D 为ABC D 的边AB 上一点,如果ACDABC ??时,那么图中_________是AD 和AB 的比第6题例中项.10、如图,ABC D 中90,C ??若CD AB ^于D ,且4,9,BD AD ==则tan _______.A =11、计算:2(3)5__________.a b b +-=r r r12、如图,G 为ABC D 的重心,如果13,10,AB AC BC ===那么AG 的长为___________. 13、二次函数25(4)3y x =-+向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是______________________.14、如果点(1,2)A 和点(3,2)B 都在抛物线2y ax bx c =++的图像上,那么抛物线2y ax bx c =++的对称轴是直线________________.15、已知1(2,)A y 、2(3,)B y是抛物线21)y x =--+的图像上两点,则12____.y y (填不等号)16、如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度_______.i = 17、数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如2y ax bx c =++的抛物线的形状、大小、开口方向、位置等特征的系数a b c 、、称为该抛物线的特征数,记作:特征数a b c {、、}, (请你求)在研究活动中被记作特征数为43{1、、}-的抛物线的顶点坐标为________________. 18、如图,D 为直角ABC D 的斜边AB 上一点,DE AB ^交AC 于E ,如果AED D 沿着DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果18,tan ,2AC A ==那么:___________.CF DF =三、解答题:(本大题共7小题,满分78分)第9题B第10题AB第12题B 第18题A19、计算:0cot 45cos30(2017)tan 602sin 45p °-?-??20、如图,在ABC D 中,点D E 、分别在边AB AC 、上,如果DE BC ∥,且23DE BC =. (1)如果6,AC =求CE 的长;(2)设,,AB a AC b ==u u u r r u u u r r 求向量DE uuu r(用向量a b 、r r 表示) .21、如图,AB CD 、分别表示两幢相距36米的大楼,高兴同学站在CD 大楼的P 处窗口观察AB 大楼的底部B 点的俯角为45°,观察AB 大楼的顶部A 点的仰角为30°,求大楼AB 的高.22、直线3:64l y x =-+交y 轴于点A ,与x 轴交于点B ,过A B 、两点的抛物线m 与x 轴的另一个交点为C ,(C 在B 的左边),如果5,BC =求抛物线m 的解析式,并根据函数图像指出当m 的函数值大于第20题B第21题PBl 的函数值时x 的取值范围.23、如图,点E 是正方形ABCD 的对角线AC 上的一个动点(不与A C 、重合),作EF AC ^交边BC 于点F ,联结AF BE 、交于点G . (1)求证:CAF CBE ∽D D ;(2)若:2:1,AE EC =求tan BEF Ð的值.第23题BA24、如图,二次函数232(0)2y ax x a =-+?的图像与x 轴交于A B 、两点,与y 轴交于点,C 已知 点(4,0)A -.(1)求抛物线与直线AC 的函数解析式;(2)若点(,)D m n 是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A C E F 、、、为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E 的坐标.第24题25、如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P Q 、同时从点B 出发,点P 以1/cm s 的速度沿着折线BE ED DC --运动到点C 时停止,点Q 以2/cm s 的速度沿着BC 运动到点C 时停止。
2009学年第一学期期末考试九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共26题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列算式中,正确的是( ). (A ) 523121=+; (B ) 532=+;(C )632=⨯; (D ) 222)(b a b a -=-.2.已知b a >,那么下列结论一定成立的是( ). (A )22b a >; (B )b a 2121-<-; (C )11-<-b a ; (D )ba 11<.3.根据你对相似的理解,下列命题中,不.正确的是( ). (A )相似三角形的对应角相等; (B )相似三角形的对应边成比例; (C )相似三角形的周长比等于相似比; (D )相似三角形的面积比等于相似比. 4.直线x y 2=与x 轴正半轴的夹角为α, 那么下列结论正确的是( ).(A )2tan =α; (B )2cot =α ; (C )2sin =α; (D )2cos =α.5.已知平行四边形ABCD ,对角线AC 、BD 交于点O . 下列命题中,正确的是( ). (A )=; (B )2=+; (C=; (D )=-.26.已知c bx ax x f ++=2)((其中c b a 、、为常数,且0≠a ),小明在用描点法画)(x f y =的图像时,列出如下表格. 根据该表格,下列判断中,不.正确的 是( ).(A )抛物线)(x f y =开口向下; (B ) 抛物线)(x f y =的对称轴是直线1=x ; (C )2)3(-=f ; (D ))8()7(f f <. 二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7. 4的平方根是 ▲ .8. 不等式012<-x 的解集是 ▲ .9. 方程1112-=-x x x 的解为 ▲ . 10. 平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是 ▲ .11. 抛物线2)1(2++-=x y 的顶点坐标为 ▲ .12. 把抛物线23x y =先向右平移2个单位,再向下平移1个单位,这时抛物线的解析式为: ▲ .13. 一条抛物线具有下列性质:(1)经过点)3,0(A ;(2)在y 轴左侧的部分是上升的,在y 轴右侧的部分是下降的. 试写出一个满足这两条性质的抛物线的表达式. ▲ .14. 某小山坡的坡长为200米,山坡的高度为100米,则该山坡的坡度i = ▲ . 15. 在平面直角坐标系中,已知点)0,1(A 、)2,0(B 、)2,2(C .记向量=,则-= ▲ (用表示). 16. 已知ABC ∆中,点D 、E 分别在边AB 、AC 上,且DE ∥BC . 若ADE∆的面积与四边形BCED 的面积相等,则ABAD的值为 ▲ . (第18题图)ADBCE(第17题图)ENB(第16题图)九年级数学(共6页,第3页)17. 如图,梯形ABCD 中,AB ∥CD ,点M 、N 分别是AD 、BC 的中点,AB DE ⊥,垂足为点E . 若四边形BCDE 是正方形,且点M 、N 关于直线DE 对称,则DAE ∠的余切值为 ▲ .18.如图,已知菱形ABCD 中,︒=∠60ABC ,点E 在边BC 上,︒=∠25BAE .把线段AE 绕点A 逆时针方向旋转,使点E 落在边CD 上,则旋转角α的 度数为 ▲ .(︒<<︒1800α)三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分) 19. 先化简,再求代数式12)1311(2-÷-+++x xx x x 的值.其中︒-︒=45cos 60sin x .20. 如图,已知向量a 、b ,求作向量x ,满足2)2(21-=+-. (不要求写作法,但要保留作图痕迹,并写出结论)21.如图,ABC ∆中,点D 在边BC 上,DE ∥AB ,DE 交AC 于点E ,点F 在边AB 上,且AE CE FB AF =.(1)求证:DF ∥AC ;(2)如果2:1:=DC BD ,ABC ∆的面积为182cm ,求四边形AEDF 的面积.a22、为了预防“流感”,某学校对教室进行“药熏”消毒。
B第2题上海市宝山区九年级第一学期期末考试数学试题考试时间100分钟,满分150分一、选择题(本大题共6题,每题4分,满分24分)1.符号tan A 表示().(A)∠A 的正弦; (B)∠A 的余弦; (C)∠A 的正切; (D)∠A 的余切.2.如图△ABC 中∠C =90°,如果CD ⊥AB 于D ,那么().(A)CD=12AB ; (B) BD =12AD ; (C) CD 2=AD ·BD ; (D) AD 2=BD ·AB .3.已知a 、b 为非零向量,下列判断错误的是(). (A) 如果a =2b ,那么a ∥b ;(B)如果a =b ,那么a =b 或a =-b ; (C) 0的方向不确定,大小为0; (D) 如果e 为单位向量且a =2e ,那么a =2.4.二次函数y =2+2+3的图像的开口方向为().(A) 向上; (B) 向下; (C) 向左; (D) 向右.5.如果从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的().(A)俯角30°方向; (B)俯角60°方向;(C)仰角30°方向; (D)仰角60°方向.6.如图,如果把抛物线y =2沿直线y =向上方平移后,其顶点在直线y =上的A 处,那么平移后的抛物线解析式是().(A) y =(+2+ (B) y =(+2)2+2;(C) y =(-2+ (D)y =(-2)2+2.二、填空题(每小题4分,共48分)7.已知2a =3b ,那么a ∶b =_________. 8.如果两个相似三角形的周长之比1∶4_________.9.如图,D 、E 为△ABC 的边AC 、AB 上的点,当_________时,△ADE ∽△ABC 其中D 、E 分别对应B 、C .(填一个条件)10.计算:()134522a b b -+=_________. 11.如图,在锐角△ABC 中,BC =10,BC 上的高AD =6,正方形EFGH 的顶点E 、F 在BC 边上,G 、H 分别在AC 、AB 边上,则此正方形的边长为_________.12.如果一个滚筒沿斜坡向正下直线滚动13米后,其水平高度下降了5米,那么该斜坡的坡度i =_________.13.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则tan ∠CAF =_________.14.抛物线y =5 (-4)2+3的顶点坐标是_________.15.二次函数y (-1)2y 轴的交点坐标是_________.16.如果点A (0,2)和点B (4,2)都在二次函数y =2+b +c 的图像上,那么此抛物线在直线_________的部分是上升的.(填具体某直线的某侧)17.如图,点D 、E 、F 分别为△ABC 三边的中点,如果△ABC 的面积为S ,那么以AD 、BE 、CF 为边的三角形的面积是__________.18.如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转一定角度,使E 落在F 处,如果E 在旋转过程中曾经交AB 于G ,当EF =BG 时,旋转角∠EAF 的度数是______________.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.(本题满分10分) 计算:01sin60tan60cos45sin30π︒︒︒︒-+(+)-20.(本题满分10分,每小题各5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果AE记作a,BF记作b,求CD(用a、b表示).21.(本题满分10分)已知在港口A的南偏东75°方向有一礁石B,轮船从港口出发,沿正东北方向(北偏东45°方向)前行10里到达C后测得礁石B在其南偏西15°处,求轮船行驶过程中离礁石B的最近距离.22.(本题满分10分,每小题各5分)如图,在直角坐标系中,已知直线y=12+4与y轴交于A点,与轴交于B点,C点坐标为(-2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.23.(本题满分12分,每小题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:GAE AC EG C =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.24.(本题共12分,每小题各4分)设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤≤b 的实数的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量与函数值y 满足:当m ≤≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=-+4,当=1时,y=3;当=3时,y=1,即当1≤≤3时,恒有1≤y≤3,所以说函数y=-+4是闭区间[1,3]上的“闭函数”,同理函数y=也是闭区间[1,3]上的“闭函数”.(1)反比例函数2018yx是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;(2)如果已知二次函数y=2-4+是闭区间[2,t]上的“闭函数”,求和t的值;(3)如果(2)所述的二次函数的图像交y轴于C点,A为此二次函数图像的顶点,B为直线=1上的一点,当△ABC为直角三角形时,写出点B的坐标.25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD中,AD//BC,AD=7,AB=CD=15,BC=25,E为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=,CH=y,求y与的函数关系式及其定义域.。
上海市宝山区上海交通大学附属中学2024-2025学年九年级上学期9月月考数学试题一、单选题1.的整数部分是a ,小数部分是b ,π的整数部分是c ,小数部分是d ,若m ad bc =−,则下列结论正确的是( )A .21m −≤≤−B .10m −≤≤C .01m ≤≤D .12m ≤≤ 2.同一圆中,半圆的直径( )整圆的直径.A .大于B .小于C .等于D .不确定 3.2024年的春晚节目《年锦》用东方美学风韵惊艳了观众,节目巧妙地选用了汉、唐、宋、明不同朝代寓意吉祥祝福的代表纹样,与华丽的舞美技术相融合,织出一幅跨越千载的纹样变迁图卷.下列几幅纹样是中心对称图形的是( )A .B .C .D .4.布袋里有 100 个球, 其中有红球 28 个, 绿球 20 个, 黄球 12 个, 蓝球 20 个,白球 10 个,黑球 10 个, 从袋中任意摸出球来, 若要一次摸出至少 15 个同色的球, 则需要从袋中摸出球至少( )A .85 个B .75个C .15 个D .16 个 5.如图,公园里有一段长20米的墙AB ,工人师傅计划利用墙AB 和40米的栅栏围成一个面积为198平方米的封闭矩形绿化区域,设矩形中垂直于墙AB 的一边的栅栏长为x 米,下列说法正确的是( )A .由题意得()2402198x x ⋅−=B .x 的取值范围是020x <≤C .只有一种围法D .只有两种围法6.现有四根木棒,其长度分别为3,4,9,d ,若长度为d 的木棒与其它任意两根木棒都能围成三角形,则d 可能是( )A .9.1B .5.8C .7.2D .6.5二、填空题7.一块面积为2的正方形桌布,其边长为 .8.某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打 折.9x 的取值范围是 .10.若函数k y x=的图象经过点()3,2A −和(),2B m −,则m 的值为 . 11.已知一次函数y kx b =+的图象经过点()1,3和()1,2−,则22k b −= . 12.某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x 满足的分式方程为 .13.在ABC V 中,AD 是中线,G 是重心,向量BA a =,向进BC b =,那么向量DG = (用向量a 、b 表示)14.如图,在Rt ABC △中,90,9,12C AC BC ∠=︒==,在Rt DEF △中,90F ∠=︒,34DF EF ==,.用一条始终绷直的弹性染色线连接CF ,Rt DEF △从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是 .15.如图,一束光线从点()2,5A −出发,经过y 轴上的点()0,1B 反射后经过点(),C m n ,则2m n −的值是 .16.如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是 .17.定义[]x 为不大于x 的最大整数,若5=,则x 的最大整数为 .18.如图,DE 平分等边ABC V 的面积,折叠BDE V 得到,△FDE AC 分别与,DF EF 相交于,G H 两点.若,==DG m EH n ,用含,m n 的式子表示GH 的长是 .三、解答题1902024212cos60骣琪-+?-琪桫.20.解方程组:2232420x y x xy y +=⎧⎨−−=⎩. 21.如图,AD 是ABC V 的角平分线,∥DE AC 交AB 于点E ,DF AB 交AC 于点F .(1)试判断四边形AEDF的形状并说明理由;(2)若AB AC=,写出图中四个面积都相等的三角形.22.井字棋是老少皆宜的游戏,规则是:两个游戏者轮流在3*3的格子里留下标记,任意三个标记形成一条直线即为获胜,小张是班里的井字棋高手,每步均为最佳着法.(1)小吴执先手去挑战小张,若无论小张如何落子,小吴前两步都会将两个子放在一条直线上,求:小吴输棋的概率;(2)小吴不服,让小张执先手,小张第一步选择下中间,若小吴除了第一步均不会犯错,求:小吴和棋的概率.23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.24.新定义:在平面直角坐标系中,函数自变量与因变量乘积最大时的点坐标成为该函数的“最值点”(1)如图,若抛物线M 经过()3,0和点()1,0A 和(0,3),则M 上是否存在最值点?若存在,请求出最值点,若不存在,请说明理由;(2)若直线y kx b =+交抛物线于A ,()4,3B 两点,则直线不低于抛物线时,请直接写出自变量x 的取值范围;(3)求直线3122y x =−+的最值点. 25.已知ABC V 为等边三角形,CD AB ⊥于点D ,点E 为边BC 上一点,点F 为线段CD 上一点,连接EF ,且点E 在线段CF 的中垂线上.(1)如图1,若342AB CE ==,,连接BC ,G 为BF 的中点,连接DG ,求:线段DG 的长; (2)如图2,将CEF △绕点C 逆时针方向旋转一定的角度得到CMN ,连接BN ,点H 为BN 的中点,连接AH HM ,,求:AH HM的值; (3)如图3,在(2)问的条件下,线段HM 与线段CN 交于点P ,连接AM ,交线段CN 于点Q ,当2CQ PN =时,求:CQ PQ的值.。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A.9πm2B.293πm2C.15πm2D.313πm2【答案】B【解析】小羊的最大活动区域是一个半径为6、圆心角为90°和一个半径为2、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【详解】大扇形的圆心角是90度,半径是6,如图,所以面积=9036360π⨯=9πm2;小扇形的圆心角是180°-120°=60°,半径是2m,则面积=6042=3603π⨯π(m2),则小羊A在草地上的最大活动区域面积=9π+23π=293π(m2).故选B.【点睛】本题考查了扇形的面积的计算,本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的,然后分别计算即可.2.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A.19B.13C.59D.79【答案】C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况,∴以a、b、c为边长正好构成等腰三角形的概率是:155 279=.故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v (km/h)的函数关系图象大致是().A.B.C.D.【答案】C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为100t=vv(>0),故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本题的关键.4.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件【答案】B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.5.如图,已知直线y=23x与双曲线y=kx(k>0)交于A、B两点,A点的横坐标为3,则下列结论:①k=6;②A点与B点关于原点O中心对称;③关于x的不等式23kxx-<0的解集为x<﹣3或0<x<3;④若双曲线y=kx(k>0)上有一点C的纵坐标为6,则△AOC的面积为8,其中正确结论的个数()A.4个B.3个C.2个D.1个【答案】A【分析】①由A点横坐标为3,代入正比例函数,可求得点A的坐标,继而求得k值;②根据直线和双曲线的性质即可判断;③结合图象,即可求得关于x的不等式23kxx-<0的解集;④过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由点C 的纵坐标为6,可求得点C的坐标,继而求得答案.【详解】①∵直线y=23x与双曲线y=xk(k>0)交于A、B两点,A点的横坐标为3,∴点A的纵坐标为:y=23×3=2,∴点A(3,2),∴k=3×2=6,故①正确;②∵直线y=23x与双曲线y=xk(k>0)是中心对称图形,∴A点与B点关于原点O中心对称,故②正确;③∵直线y=23x与双曲线y=xk(k>0)交于A、B两点,∴B(﹣3,﹣2),∴关于x的不等式23kxx-<0的解集为:x<﹣3或0<x<3,故③正确;④过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵点C的纵坐标为6,∴把y=6代入y=6x得:x=1,∴点C(1,6),∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=12×(2+6)×(3﹣1)=8,故④正确;故选:A .【点睛】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想的应用.6.若抛物线y =ax 2+2x ﹣10的对称轴是直线x =﹣2,则a 的值为( )A .2B .1C .-0.5D .0.5 【答案】D【分析】根据抛物线y=ax 2+bx+c (a≠0)的对称轴方程得到222x a=-=-,然后求出a 即可. 【详解】解:∵抛物线y =ax 2+2x ﹣10的对称轴是直线x =﹣2,∴222x a=-=-, ∴0.5a =;故选:D .【点睛】 本题考查了二次函数的图象:二次函数y=ax 2+bx+c (a≠0)的图象为抛物线,当a >0;对称轴为直线2b x a =-;抛物线与y 轴的交点坐标为(0,c );当b 2-4ac >0,抛物线与x 轴有两个交点;当b 2-4ac=0,抛物线与x 轴有一个交点;当b 2-4ac <0,抛物线与x 轴没有交点.7.如图,一次函数y kx k =-分别与x 轴、y 轴交于点A 、B ,若sin 35OAB ∠=,则k 的值为( )A .43B .43-C .35D .34- 【答案】D【分析】由解析式求得图象与x 轴、y 轴的交点坐标,再由sin 35OAB ∠=,求出AB ,利用勾股定理求出OA=43k -,由此即可利用OA=1求出k 的值. 【详解】∵y kx k =-,∴当x=0时,y=-k,当y=0时,x=1,∴B(0,-k),A(1,0),∵sin35 OAB∠=,∴35 OBAB=,∵OB=-k,∴AB=53k -,∴OA=22AB OB-=4 3k -∴43k-=1,∴k=34 -,故选:D.【点睛】此题考查一次函数的性质,勾股定理,三角函数,解题中综合运用,题中求出AB,利用勾股定理求得OA 的长是解题的关键.8.学校要举行“读书月”活动,同学们设计了如下四种“读书月”活动标志图案,其中是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形的概念作答.在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:A、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;B、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;C、图形中心绕旋转180°以后,能够与它本身重合,故是中心对称图形,符合题意;D、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180°以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念.特别注意,中心对称图形是要寻找对称中心,旋转180°后两部分重合.9.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y3【答案】B【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.10.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60°B.65°C.70°D.75°【分析】由等腰三角形的性质可求∠ACD =70°,由平行线的性质可求解.【详解】∵AD =CD ,∠1=40°,∴∠ACD =70°,∵AB ∥CD ,∴∠2=∠ACD =70°,故选:C .【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.11.已知2x=5y (y ≠0),则下列比例式成立的是( )A .25x y =B .52x y =C .25x y =D .52x y= 【答案】B【解析】试题解析:∵2x=5y ,∴ 52xy =. 故选B . 12.如图,P (x ,y )是反比例函数3y x =的图象在第一象限分支上的一个动点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,随着自变量x 的逐渐增大,矩形OAPB 的面积( )A .保持不变B .逐渐增大C .逐渐减小D .无法确定【答案】A 【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=12|k|,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 【详解】解:依题意有矩形OAPB 的面积=2×12|k|=3,所以随着x 的逐渐增大,矩形OAPB 的面积将不变.故选:A .【点睛】本题考查了反比例函数 y =k x中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 二、填空题(本题包括8个小题) 13.抛物线()2y x 1=-+的顶点坐标为________.【答案】(-1,0)【分析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.【详解】解:∵抛物线()21y x =-+,∴顶点坐标为:(-1,0),故答案是:(-1,0).【点睛】本题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点,同学们应熟练掌握. 14.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知点11(,)A x y ,22(,)B x y 在双曲线8y x =上.如果12x x <,而且120x x ⋅>,则以下不等式一定成立的是( )A .120y y +>B .120y y ->C .120y y ⋅<D .120y y < 【答案】B【解析】根据反比例函数的性质求解即可.【详解】解:反比例函数y =8x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小, 而12x x <,而且12,x x 同号,所以12y y >,即120y y ->,故选B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y =k x(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .也考查了反比例函数的性质.2.如图,在高2m ,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要( )A .3B .(3mC .4 mD .(3)m【答案】B 【解析】如图,由平移的性质可知,楼梯表面所铺地毯的长度为:AC+BC ,∵在△ABC 中,∠ACB=90°,∠BAC=30°,BC=2m ,∴AB=2BC=4m ,∴224223-=∴AC+BC=423+(m ).故选B.点睛:本题的解题的要点是:每阶楼梯的水平面向下平移后刚好与AC重合,每阶楼梯的竖直面向右平移后刚好可以与BC重合,由此可得楼梯表面所铺地毯的总长度为AC+BC.3.如图,在△ABC中,M,N分别是边AB,AC的中点,则△AMN的面积与四边形MBCN的面积比为A .12B.13C.14D.23【答案】B【详解】解:∵M,N分别是边AB,AC的中点,∴MN是△ABC的中位线,∴MN∥BC,且MN=12BC,∴△AMN∽△ABC,∴214AMNABCS MNS BC==(),∴△AMN的面积与四边形MBCN的面积比为1:1.故选B.【点睛】本题考查了相似三角形的判定与性质,解答本题的关键是得出MN是△ABC的中位线,判断△AMN∽△ABC,要掌握相似三角形的面积比等于相似比平方.4.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2).以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),则端点C的坐标为()A.(3,1) B.(4,1) C.(3,3) D.(3,4)【答案】C【分析】利用位似图形的性质,结合两图形的位似比,即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),∴在第一象限内将线段AB缩小为原来的12后得到线段CD,∴点C的横坐标和纵坐标都变为A点的一半,∴点C的坐标为:(3,3).故选:C.【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.5.为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=33【答案】C【解析】根据题意可以列出相应的一元二次方程,本题得以解决.【详解】由题意可得,18(1+x)2=33,故选:C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题.6.如图的几何体,它的主视图是()A.B.C.D.【答案】A【解析】从正面看所得到的图形,进行判断即可.【详解】解:主视图就是从正面看到的图形,因此A图形符合题意,故选:A.【点睛】此题主要考查三视图,解题的关键是熟知三视图的定义.7.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC 垂直平分EF ;②BE +DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,S △ABE =12S △CEF ,其中正确的是( )A .①③B .②④C .①③④D .②③④【答案】C 【解析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB ═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故①正确).②设BC=a ,CE=y ,∴BE+DF=2(a-y )2y ,∴BE+DF 与EF 关系不确定,只有当y=(2)a 时成立,(故②错误).③当∠DAF=15°时,∵Rt △ABE ≌Rt △ADF ,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF 为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出:(x+y)2+y 2=(2x)2∴x 2=2y (x+y )∵S △CEF =12x 2,S △ABE =12y(x+y), ∴S △ABE =12S △CEF .(故④正确). 综上所述,正确的有①③④,故选C .【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键. 8.如图,Rt △ABC 中,∠B =90°,AB =3,BC =2,则cosA =( )A .32B .23C 213D 313【答案】D【分析】根据勾股定理求出AC ,根据余弦的定义计算得到答案.【详解】由勾股定理得,AC 22AB BC +2232+13则cosA =AB AC 13313 故选:D .【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键. 9.对于二次函数y =-(x +1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x =1;③其图象的顶点坐标为(-1,3);④当x>1时,y 随x 的增大而减小.其中正确结论的个数为( )A .1B .2C .3D .4【答案】C 【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵2(1)3y x =-++,∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y 随x 的增大而增大,∴当x>1时,y 随x 的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键. 10.三角形的两边长分别为3和2,第三边的长是方程2560x x -+=的一个根,则这个三角形的周长是( )A .10B .8或7C .7D .8【答案】B【分析】因式分解法解方程求得x 的值,再根据三角形的三边关系判断能否构成三角形,最后求出周长即可.【详解】解:∵2560x x -+=,∴(x -2)(x -3)=0,∴x -2=0或x -3=0,解得:x =2或x =3,当x =2时,三角形的三边2+2>3,可以构成三角形,周长为3+2+2=7;当x =3时,三角形的三边满足3+2>3,可以构成三角形,周长为3+2+3=8,故选:B .【点睛】本题主要考查解一元二次方程的能力和三角形三边的关系,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 11.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,不是中心对称图形,故本选项不合题意;B 、既是轴对称图形又是中心对称图形,故本选项符合题意;C 、是轴对称图形,不是中心对称图形,故本选项不合题意;D 、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:B .【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的概念是解决此题的关键.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )A .12B .34C .112D .512【答案】D【分析】随机事件A 的概率()=P A 事件A 可能出现的结果数÷所有可能出现的结果数. 【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率2556012P ==, 故选D .【点睛】 本题考查了概率,熟练掌握概率公式是解题的关键.二、填空题(本题包括8个小题)13.如图,若直线L 与x 轴、y 轴分别交于点A 、B ,并且4OB =,30ABO =∠,一个半径为1的O ,圆心C 从点(0,1)开始沿y 轴向下运动,当C 与直线L 相切时,C 运动的距离是__________.【答案】3或1【解析】分圆运动到第一次与AB相切,继续运算到第二次与AB相切两种情况,画出图形进行求解即可得. 【详解】设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,在Rt△BEC′中,∠ABC=30°,EC′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=1,故答案为 3 或1.【点睛】本题考查了切线的性质、含30度角的直角三角形的性质,会用分类讨论的思想解决问题是关键,注意数形结合思想的应用.14.从一副扑克牌中的13张黑桃牌中随机抽取一张,它是王牌的概率为____.【答案】1【分析】根据是王牌的张数为1可得出结论.【详解】∵13张牌全是黑桃,王牌是1张,∴抽到王牌的概率是1÷13=1,故答案为:1.【点睛】本题考查了概率的公式计算,熟记概率=所求情况数与总情况数之比是解题的关键.15.将含有 30°角的直角三角板 OAB 如图放置在平面直角坐标系中,OB 在 x 轴上,若 OA =2,将三角板绕原点 O 顺时针旋转 75°,则点 A 的对应点 A′ 的坐标为___________.【答案】(2,2-)【解析】过A′作A′C ⊥x 轴于C ,根据旋转得出∠A OA′=75°,OA=OA′=2,求出∠A′OC=45°,推出OC=A′C ,解直角三角形求出OC 和A′C ,即可得出答案. 【详解】如图,过A′作A′C ⊥x 轴于C ,∵将三角板绕原点O 顺时针旋转75°,∴∠AOA′=75°,OA=OA′=2,∵∠AOB=30°,∴∠A′OC=45°,∴OC=A′C=OA′sin45°=2×222, ∴A′的坐标为22).故答案为:2,2-).【点睛】本题考查的知识点是坐标与图形变化-旋转,解题的关键是熟练的掌握坐标与图形变化-旋转.16.已知点(,)P m n 在直线2y x =-+上,也在双曲线1y x=-上,则m 2+n 2的值为______. 【答案】1【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m 以及mn 的值,再利用完全平方公式将原式变形得出答案.详解:∵点P (m ,n )在直线y=-x+2上,∴n+m=2,∵点P (m ,n )在双曲线y=-1x 上, ∴mn=-1,∴m 2+n 2=(n+m )2-2mn=4+2=1.故答案为1.点睛:此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m ,n 之间的关系是解题关键.17.一组数据6,2,–1,5的极差为__________.【答案】7【解析】根据极差的定义,一组数据的最大值与最小值的差为极差,所以这组数据的极差是7,故答案为:7. 18.当k _________时,关于x 的一元二次方程2240x x k -+=有两个实数根.【答案】2≤【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】∵关于x 的一元二次方程2240x x k -+=有两个实数根∴()24420k =--⨯≥ 解得:2k ≤故答案为:2≤【点睛】本题考查的是一元二次方程根与系数的关系,当0≥时,有两个实数根;当0<时,没有实数根. 三、解答题(本题包括8个小题)19.如图,已知直线y=﹣x+4与反比例函数k y x=的图象相交于点A (﹣2,a ),并且与x 轴相交于点B .(1)求a 的值;(2)求反比例函数的表达式;(3)求△AOB 的面积.【答案】(1)a=6;(2)12y x=- ;(3)1 【解析】(1)把A 的坐标代入直线解析式求a ;(2)把求出的A点坐标代入反比例解析式中求k,从而得解析式;求B点坐标,结合A点坐标求面积.【详解】解:(1)将A(﹣2,a)代入y=﹣x+4中,得:a=﹣(﹣2)+4,所以a=6(2)由(1)得:A(﹣2,6)将A(﹣2,6)代入k yx=中,得到:62k=-,即k=﹣1所以反比例函数的表达式为:(3)如图:过A点作AD⊥x轴于D;∵A(﹣2,6)∴AD=6在直线y=﹣x+4中,令y=0,得x=4∴B(4,0),即OB=4∴△AOB的面积S=12OB×AD=12×4×6=1.考点:反比例函数综合题.20.在如图中,每个正方形有边长为1 的小正方形组成:(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数) 黑色小正方形个数…正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数…(2)在边长为n (n≥1)的正方形中,设黑色小正方形的个数为P 1,白色小正方形的个数为P 2,问是否存在偶数n ,使P 2=5P 1?若存在,请写出n 的值;若不存在,请说明理由.【答案】(1)1,5,9,13,…,则(奇数)2n-1;4,8,12,16,…,则(偶数)2n (2)存在偶数n=12使得P 2=5P 1【解析】(1)此题找规律时,显然应分两种情况分析:当n 是奇数时,黑色小正方形的个数是对应的奇数;当n 是偶数时,黑色小正方形的个数是对应的偶数.(2)分别表示偶数时P 1和P 2的值,然后列方程求解,进行分析【详解】(1)1,5,9,13,…,则(奇数)2n−1;4,8,12,16,…,则(偶数)2n.(2)由上可知n 为偶数时P 1=2n,白色与黑色的总数为n 2,∴P 2=n 2−2n ,根据题意假设存在,则n 2−2n=5×2n ,n 2−12n=0,解得n=12,n=0(不合题意舍去).故存在偶数n=12,使得P 2=5P 1.21.如图,矩形ABCD 的对角线AC 与BD 相交于点O .延长BC 到点E ,使CE BC =,连结DE . (1)求证:四边形ACED 是平行四边形;(2)若52BO =,4sin 5CAD ∠=,请直接写出平行四边形ACED 的周长 .【答案】(1)见解析;(2)1.【分析】(1)因为CE BC =,所以CE AD =,利用一组对边平行且相等即可证明;(2)利用矩形的性质得出25AC DB OB === ,进而利用4sin 5CAD ∠=求出CD 的值,然后利用勾股定理求出AD 的值,即可求周长【详解】(1)∵ABCD 是矩形∴,//AD BC AD BC =CE BC =AD CE =∴四边形ACED 是平行四边形;(2)∵ABCD 是矩形∴2AC BD OB == 52BO = 5AC ∴=4sin 5CAD ∠= 4sin 545CD AC CAD ∴=∠=⨯= 2222543AD AC CD ∴=-=-=∵四边形ACED 是平行四边形5,3DE AC CE AD ∴====∴平行四边形ACED 的周长为(53)216+⨯=【点睛】本题主要考查平行四边形的判定及性质,矩形的性质,掌握平行四边形的判定及性质是解题的关键. 22.如图,若111A B C 是由ABC 平移后得到的,且ABC 中任意一点P(x,y)经过平移后的对应点为1P (x 5,y 2)-+(1)求点小111A ,B ,C 的坐标.(2)求111A B C 的面积.【答案】(1)(-1,5),(-2,3),(-4,4);(2)三角形面积为2.5;【分析】(1)由△ABC 中任意一点P (x ,y )经平移后对应点为P 1(x-5,y+2)可得△ABC 的平移规律为:向左平移5个单位,向上平移2个单位,由此得到点A 、B 、C 的对应点A 1、B 1、C 1的坐标. (2)利用矩形的面积减去三个顶点上三角形的面积即可.【详解】解:(1)∵△ABC中任意一点P(x,y)经平移后对应点为P1(x-5,y+2),∴△ABC的平移规律为:向左平移5个单位,向上平移2个单位,∵A(4,3),B(3,1),C(1,2),∴点A1的坐标为(-1,5),点B1的坐标为(-2,3),点C1的坐标为(-4,4).(2)如图所示,△A1B1C1的面积=3×2-12×1×3-12×1×2-12×1×2=52.【点睛】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=x m.(1)若矩形花园ABCD的面积为165m2,求x的值;(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.【答案】(1)x的值为11m或15m;(2)花园面积S的最大值为168平方米.【分析】(1)直接利用矩形面积公式结合一元二次方程的解法即可求得答案;(2)首先得到S与x的关系式,进而利用二次函数的增减性即可求得答案.【详解】(1)∵AB=xm,则BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值为11m或15m;(2)由题意可得出:S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,由题意得:14≤x≤19,∵-1<0,14≤x≤19,∴S随着x的增大而减小,∴x=14时,S取到最大值为:S=﹣(14﹣13)2+169=168,答:花园面积S的最大值为168平方米.【点睛】本题考查了二次函数的应用以及一元二次方程的解法,正确结合二次函数的增减性求得最值是解题的关键.24.为了节省材料,某水产养殖户利用本库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的①、②、③三块矩形区域网箱,而且这三块矩形区域的面积相等,设BE的长度为xm,矩形区域ABCD的面积为ym1.(1)则AE=m,BC=m;(用含字母x的代数式表示)(1)求矩形区域ABCD的面积y的最大值.【答案】(1)1x,(80﹣4x);(1)1100m1.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的1倍,可得出AE=1BE,设BE=x,则有AE=1x,BC=80﹣4x;(1)利用二次函数的性质求出y的最大值,以及此时x的值即可.【详解】(1)设BE的长度为xm,则AE=1xm,BC=(80﹣4x)m,故答案为:1x,(80﹣4x);(1)根据题意得:y=3x(80﹣4x)=﹣11x1+140x=﹣11(x﹣10)1+1100,因为﹣11,所以当x=10时,y有最大值为1100.答:矩形区域ABCD的面积的最大值为1100m1.【点睛】本题考查二次函数的性质和应用,解题的关键是掌握二次函数的性质和应用.25.解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=0【答案】(1)x1=3,x2=﹣7;(2)x1=757+,x2=757-【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可.【详解】解:(1)x2+4x﹣21=0(x﹣3)(x+7)=0解得x1=3,x2=﹣7;(2)x2﹣7x﹣2=0∵△=49+8=57∴x=7572±解得x1=757+,x2=757-.【点睛】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.26.甲、乙、丙、丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)求第一次甲将花传给丁的概率;(2)求经过两次传花,花恰好回到甲手中的概率.【答案】(1)13;(2)13【分析】(1)直接利用概率公式计算得出答案;(2)直接利用树状图法得出所有符合题意情况,进而求出概率.【详解】(1)P(第一次甲将花传给丁)=13;(2)如图所示:,共有9种等可能的结果,其中符合要求的结果有3种,故P(经过两次传花,花恰好回到甲手里)=39=13.【点睛】此题主要考查了树状图法求概率,正确画出树状图是解题关键.27.已知二次函数222y x kx =-+.(1)当2k =时,求函数图象与x 轴的交点坐标;(2)若函数图象的对称轴与原点的距离为2,求k 的值.【答案】(1)()2和()2;(2)1k =或-1.【分析】(1)把k=2代入222y x kx =-+,得242y x x =-+.再令y=0,求出x 的值,即可得出此函数图象与x 轴的交点坐标;(2)函数图象的对称轴与原点的距离为2,列出方程求解即可.【详解】(1)∵2k =,∴242y x x =-+,令0y =,则2420x x -+=,解得2x =±∴函数图象与x 轴的交点坐标为()2和()2.(2)∵函数图象的对称轴与原点的距离为2, ∴2221k --=±⨯, 解得1k =或-1.【点睛】本题考查了抛物线与x 轴的交点,二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)的交点与一元二次方程ax 2+bx+c=0根之间的关系:△=b 2-4ac 决定抛物线与x 轴的交点个数.△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A .B .C .D .【答案】C【分析】可利用正方形的边把对应的线段表示出来,利用一角相等且夹边对应成比例两个三角形相似,根据各个选项条件筛选即可.【详解】解:根据勾股定理,22222+=2,221310+=所以,28AC =,22BC =,210AB =,则2AC +2BC =2AB所以,利用勾股定理逆定理得△ABC 是直角三角形所以,AC BC 2222= A.不存在直角,所以不与△ABC 相似;B.两直角边比(较长的直角边:较短的直角边)=32≠2,所以不与△AB C 相似; C.选项中图形是直角三角形,且两直角边比(较长的直角边:较短的直角边)=2,故C 中图形与所给图形的三角形相似.D. 不存在直角,所以不与△ABC 相似.故选:C .【点睛】此题考查了勾股定理在直角三角形中的运用,及判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.2.己知点()()()1233,,2,,3,A y B y C y --都在反比例函数4y x =的图象上,则( ) A .123y y y <<B .321y y y <<C .312y y y <<D .213y y y <<【答案】D【解析】试题解析:∵点A (1,y 1)、B (1,y 1)、C (-3,y 3)都在反比例函数y=4x 的图象上, ∴y 1=-43;y 1=-1;y 3=43, ∵43>-43>-1, ∴y 3>y 1>y 1.故选D .3.在平面直角坐标系中,点P (m ,1)与点Q (﹣2,n )关于原点对称,则m n 的值是( ) A .﹣2B .﹣1C .0D .2【答案】A【分析】已知在平面直角坐标系中,点P(m,1)与点Q(﹣2,n)关于原点对称,则P 和Q 两点横坐标互为相反数,纵坐标互为相反数即可求得m ,n ,进而求得m n 的值.【详解】∵点P(m,1)与点Q(﹣2,n)关于原点对称∴m=2,n=-1∴m n=-2故选:A【点睛】本题考查了直角坐标系中,关于原点对称的两个点的坐标特点,它们的横坐标互为相反数,纵坐标互为相反数.4.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >4【答案】B 【详解】当函数值y >0时,自变量x 的取值范围是:﹣2<x <1.故选B .5.二次函数y=a 2x +bx+c 的图象如图所示,则下列关系式错误的是( )A .a <0B .b >0C .2b ﹣4ac >0D .a+b+c <0【答案】D【解析】试题分析:根据抛物线的开口方向对A 进行判断;根据抛物线的对称轴位置对B 进行判断;根据抛物线与x 轴的交点个数对C 进行判断;根据自变量为1所对应的函数值为正数对D 进行判断.A 、抛物线开口向下,则a <0,所以A 选项的关系式正确;B 、抛物线的对称轴在y 轴的右侧,a 、b 异号,则b >0,所以B 选项的关系式正确;C 、抛物线与x 轴有2个交点,则△=b 2﹣4ac >0,所以D 选项的关系式正确;D 、当x=1时,y >0,则a+b+c >0,所以D 选项的关系式错误. 考点:二次函数图象与系数的关系6.下列图形中,既是中心对称图形,又是轴对称图形的是( ) A .B .C .D .【答案】C【分析】根据中心对称图形和轴对称图形的定义逐项进行判断即可. 【详解】A 、是中心对称图形,但不是轴对称图形,故不符合题意; B 、是轴对称图形,但不是中心对称图形,故不符合题意; C 、既是中心对称图形,又是轴对称图形,符合题意; D 、既不是中心对称图形,也不是轴对称图形,故不符合题意. 故选:C. 【点睛】本题考查中心对称图形和轴对称图形的定义,熟练掌握定义是关键.7.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为 ( ) A .7 B .8C .9D .10【答案】A【分析】分别设出枝干和小分支的数目,列出方程,解方程即可得出答案. 【详解】设枝干有x 根,则小分支有2x 根 根据题意可得:2157x x ++= 解得:x=7或x=-8(不合题意,舍去)故答案选择A. 【点睛】本题考查的是一元二次方程的应用,解题关键是根据题目意思列出方程.8.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B 3C .32D 2【答案】D【分析】先证明△ABD 为等腰直角三角形得到∠ABD =45°,BD 2,再证明△CBD 为等边三角形得到BC =BD 2AB ,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,从而得到下面圆锥的侧面积. 【详解】∵∠A =90°,AB =AD , ∴△ABD 为等腰直角三角形, ∴∠ABD =45°,BD 2, ∵∠ABC =105°, ∴∠CBD =60°, 而CB =CD ,∴△CBD 为等边三角形, ∴BC =BD 2AB ,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB , ∴2×12. 故选D . 【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.9.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x 【答案】A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++. 故选:A . 【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差【答案】D【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )A .6B .7C .8D .9【答案】B【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13, ∴这组数据的中位数是()6821427+÷÷==, 故选:B . 【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数. 12.如图,O 的半径为10,圆心O 到弦AB 的距离为6,则AB 的长为( )A .8B .10C .12D .16【答案】D【分析】过点O 作OC ⊥AB 于C ,连接OA ,根据勾股定理求出AC 长,根据垂径定理得出AB=2CA ,代入求出即可.【详解】过点O 作OC ⊥AB 于C ,连接OA ,则OC=6,OA=10,由勾股定理得:228AC OA OC =-=,∵OC ⊥AB ,OC 过圆心O , ∴AB=2AC=16, 故选D . 【点睛】本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键. 二、填空题(本题包括8个小题)13.如图,已知点A、B分别在反比例函数y=1x(x>0),y=﹣5x(x>0)的图象上,且OA⊥OB,则OBOA 的值为_____.【答案】5.【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到S△OAC=12,S△OBD=52,再证明Rt△AOC∽Rt△OBD,然后利用相似三角形的性质得到OAOB的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A、B分别在反比例函数y=1x(x>0),y=﹣5x(x>0)的图象上,∴S△OAC=12×1=12,S△OBD=12×|﹣5|=52,∵OA⊥OB,∴∠AOB=90°∴∠AOC+∠BOD=90°,∴∠AOC=∠DBO,∴Rt△AOC∽Rt△OBD,∴AOCOBDSS∆∆=(OAOB)2=1252=15,∴OAOB5.∴OBOA55【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .14.如图所示的点阵中,相邻的四个点构成正方形,小球只在矩形ABCD 内自由滚动时,则小球停留在阴影区域的概率为___________.【答案】34【分析】分别求出矩形ABCD 的面积和阴影部分的面积即可确定概率. 【详解】设每相邻两个点之间的距离为a 则矩形ABCD 的面积为222a a a =而利用梯形的面积公式和图形的对称性可知阴影部分的面积为2113(2)3222a a a a a a +== ∴小球停留在阴影区域的概率为2233224aa = 故答案为34【点睛】本题主要考查随机事件的概率,能够求出阴影部分的面积是解题的关键. 15.抛物线y=x 2﹣4x+3的顶点坐标为_____. 【答案】(2,﹣1).【解析】先把函数解析式配成顶点式得到y=(x-2)2-1,然后根据顶点式即可得到顶点坐标. 解:y=(x-2)2-1,所以抛物线的顶点坐标为(2,-1). 故答案为(2,-1).“点睛”本题考查了二次函数的性质.二次函数的三种形式:一般式:y=ax 2+bx+c ,顶点式:y=(x-h )2+k ;两根式:y=a (x-x 1)(x-x 2).16.如果记()221x f x x =+,()1f 表示当1x =时221x x +的值,即2211(1)112f ==+;()2f 表示当2x =时221x x +的值,即2224(2)125f ==+;12f ⎛⎫ ⎪⎝⎭表示当12x =时,221x x +的值,即22111225112f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭;那。
12009年宝山区初三模拟测试数学试卷(满分150分,考试时间100分钟) 2009.4.考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.4的平方根是(A )2; (B )2-; (C )2±; (D )2±.2.下列等式中,一定成立的是(A )222)(b a b a +=+; (B )3232a a a =+;(C )aa2121=-; (D )523a a a =⋅. 3.1=x 是下列哪个方程的解(A)01=+x ; (B)1112-=-x x x ; (C)1=+y x ; (D)0433=-+x x . 4.已知点A (-2,3 )在双曲线xky =上,则下列点中,一定在该双曲线上的点是 (A )A (3,-2 ); (B )A (-2,-3 ); (C )A (2,3 ); (D )A (3,2) . 5.下列图形中,是旋转对称图形,但不是中心对称图形的是(A )等腰梯形; (B )等边三角形; (C )平行四边形; (D )直角梯形.26.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条 直径翻折,可以看到直径两侧的两个半圆互相重合”。
由此说明: (A)圆是中心对称图形,圆心是它的对称中心;(B)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴; (C)圆的直径互相平分;(D)垂直弦的直径平分弦及弦所对的弧.一、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置] 7.计算:28-= ▲ . 8.因式分解:a a 2213-= ▲ .9.方程21=-x 的解为 ▲ .10.已知一次函数y=kx+b 的图象经过点A (2,1)(如图1), 当x ▲ 时,y ≥1.11.从1、2、3、…… 9九个自然数中任选一个数,选出的数被2整除的概率是 ▲ .12.小明家离开学校的距离是a 米,他上学时每分钟走b 米,放学回家时每分钟比上学时少走 15米,则小明从学校回家用的时间是 ▲ 分钟(用含a 、b 的代数式表示). 13.请你写出一个..二次函数解析式,使其图像的顶点在y 轴上,且在y 轴右侧图像是下降的。
2024学年第一学期九年级数学期中试卷(满分150分时间100分钟)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸,本试卷上答题一律无效.3.除第一,二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题:(本大题共6题,每小题4分,满分24分)1.如果两个相似三角形对应边之比是1∶2,那么它们的对应高之比是()A.1∶2,B.1∶4,C.1∶6,D.1∶8.2.下列选项中的两个图形一定相似的是()A.两个等边三角形B.两个矩形C.两个菱形D.两个等腰三角形3.如图,DE ∥AB ,如果CE ∶AE =1∶2,DE =3,那么AB 等于()A.6,B.9,C.12,D.13.4.已知非零向量a ,b ,且有2a b =- ,下列说法中,不正确的是()A.2a b=B.a b∥C.a与b 方向相反D.0a b += 5.如图,点D ,E 分别在ABC V 的两边BA ,CA 的延长线上,下列条件能判定ED BC ∥的是().A.AD DEAB BC= B.AD AEAC AB= C.AD AEAB AC= D.AD AB DE BC⋅=⋅6.如图,在△ABC 中,点D 在边BC 上,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论一定正确的是()A.AE CF AB CD =, B.AE DF EB FC=, C.=EG FGBD AC , D.=AE ADAG AB.二.填空题:(本大题共12小题,每小题4分,满分48分)7.如果tan a =α的度数是_______8.如果()230a b b =≠,那么ab=__________________.9.已知在Rt ABC 中,90C ∠=︒,1cot 3B =,2BC =,那么AC =_____________.10.已知线段2AB =,如果点P 是线段AB 的黄金分割点,且AP BP >,那么AP 的值为_____.11.已知向量m 与单位向量e方向相反,且3a =,那么m =______(用向量e的式子表示)12.如图,已知AD ∥BE ∥CF ,它们依次交直线1l ,2l 于点A ,B ,C 和点D ,E ,F .如果23=AB BC ,DF=15,那么线段DE 的长是__.13.如图,ABC V 的中线AD ,CE 交于点G ,点G 是ABC V 的重心,点F 在边AC 上,GF BC ∥,那么GF BC =∶______.14.如图,ABC V 是边长为3的等边三角形,,D E 分别是边,BC AC 上的点,60ADE ∠= ,如果1BD =,那么CE =_________15.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为513,那么该矩形的面积为___.16.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,点E 是AD 的中点,联结OE .如果3AB =,4AC =,那么cos AOE ∠=_________.17.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,称这条线段是梯形的“比例中线”.在梯形ABCD 中,49AD BC AD BC ==∥,,,点E ,F 分别在边AB ,CD 上,如果EF 是梯形ABCD 的“比例中线”,那么DFDC的值为__________.18.如图,在△ABC 中,AB=AC,BC=8,tanB=32,点D 是AB 的中点,如果把△BCD 沿直线CD 翻折,使得点B 落在同一平面内的B′处,联结A B′,那么A B′的长为_____.三.解答题:(本大题共7题,满分78分)19.计算:22cot 602tan 30tan 60sin 452sin 30︒︒︒︒︒++-20.如图,在平行四边形ABCD 中,点E 在边AD 上,且2AE ED =,联结BE 并延长交边CD 的延长线于点F ,设,,BA a BC b ==.(1)用,a b 表示,,BE DF .(2)先化简,再求作:32()2a b a b ⎛⎫-++- ⎪⎝⎭(不要求写作法,但要写明结论)21.如图,在ABC V 中,45B ∠=︒,AD 是边BC 上的中线,3sin 5DAB ∠=,32BD =求:(1)AB 的长.(2)CAB ∠的余切值.22.如图,在ABC V 中,点D ,E 分别在边AB ,AC 上,且3AD =,6AC =,4AE =,8AB =.(1)如果7BC =,求线段DE 的长.(2)设DEC 的面积为2,求BDC 的面积.23.如图,平行四边形ABCD 中,AFBC ⊥,垂足为点F ,点E 是边AB 中点,连接DE 交线段AF 于点G ,2AE EG ED =⋅,连接EF .(1)求证:DE EF ⊥.(2)连接DF ,求证:22CD DF BF =⋅.24.在平面直角坐标系xOy 中,放置一个矩形OABC ,使矩形的一个顶点O 和坐标原点重合,点C 和点A 分别在第一和第四象限内,若点C 和点A 的纵坐标满足“C A y y m -=”,则称矩形OABC 具有“条件m ”.如图,矩形OABC 中,15OC =,10BC =.(1)当矩形OABC 具有“条件0”,求此时点C 坐标.(2)当矩形OABC 具有“条件1”,求此时OC 与x 轴正半轴所夹角的正弦值.(3)若矩形OABC 具有“条件m ”,当点B 在第一象限内,连接CB 并延长交x 轴正半轴于点F ,连接AC ,AF ,若OAC 与ABF △相似,直接写出此时m 的值.25.如图1,在ABC V 中,C ∠是锐角,AB AD =交边BC 于点D ,点F 是边AC 上一点,连接BF 且满足FBC C ∠=∠,BF 交边AD 于点E .(1)如图2,当点E 是边AD 中点时,求证:AF BDFC BC=.(2)当:1:8FE BE =,且ABE 是直角三角形时,求此时ACB ∠的正切值.(3)记AEF △的面积为1S ,ABF △的面积为2S ,ABC V 的面积为3S ,若2S 是1S 和3S 的比例中项,求:BD DC 的值.2024学年第一学期九年级数学期中试卷一.选择题:(本大题共6题,每小题4分,满分24分)1.如果两个相似三角形对应边之比是1∶2,那么它们的对应高之比是()A.1∶2,B.1∶4,C.1∶6,D.1∶8.【答案】A【分析】根据相似三角形的对应高的比,中线,角平分线的比都等于相似比作答即可.【详解】∵两个相似三角形对应边之比是1∶2.又∵相似三角形的对应高的比,中线,角平分线的比都等于相似比.∴它们的对应高之比是:1∶2.故选:A.【点睛】本题考查了相似三角形的性质:相似三角形的对应高的比,中线,角平分线的比都等于相似比.2.下列选项中的两个图形一定相似的是()A.两个等边三角形B.两个矩形C.两个菱形D.两个等腰三角形【答案】A【分析】本题考查的是相似图形的判断,掌握形状相同的图形称为相似图形是解题的关键.根据相似图形的概念进行判断即可.【详解】解:A,两个等边三角形,三个角都是60︒∴它们是相似图形,符合题意.B,两个矩形四个角都是90︒,但对应边的比不一定相等∴它们不是相似图形,不符合题意.C,两个菱形角不一定相等∴它们不是相似图形,不符合题意.D,两个等腰三角形对应边的比不一定相等.∴它们不是相似图形.故选:A.3.如图,DE∥AB,如果CE∶AE=1∶2,DE=3,那么AB等于()A.6,B.9,C.12,D.13.【答案】B【分析】根据比例的性质得CE ∶CA =1∶3,根据平行线分线段成比例定理的推论,即可求得答案.【详解】∵CE ∶AE =1∶2.∴CE ∶CA =1∶3.∵DE ∥AB .∴13DE CE AB CA ==∵DE =3.∴AB=3DE =9故选:B【点睛】本题考查了平行线分线段成比例定理的推论及比例的性质,熟练运用“平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例”是解题的关键.4.已知非零向量a ,b ,且有2a b =- ,下列说法中,不正确的是()A.2a b =B.a b∥ C.a与b 方向相反D.0a b +=【答案】D【分析】本题考查了平面向量的性质,解题的关键是熟练掌握平面向量的性质根据平面向量的性质进行分析判断.【详解】解∶2a b =-.||2||a b ∴= ,a b ∥, 20a b +=.故A ,B ,C 正确,D 错误.故选∶D .5.如图,点D ,E 分别在ABC V 的两边BA ,CA 的延长线上,下列条件能判定ED BC ∥的是().A.AD DE AB BC= B.AD AEAC AB= C.AD AEAB AC= D.AD AB DE BC⋅=⋅【答案】C【分析】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似.根据选项选出能推出ADE ABC △△∽,推出D B ∠=∠或E C ∠=∠的即可判断.【详解】解:A,∵AD DEAB BC=,EAD BAC ∠=∠,不符合两边对应成比例及夹角相等的相似三角形判定定理,无法判断ADE V 与ABC V 相似,即不能推出DE BC ∥,故本选项错误.B,AD AEAC AB=,EAD BAC ∠=∠.ADE ACB ∴ ∽.E B ∴∠=∠,D C ∠=∠.即不能推出DE BC ∥,故本选项错误.C,∵AD AEAB AC=,EAD BAC ∠=∠.DAE BAC ∴△∽△.D B ∴∠=∠.DE BC ∴∥,故本选项正确.D ,由AD AB DE BC ⋅=⋅可知AB DEBC AD=,不能推出DAE BAC △∽△,即不能推出D B ∠=∠,即不能推出两直线平行,故本选项错误.故选:C .6.如图,在△ABC 中,点D 在边BC 上,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论一定正确的是()A.AE CFAB CD=, B.AE DFEB FC=, C.=EG FGBD AC, D.=AE ADAG AB.【答案】A【分析】抓住已知条件:GE ∥BD ,GF ∥AC ,利用平行线分线段成比例以及中间比代换,对各选项一一判断即可求解.【详解】∵GE ∥BD ,∴AE AGAB AD=∵GF ∥AC ,∴CF AGCD AD=∴AE CFAB CD=,A 选项正确.∵GE ∥BD ,∴AE AGEB GD =∵GF ∥AC ,∴AG CFGD FD=∴AE CFEB FD=,B 选项错误.∵GE ∥BD ,∴EG AGBD AD =∵GF ∥AC ,∴GF DGAC AD=∴EG GFBD AC≠,C 选项错误.∵GE ∥BD ,∴AE ABAG AD=,D 选项错误.故选:A【点睛】本题考查了平行线分线段成比例定理,灵活运用中间比是解题的关键.二.填空题:(本大题共12小题,每小题4分,满分48分)7.如果tan a =α的度数是_______【答案】60︒##60度【分析】此题考查了特殊角的三角函数值.利用特殊角的三角函数值计算即可得到锐角α的度数.【详解】解:∵tan a =tan 60︒=∴锐角α的度数为60︒.故答案为:60︒.8.如果()230a b b =≠,那么ab=__________________.【答案】32【分析】本题考查比例的性质,根据比例的性质,求解即可.【详解】解:∵()230a b b =≠.∴32a b =.故答案为:32.9.已知在Rt ABC 中,90C ∠=︒,1cot 3B =,2BC =,那么AC =_____________.【答案】6【分析】根据三角函数的定义即可求解.【详解】∵cotB=BCAC,∴AC=13BC BCcotB==3BC=6.故答案是:6.【点睛】此题考查锐角三角函数的定义及运用,解题关键在于掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切为邻边比对边.10.已知线段2AB =,如果点P 是线段AB 的黄金分割点,且AP BP >,那么AP 的值为_____.1##1-+【分析】本题考查了黄金分割的定义,把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大部分的比值,则这个比值即为黄金分割,根据黄金分割点的定义求解,即可解题.【详解】解: 点P 是线段AB 的黄金分割点,且AP BP >,2AB =.BP AP AP AB∴=.即AB AP APAP AB -=.∴22AP AP AP -=.整理得1AP =-+1AP =--(不合题意,舍去)1AP ∴=-故答案为:1-+.11.已知向量m 与单位向量e方向相反,且3a =,那么m =______(用向量e的式子表示)【答案】-3e.【详解】试卷分析:由向量a 与单位向量e 方向相反,且|a|=3,根据单位向量与相反向量的知识,即可求得答案.∵向量a 与单位向量e 方向相反,且|a |=3.∴a =-3e .故答案为-3e.考点:平面向量.12.如图,已知AD ∥BE ∥CF ,它们依次交直线1l ,2l 于点A ,B ,C 和点D ,E ,F .如果23=AB BC ,DF=15,那么线段DE 的长是__.【答案】6【分析】由平行得比例,求出DE 的长即可.【详解】解:////AD BE FC .23AB DE BC EF ∴==.15DF = .2153DE DE ∴=-.解得:DE 6=.故答案为:6.【点睛】此题考查了平行线分线段成比例,熟练掌握平行线分线段成比例性质是解本题的关键.13.如图,ABC V 的中线AD ,CE 交于点G ,点G 是ABC V 的重心,点F 在边AC 上,GF BC ∥,那么GF BC =∶______.【答案】13∶##13【分析】本题考查了三角形中线和重心的性质,相似三角形的判定和性质,由三角形中线性质可得2BC CD =,由重心的性质可得23AG AD =,再根据相似三角形的性质可得23GF AG DC AD ==,进而即可求解,掌握重心的性质是解题的关键.【详解】解:∵A 是ABC V 的中线.∴2BC CD =.∵点G 是ABC V 的重心.∴23AG AD =.∵GF BC ∥.∴AFG ACD △∽△.∴23GF AG DC AD ==.∴2613GF BC ==∶∶∶.故答案为:13∶.14.如图,ABC V 是边长为3的等边三角形,,D E 分别是边,BC AC 上的点,60ADE ∠= ,如果1BD =,那么CE =_________【答案】23【分析】由等边三角形的性质得出∠B =∠C =60°,证明△ABD ∽△DCE ,由相似三角形的性质得出AB BD DC CE=则可求出答案.【详解】解:∵ABC V 是边长为3的等边三角形.∴60,3B C AB BC AC ∠=∠=︒===.∴120BAD BDA ∠+∠=︒.∵60ADE ∠= .∴120BDA EDC ∠+∠=︒.∴BAD EDC ∠=∠.∴ABD DCE ∠ .∴AB BD DC CE=.∵1BD =.∴2CD BC BD =-=.∴31=2CE.∴23CE =.故答案为:23.【点睛】本题考查了等边三角形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.15.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为513,那么该矩形的面积为___.【答案】240【分析】由矩形的性质和三角函数求出AB ,由勾股定理求出AD ,即可得出矩形的面积.【详解】解:如图所示:∵四边形ABCD 是矩形.∴∠BAD=90°,AC=BD=26.∵5sin 13AB ADB BD ∠==.∴5261013AB =⨯=.∴24AD ===.∴该矩形的面积为:2410240⨯=.故答案为:240.【点睛】本题考查了矩形的性质,勾股定理,三角函数,熟练掌握矩形的性质,由勾股定理求出AB 和AD 是解决问题的关键.16.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,点E 是AD 的中点,联结OE .如果3AB =,4AC =,那么cos AOE ∠=_________.【答案】23【分析】本题考查了求角的余弦根据O ,E 分别是AC ,A 的中点,知OE 是中位线得AOE ACD ∠=∠,连接BD ,根据菱形的性质知AC 与BD 垂直平分,根据余弦的定义,即可求解.【详解】解:在菱形ABCD 中,O 是AC 的中点.O ∴也是对角线的交点,且AC 与BD 垂直平分.O ,E 分别是AC ,A 的中点.∴ OE CD .∴AOE ACD∠=∠在Rt OCD △中,114222OC AC ==⨯=,3CD AB ==.∴2cos cos 3OC AOE ACD CD ∠∠===故答案为:2317.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,称这条线段是梯形的“比例中线”.在梯形ABCD 中,49AD BC AD BC ==∥,,,点E ,F 分别在边AB ,CD 上,如果EF 是梯形ABCD 的“比例中线”,那么DF DC的值为__________.【答案】25##0.4【分析】先根据EF 是AD BC 、的比例中项可求得EF ,再过点D 作AB 的平行线构造平行四边形,可求得MF NC 、的长度,然后再利用DMF DNC △∽△即可求得DF DC 的值.【详解】如图,过点D 作AB 的平行线,交EF BC 、于点M ,N .∵,AB EF BC DN AB∥∥∥∴四边形AEMD ,四边形EBNM ,四边形ABND 均为平行四边形.∴4EM BN AD ===.∵EF 是梯形ABCD 的比例中项.∴496EF AD BC =×´=.∴2,945MF EF EM NC BC BN =-==-=-=由EF BC ∥得,,DMF DNC DFM DCN==∠∠∠∠∴DMF DNC△∽△∴25DF MF DC NC ==故答案为:25.【点睛】本题考查了比例中项,平行四边形的判定和性质,相似三角形的判定和性质,解题的关键是作AB 的平行线构造平行四边形与相似三角形.18.如图,在△ABC 中,AB=AC,BC=8,tanB=32,点D 是AB 的中点,如果把△BCD 沿直线CD 翻折,使得点B 落在同一平面内的B′处,联结A B′,那么A B′的长为_____.255【详解】分析:如图,作AE ⊥BC 于E,DK ⊥BC 于K ,联结BB′交CD 于H .只要证明∠AB′B=90°,求出AB,BB′,理由勾股定理即可解决问题.详解:如图,作AE ⊥BC 于E,DK ⊥BC 于K ,联结BB′交CD 于H .∵AB=AC,AE ⊥BC.∴BE=EC=4.在Rt △ABE 中,∵tanB=3=2AE BE.∴2246+13∵DK ∥AE,BD=AD.∴BK=EK=2.∴DK=12AE=3.在Rt △CDK 中,223635+=.∵B,B′关于CD 对称.∴BB′⊥CD,BH=HB′∵S △BDC =12•BC•DK=12•CD•BH.∴BH=855.∴BB′=1655.∵BD=AD=DB′.∴∠AB′B=90°.∴22255AB BB -'=.故答案为:255点睛:本题考查翻折变换,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三.解答题:(本大题共7题,满分78分)19.计算:22cot 602tan 30tan 60sin 452sin 30︒︒︒︒︒++-【答案】52+【分析】根据特殊角的三角函数值即可代入求解.【详解】解:原式22332331222+⨯⎛=+- ⎪⎝⎭⨯132=+-52=+【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值.20.如图,在平行四边形ABCD 中,点E 在边AD 上,且2AE ED =,联结BE 并延长交边CD 的延长线于点F ,设,,BA a BC b ==.(1)用,a b 表示,,BE DF .(2)先化简,再求作:32()2a b a b ⎛⎫-++- ⎪⎝⎭(不要求写作法,但要写明结论)【答案】(1)23BE a b =+ ,12DF a = ;(2)原式12a b =- ,作图见解析【分析】(1)根据平行四边形的性质得对边相等且平行,再根据向量,平行向量的概念,性质及向量的运算进行求解.(2)根据平行四边形的性质得对边相等且平行,再根据向量的运算进行化简,根据化简结果的运算性质作图.【详解】解:(1)∵四边形ABCD 是平行四边形.∴AB=CD,AB ∥CD,AD=BC,AD ∥BC ∴AB AE DF ED=.∵AE=2ED.∴DF=12AB,AE=23AD.∵,BA a BC b == .∴12DF a =,23AE b =.∴23BEAB AE a b += =+.(2)32()2a b a b ⎛⎫-++- ⎪⎝⎭3222a b a b = -++-.21a b = -;如图,平行四边形ABCD ,取AB 的中点,则12BM a =,CB b =-.∴1122CM CB BM b a a b =+=-+=-.∴12CM a b =-【点睛】本题考查向量的性质及运算,根据平行线得平行向量及向量的运算是解答此题的关键.21.如图,在ABC V 中,45B ∠=︒,AD 是边BC 上的中线,3sin 5DAB ∠=,32BD =求:(1)AB 的长.(2)CAB ∠的余切值.【答案】(1)7(2)16【分析】本题考查的是解直角三角形的应用,勾股定理的应用.(1)过点D 作DE AB ⊥于点E ,先求解3BE DE ==,再求解5AD =,4AE=即可.(2)作CH AB ⊥,垂足为H .求解62BC =,2262BH CH ===,可得761AH =-=,在Rt CHA △中,利用余切的定义求解即可.【小问1详解】解:过点D 作DE AB ⊥于点E .在Rt BDE △中,DE AB ⊥,BD =45B ∠=︒.232∴===BE DE .在Rt ADE 中,3sin 5DAB ∠=,3DE =.∴35DE AD =,则5AD =.4AE ∴==.437AB AE BE ∴=+=+=.【小问2详解】作CH AB ⊥,垂足为H .AD 是BC 边上的中线,BD =BC ∴=45ABC ∠=︒ .62BH CH ∴===.761AH ∴=-=.即在Rt CHA △中,1cot 6AH CAB CH Ð==.22.如图,在ABC V 中,点D ,E 分别在边AB ,AC 上,且3AD =,6AC =,4AE =,8AB =.(1)如果7BC =,求线段DE 的长.(2)设DEC 的面积为2,求BDC 的面积.【答案】(1)72(2)10【分析】本题主要考查相似三角形的判定和性质,熟练掌握相似三角形的判定是解题的关键.(1)通过证明ADE ACB ∽,即可得到答案.(2)由线段的数量关系求出面积关系即可得到答案.【小问1详解】解:3162AD AC == ,4182AE AB ==.AE AD AB AC ∴=.且DAE BAC ∠=∠ .ADE ACB ∴ ∽.12AD DE AC BC ∴==.1177222DE BC ∴==⨯=.【小问2详解】解:4,6AE AC == .123EC AC ∴==.3326ACD DEC S S ∴==⨯= .3AD = .8AB =.553BD AD ∴==.5561033BDC ADC S S ∴==⨯= .23.如图,平行四边形ABCD 中,AF BC ⊥,垂足为点F ,点E 是边AB 中点,连接DE 交线段AF 于点G ,2AE EG ED =⋅,连接EF .(1)求证:DE EF ⊥.(2)连接DF ,求证:22CD DF BF =⋅.【答案】(1)见解析(2)见解析【分析】本题主要考查平行四边形的性质,相似三角形的判定和性质,直角三角形的性质,熟练掌握性质定理是解题的关键.(1)根据直角三角形斜边上的中线等于斜边的一半得到EAF EFA ∠=∠,由题意推出AED GEA ∽,以及平行四边形的性质得到90ADE AGD ∠+∠=︒,证明90DEF ∠=︒,即可得到结论.(2)根据题意证明BAF FDE ∽,再根据相似三角形的性质得到对应线段成比例即可证明结论.【小问1详解】证明: AF BC ⊥,点E 是边AB 中点.12EF AB AE BE ∴===.EAF EFA ∴∠=∠.2AE EG ED =⋅.AE ED EG AE∴=.AED AEG∠=∠ AED GEA ∴ ∽.ADE EAF ∴∠=∠.平行四边形ABCD 中.AD BC ∴∥.180DAF AFC ∴∠+∠=︒.90DAF AFC ∴∠=∠=︒90ADE AGD ∴∠+∠=︒.EAF EFA ∠=∠ .ADE EAF ∠=∠ .ADE EFA ∴∠=∠.,ADE EFA AGD EGF ∠=∠∠=∠ .90EGF EFG ∴∠+∠=︒.90DEF ∴∠=︒.DE EF ∴⊥.【小问2详解】证明:由(1)得90DEF ∠=︒.AF BC⊥Q 90AFB ∴∠=︒DEF AFB ∴∠=∠.2AE EG ED =⋅且AE EF =.2EF EG ED ∴=⋅.EF ED EG EF∴=GEF FED∠=∠ GEF FED ∴ ∽.EFG EDF ∴∠=∠.BAF FDE ∴∠=∠.BAF FDE ∴ ∽.AB BF DF EF ∴=,即12BFDF AB AB =.22AB DF BF ∴=⋅.ABCD 是平行四边形.AB CD ∴=.22CD DF BF ∴=⋅.24.在平面直角坐标系xOy 中,放置一个矩形OABC ,使矩形的一个顶点O 和坐标原点重合,点C 和点A 分别在第一和第四象限内,若点C 和点A 的纵坐标满足“C A y y m -=”,则称矩形OABC 具有“条件m ”.如图,矩形OABC 中,15OC =,10BC =.(1)当矩形OABC 具有“条件0”,求此时点C 坐标.(2)当矩形OABC 具有“条件1”,求此时OC 与x 轴正半轴所夹角的正弦值.(3)若矩形OABC 具有“条件m ”,当点B 在第一象限内,连接CB 并延长交x 轴正半轴于点F ,连接AC ,AF ,若OAC 与ABF △相似,直接写出此时m 的值.【答案】(1)1313,1313⎛ ⎝⎭(2)35(3)6m =或20541【分析】(1)过点A 作AE x ⊥轴,过点C 作CD x ⊥轴,可证得△∽△AOE OCD ,得23AE OE OD CD ==,由题意可知0C A y y -=,即CD AE =,则23CD OD =,令3OD k =,2CD k =,由勾股定理即可求解.(2)由题意可得1CD AE -=,即1AE CD =-,则123AE CD OD OD -==,设CD a =,则332a OD -=,由勾股定理可得22233152a a -⎛⎫+= ⎪⎝⎭,解得9a =(9913a =-舍去),即9CD =,再根据正弦的定义即可求解.(3)由题意可知90AOC ABF ∠=∠=︒,分别两种情况:当OA OC BF AB =时,则,AOC FBA △∽△,当OA OC AB BF=时,则AOC BAF △∽△,分别求出sin CFO ∠即可求解.【小问1详解】解:过点A 作AE x ⊥轴,过点C 作CD x ⊥轴,则90ODC AEO ∠=∠=︒.在矩形OABC 中,15==OC AB ,10OA BC ==,=90AOC ∠︒.则90AOE COD ∠+∠=︒,而90∠∠+=︒COD OCD .∴AOE OCD ∠=∠.∴△∽△AOE OCD .∴OA AE OE OC OD CD ==,即:23AE OE OD CD ==.当矩形OABC 具有“条件0”时,即:0C A y y -=.∴C A y y =,即CD AE =.则23CD OD =,令3OD k =,2CD k =.由勾股定理可得:222OD CD OC +=,即:()()2223215k k +=.解得:13k =(负值舍去).∴OD =,CD =.则此时点C 的坐标为,1313⎛⎫ ⎪ ⎪⎝⎭.【小问2详解】当矩形OABC 具有“条件1”时,即:1C A y y -=.∴1CD AE -=,即1AE CD =-,则123AE CD OD OD -==.设CD a =,则332a OD -=.由勾股定理可得:222OD CD OC +=,即:22233152a a -⎛⎫+= ⎪⎝⎭.解得:9a =(9913a =-舍去),即9CD =.∴93sin 155CD COD OC ∠===.则此时OC 与x 轴正半轴所夹角COD ∠的正弦值为35.【小问3详解】由题意可知:90AOC ABF ∠=∠=︒.当OA OC BF AB =时,则,AOC FBA △∽△.此时101515BF =,则10BF BC ==.∴20CF =,则25OF =.∴153sin 255OC CFO OF ∠===,则3sin 20125CD CF CFO =⋅∠=⨯=.∵OA BC ∥.∴AOE CFO ∠=∠,则3sin sin 5AOE CFO ∠=∠=.∴3sin 1065AE OA AOE =⋅∠=⨯=.∴6C A m y y CD AE =-=-=.当OA OC AB BF=时,则AOC BAF △∽△.此时101515BF =,则22545102BF ==.∴652CF BC BF =+=,则52052OF =.∴sin 52052OC CFO OF ∠==,则656205sin 2205CD CF CFO =⋅∠=⨯.∵OA BC ∥.∴AOE CFO ∠=∠,则6205sin sin 205AOE CFO ∠=∠=.∴6205sin 10205AE OA AOE =⋅∠=⨯.∴6545102205205220541C A m y y =-=⨯-⨯=⨯=.综上,当OAC 与ABF △时,6m =或41.【点睛】本题考查相似三角形的判定及性质,解直角三角形,勾股定理,解一元二次方程,添加辅助线构造相似三角形和直角三角形是解决问题的关键.25.如图1,在ABC V 中,C ∠是锐角,AB AD =交边BC 于点D ,点F 是边AC 上一点,连接BF 且满足FBC C ∠=∠,BF 交边AD 于点E .(1)如图2,当点E 是边AD 中点时,求证:AF BD FC BC=.(2)当:1:8FE BE =,且ABE 是直角三角形时,求此时ACB ∠的正切值.(3)记AEF △的面积为1S ,ABF △的面积为2S ,ABC V 的面积为3S ,若2S 是1S 和3S 的比例中项,求:BD DC 的值.【答案】(1)见解析(2)ACB ∠的正切值为22或12(3)512-【分析】(1)过点D 作DG EF ∥,由平行线分线段成比例可得AE AF DE GF =,BD FG CD CG =,利用比例的性质可得FG BD FC BC=,结合题意得AE DE =,则AF GF =,进而可证明结论.(2)先证ABF EAF ∠=∠,BF CF =,即可证明ABF EAF △∽△,得BF AF AB AF EF AE ==,则2AF EF BF =⋅,由:1:8FE BE =,设FE a =,8BE a =,则9BF CF a ==,求得3AF a =,则12AC AF CF a =+=,3AB AE =,再分两种情况:当90AEB ∠=︒时,则90AEF ∠=︒,当90BAE ∠=︒时,分别解直角三角形求解即可.(3)由(2)可知ABF EAF △∽△,BF AF AB AF EF AE ==,BF CF =,可知221S BF S AF ⎛⎫= ⎪⎝⎭,设BCF V 的面积为4S ,则42S CF BF S AF AF ==,由题意可知,3224412221S S S S S S S S S +===+,令BF t AF=,则21t t =+,21t t -=,求得t 的值,用1S 表示出,221S t S =,431S t S =,211ABE S S S tS =-=△,21ABD ABE S tS t S ==△,则331ADC ABD S S S t S =-=△△,结合ABD ADC S BD DC S =△△即可求解.【小问1详解】证明:过点D 作DG EF ∥.∴AE AF DE GF =,BD FG CD CG =.∴FG CG FG CG FC BD CD BD CD BC +===+∴FG BD FC BC=.∵点E 是AD 的中点.∴AE DE =.∴AF GF =.∴AF BD FC BC=.【小问2详解】解:∵AB AD =.∴ABD ADB ∠=∠,则ABF FBC EAF C ∠+∠=∠+∠.∵FBC C ∠=∠.∴ABF EAF ∠=∠,BF CF =.∵AFB EFA ∠=∠.∴ABF EAF △∽△.∴BF AF AB AF EF AE==,则2AF EF BF =⋅.由:1:8FE BE =,设FE a =,8BE a =,则9BF CF a ==.∴3AF a =,则12AC AF CF a =+=.∴33AB AF a AE EF a===,即:3AB AE =.当90AEB ∠=︒时,则90AEF ∠=︒.∵ABF EAF △∽△.∴90BAF AEF ∠=∠=︒.由勾股定理得:AB ===.∴622tan 122AB ACB AC a ∠===.当90BAE ∠=︒时,过点B 作BH 垂直于CA 的延长线于H .则90ABH BAH BAH EAF ∠+∠=∠+∠=︒.∴ABH EAF ABF α∠=∠=∠=.∵3AB AE =,8BE a =,222AE AB BE +=.∴AE =,AB =.则5sin 810AE BE a α===,5cos 810AB BE a α===.∴12sin 5AH AB a α=⋅=⨯,36cos 5BH AB a α=⋅=⨯.则12721255CH AC AH a a a =+=+=.∴3615tan 7225a BH ACB CH a ∠===.综上,当ABE 是直角三角形时,ACB ∠的正切值为22或12.【小问3详解】由(2)可知ABF EAF △∽△,BF AF AB AF EF AE==,BF CF =.∴221S BF S AF ⎛⎫= ⎪⎝⎭.设BCF V 的面积为4S ,则42S CF BF S AF AF ==.由题意可知,3224412221S S S S S S S S S +===+.∴21BF BF AF AF ⎛⎫=+ ⎪⎝⎭,令BF t AF =,则21t t =+,21t t -=解得:512t +=(负值舍去),即:BF AF AB t AF EF AE ===.∴223221S S BF t S S AF ⎛⎫=== ⎪⎝⎭,AB t AE =,则221S t S =,431S t S =.∴()222111111ABE S S S t S S t S tS =-=-=-= .∵AB AD =.∴AD AB t AE AE ==,则ABD ABE S AD t S AE ==△△.∴21ABD ABE S tS t S ==△.则()42223311111ADC ABD S S S t S t S t S t t S =-=-=-= .∴21311512ABD ADC S t S BD DC S t S t -====△△.【点睛】本题考查平行线分线段成比例,相似三角形的判定及性质,解直角三角形,勾股定理等知识点,添加辅助线构造直角三角形,利用线段比转化面积比是解决问题的关键.。
2009学年第一学期期末考试九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共26题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列算式中,正确的是( ). (A ) 523121=+; (B ) 532=+;(C )632=⨯; (D ) 222)(b a b a -=-.2.已知b a >,那么下列结论一定成立的是( ). (A )22b a >; (B )b a 2121-<-; (C )11-<-b a ; (D )ba 11<.3.根据你对相似的理解,下列命题中,不.正确的是( ). (A )相似三角形的对应角相等; (B )相似三角形的对应边成比例; (C )相似三角形的周长比等于相似比; (D )相似三角形的面积比等于相似比. 4.直线x y 2=与x 轴正半轴的夹角为α, 那么下列结论正确的是( ).(A )2tan =α; (B )2cot =α ; (C )2sin =α; (D )2cos =α.5.已知平行四边形ABCD ,对角线AC 、BD 交于点O . 下列命题中,正确的是( ). (A )CD AB =; (B )OC AD AB 2=+; (C=; (D )AB OB OA =-.6.已知c bx ax x f ++=2)((其中c b a 、、为常数,且0≠a ),小明在用描点法画)(x f y =的图像时,列出如下表格. 根据该表格,下列判断中,不.正确的 是( ).(A )抛物线)(x f y =开口向下; (B ) 抛物线)(x f y =的对称轴是直线1=x ; (C )2)3(-=f ; (D ))8()7(f f <. 二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7. 4的平方根是 ▲ .8. 不等式012<-x 的解集是 ▲ .9. 方程1112-=-x x x 的解为 ▲ . 10. 平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是 ▲ .11. 抛物线2)1(2++-=x y 的顶点坐标为 ▲ .12. 把抛物线23x y =先向右平移2个单位,再向下平移1个单位,这时抛物线的解析式为: ▲ .13. 一条抛物线具有下列性质:(1)经过点)3,0(A ;(2)在y 轴左侧的部分是上升的,在y 轴右侧的部分是下降的. 试写出一个满足这两条性质的抛物线的表达式. ▲ .14. 某小山坡的坡长为200米,山坡的高度为100米,则该山坡的坡度i = ▲ . 15. 在平面直角坐标系中,已知点)0,1(A 、)2,0(B 、)2,2(C .记向量=,则-= ▲ (用e 表示). 16. 已知ABC ∆中,点D 、E 分别在边AB 、AC 上,且DE ∥BC . 若ADE∆的面积与四边形BCED 的面积相等,则ABAD的值为 ▲ . 17. 如图,梯形ABCD 中,AB ∥CD ,点M 、N 分别是AD 、BC 的中点,AB DE ⊥,垂足为点E . 若四边形BCDE 是正方形,且点M 、N 关于直线DE 对称,则DAE ∠的余切值为 ▲ .(第18题图)ADBCE(第17题图)ENB (第16题图)18.如图,已知菱形ABCD 中,︒=∠60ABC ,点E 在边BC 上,︒=∠25BAE .把线段AE 绕点A 逆时针方向旋转,使点E 落在边CD 上,则旋转角α的 度数为 ▲ .(︒<<︒1800α)三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分) 19. 先化简,再求代数式12)1311(2-÷-+++x xx x x 的值.其中︒-︒=45cos 60sin x .20. 如图,已知向量、,求作向量,满足2)2(21b -=+-. (不要求写作法,但要保留作图痕迹,并写出结论)21.如图,ABC ∆中,点D 在边BC 上,DE ∥AB ,DE 交AC 于点E ,点F 在边AB 上,且AE CE FB AF =.(1)求证:DF ∥AC ;(2)如果2:1:=DC BD ,ABC ∆的面积为182cm ,求四边形AEDF 的面积.D22、为了预防“流感”,某学校对教室进行“药熏”消毒。
下图反映了从药物燃烧开始,室内每立方米的含药量y (毫克)与时间x (分钟)之间的函数关系. 已知在药物燃烧阶段,y 与x二次函数关系;药物燃烧结束后,y 与x 成反比例.(1)试求药物燃烧阶段,y 关于x 的 函数解析式并写出定义域; (2)若每立方米的含药量不低于20 毫克且持续时间超过25分钟,才 消毒是否有效?23.小明是世博志愿者,前不久到世博园区参观。
园区的核心区域“一轴四馆”(如左图所示)引起了他的关注。
小明发现,世博轴大致上为南北走向,演艺中心在中国馆的正北方向,世博中心在中国馆的北偏西45°方向,且演艺中心、世博中心到中国馆的距离相等.从中国馆出发向西走大约200米,到达世博轴上的点E处,这时测得世博中心在北偏西26.6°方向。
小明把该核心区域抽象成右侧的示意图(图中只显示了部分信息).(1)把题中的数据在示意图上标出,有关信息用几何语言加以描述(如AB ∥MN 等); (2)试求出中国馆与演艺中心的距离(精确到1米).(备用数据:5.06.26tan ,9.06.26cos ,45.06.26sin =︒=︒=︒ 1.414=).24.已知△ABC 中,3=AB ,3=AC ,D 是边AC 上一点,且2:1:=DC AD ,联结BD .(1)求证:ABD ∆∽ACB ∆; (2)若31ACB sin =∠,试画出符合条件的大致图形,并求BD 的长度.四、(本大题共2题,第25题12分,第26题14分,满分26分) 25.(本题共2小题,5分+7分,满分12分)在平面直角坐标系中,O 为坐标原点,二次函数214y x bx c =-++的图像经过点A (4,0)、C (0,2).(1)试求这个二次函数的解析式,并判断点)0,2(-B 是否在该函数的图像上; (2)设所求函数图像的对称轴与x 轴交于点D ,点E 在对称轴上,若以点C 、D 、E 为顶点的三角形与△ABC 相似,试求点E 的坐标..A.C .Oxy 1A DCB.26.(本题共3小题,4分+4分+6分,满分14分)在平面直角坐标系中,已知点A (4,0),点B (0,3). 点P 从点A 出发,以每秒1个单位的速度向右平移,点Q 从点B 出发,以每秒2个单位的速度向右平移,又P 、Q 两点同时出发.(1) 联结AQ ,当△ABQ 是直角三角形时,求点Q 的坐标;(2) 当P 、Q 运动到某个位置时,如果沿着直线AQ 翻折,点P 恰好落在线段AB上,求这时∠AQP 的度数;(3) 过点A 作AC ⊥AB ,AC 交射线PQ 于点C ,联结BC ,D 是BC 的中点. 在点P 、Q 的运动过程中,是否存在某时刻,使得以A 、C 、Q 、D 为顶点的四边形是平行四边形,若存在,试求出这时ABC cot 的值;若不存在,试说明理由。
宝山区2009学年第一学期期末考试九年级数学试卷参考答案一、 选择题:(本大题共6题,每题4分,满分24分)1.C . 2.B 3.D 4.A 5.B 6.D 二、 填空题:(本大题共12题,每题4分,满分48分) 7.2±. 8.21<x 9.1-=x . 10. (-3, 2). 11.(-1, 2).12.1)2(32--=x y . 13.32+-=x y 等. 14.3:1.15. -2. 16.22. 17. 2. 18.60°或70° 三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分) 19.解:原式=()()xx x x x x 2111311-⋅⎥⎦⎤⎢⎣⎡+-+++ ………………………(1分) =()()123121++++-x x x x x x=()()1212++x x x =x1………………………(3分) ∵︒-︒=45cos 60sin x =223-.………………………(2分) ∴原式=2232232+=- ………………………(2分) 20.解:b a b a x-=+-22 ………………………(1分)b a x232-= ………………………(1分) b a x-=23 ………………………(2分)图略………………………(4分)21证明:(1)∵DE ∥AB∴BDCDAE CE = ………………………(1分) ∵AE CE FB AF = ∴BDCDFB AF = ………………………(1分) ∴DF ∥AC ………………………(2分)(2)∵2:1:=DC BD ∴91=∆∆ABC FBD S S 94=∆∆ABC CDE S S ………………………(2分) ∴ABC AEDF S 94∆=四边形S ………………………(1分) ∵ABC ∆的面积为182cm∴2A ED F 8S cm =四边形 ………………………(1分)22、(1)由已知设c bx ax y ++=2 ()0≠a ……………(1分)根据图像,0=x 时,0=y ;5=x 时,35=y ;10=x 时,60=y ;所以⎪⎩⎪⎨⎧=++=++=6010100355250c b a c b a c , 解得,⎪⎪⎩⎪⎪⎨⎧=-==8510b a c ;………………(3分)所以函数解析式为x x y 8512+-= ()100≤≤x ;……………(1分) (2)100≤≤x 时,令20=y ,得208512=+-x x ,解得,31020-=x ;……………(1分) 当10≥x 时,由已知令xk y =; 又10=x 时,60=y ;所以600=k ,)10(600≥=x xy ;由20=y ,得30=x ;…………(1分) 2531010)31020(30>+=--;即含药量不低于20毫克的时间为31010+超过25分钟,所以消毒有效。
…(1分)23.解:(1)图(略)AB ∥MN ,AC AB =,MN AE ⊥,200=AE , ︒=∠45BAC ,︒=∠6.26MEC…………(4分)2)过点C 作AB CH ⊥垂足为点H , MN 于点F ………(1分)∵︒=∠45BAC∴CH=AH FH=AE=200 ………(1分)设AH=CH=X , 则x AC 2=,200-=x CF∴在Rt △CFE 中,EFCFCEF =∠tan ∴21200=-x x ………(2分) 解得x = 400 ………………………(1分) 则5662400≈==AB AC 米………(1分)24.解:(1)∵2:1:=DC AD 3=AC ∴AD=1 DC=2 ∵3=AB ∴ACABAB AD = …………………(2分)又∵∠A 是公共角∴ABC ADB ∽△△……………(1分)(2)图 …………………(2分)A DCB .解一:过点A 作BC AH ⊥垂足为点H . 在ACH △中,︒=∠90AHC ,31ACB sin =∠,3=AC ∴1AH =,22CH = ………(1分)在ABH △中,︒=∠90AHB ,3=AB ,1=AH∴2BH =………(1分)若ABC ∠为锐角(或点H 在边BC 上) 则 23B =+=CH BH C ………(1分) ∵ABC ADB ∽△△∴ACABCB BD =,解得 6B =D ………(1分) 若ABC ∠为钝角(或点H 在边CB 的延长线上) 则 2B =-=BH CH C∵ABC ADB ∽△△∴AC AB CB BD =,解得 36B =D ………(1分) ∴ BD 的长度为36或6解二: 过点B 作BH ⊥AC ,垂足为点H∵31ACB sin =∠ ∴BH BC 3=,BH CH 22=∵BH AH 223-= …………………………(1分) 在Rt △ABH 中,222AB BHAH =+∴3)223(22=+-BH BHADCB.HADCB.HAD CB.HDCB.H解得32=BH 或2=BH …………………………(2分) ∴当32=BH 时,3622=+=DH BH BD …………………(1分) 当2=BH 时,6=BD …………………………(1分)四、(本大题共2题,第25题12分,第26题14分,满分26分) 25.(本题共2小题,5分+7分,满分12分) (1)∵c bx x y ++-=241过点A (4,0)、C (0,2) ∴2,21==c b …………………………(2分)∴ 221412++-=x x y …………………………(1分)∵当x= -2 时,y=0∴点)0,2(-B 在该二次函数的图像上;……………………(2分)(3)∵二次函数的对称轴为直线x =1∴D (1 , 0 ) …………………………(1分) ∵点E 在对称轴上,且对称轴平行y 轴∴OCD CDE ∠=∠又6AB =,52AC =,5CD =,2OC =,1OD = 易得 OAC OCD ∽△△ ∴ OAC OCD ∠=∠,从而OAC CDE ∠=∠若以点C 、D 、E 为顶点的三角形与△ABC 则有以下两种情况:ⅰ)当AB DCAC DE =时, 即6552=DE,解得:35=DE ∴点E 的坐标为)35,1(……………………(2分)ⅱ) 当ACDCAB DE =时, 即5256=DE ,解得:3=DE ∴点E 的坐标为)3,1(……………………(2分) 综上点E 的坐标为)35,1(或)3,1(. 27.(本题共3小题,4分+5分+5分,满分14分) 解:(1)根据题意,可得:A (4,0)、B (0,3)、AB =5ⅰ)当∠BAQ=90°时,BAQ OB ∽△△A ………………(1分)∴AOABAB BQ = 解得425=BQ ………………(1分)ⅱ) 当∠BQA=90°时,BQ=OA=4………………(1分)∴Q ⎪⎭⎫⎝⎛3,425或 ()3,4 …………(1分)(2) 令点P 翻折后落在线段AB 上的点E 处则∠EAQ =∠P AQ ,∠EQA =∠PQA ,AP AE =,QP QE =…………(1分) 又BQ ∥OP ∴∠P AQ =∠BQA∴∠EAQ =∠BQA即AB =QB=5 ……………………(1分)∴2521==BQ AP ,∴AB AP AE 2125===,即点E 是AB 的中点.过点E 作EF ⊥BQ ,垂足为点E ,过点Q 作QH ⊥OP ,垂足为点H , 则23=EF ,23=PH ∴PH EF = 又PQ EQ =,︒=∠=∠90PHQ EFQ ∴PHQ EQF ∆≅∆,∴PQH EQF ∠=∠,从而︒=∠90PQE ……………………(2分) ∴︒=∠=∠45AQE AQP …………………………(1分) (3) 当点C 在线段PQ 上时,延长BQ 与AC∵ AC ⊥AB∴HA OB F A ∽△△∴FH AO FA AB = 即345=FA ∴415=FA …………………(1分)∵ DQ ∥AC ,DQ =AC ,且D 为BC 中点∴ FC=2DQ=2AC …………………(1分) ∴45=AC 在Rt △BAC 中,ABC ∠cot = 4…………………(1分)当点C 在PQ 的延长线上时,记BQ 与G ,∵ CQ ∥AD ,CQ =AD 且D 为BC 中点 ∴ AD=CQ=2DG ∴ CQ=2AG=2PQ∴ FC=2AF …………………(1分) ∴445=AC 在Rt △BAC 中,94cot =∠ABC …………………(1分)。