九年级上《一元二次方程》单元试题
- 格式:doc
- 大小:95.51 KB
- 文档页数:2
九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、单选题(共10题;共30分)1.方程x2-2x=0的解为( )A . x1=0,x2=2B . x1=0,x2=-2C . x1=x2=1D . x=22.设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是( )A . 2B . ﹣2C .D . ﹣3.用因式分解法解一元二次方程时,原方程可化为( )A .B .C .D .4.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )A . 180(1+x%)=300B . 180(1+x%)2=300C . 180(1-x%)=300D . 180(1-x%)2=3005.用配方法解方程x2﹣8x+3=0,下列变形正确的是( )A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=196.一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情况是()A . 该方程有两个不相等的实数根B . 该方程有两个相等的实数根C . 该方程有实数根D . 该方程没有实数根7.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()A . y2+5y-6=0B . y2+5y+6=0C . y2-5y+6=0D . y2-5y-6=08.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A . x2﹣7x+12=0B . x2+7x+12=0C . x2﹣9x+20=0D . x2+9x+20=09.设A 是方程x2+2x﹣2=0的一个实数根,则2A 2+4A +2016的值为( )A . 2016B . 2018C . 2020D . 202110.如图,△A B C 是一块锐角三角形材料,高线A H长8 C m,底边B C 长10 C m,要把它加工成一个矩形零件,使矩形D EFG的一边EF在B C 上,其余两个顶点D ,G分别在A B ,A C 上,则四边形D EFG 的最大面积为( )A . 40 C m2B . 20C m2C . 25 C m2D . 10 C m2二、填空题(共10题;共30分)11.已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.12.一元二次方程x2﹣4x+4=0的解是________.13.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.14.已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.15.一元二次方程x2+5x﹣6=0的两根和是________.16.若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是_____.(写出一个符合要求的方程)17.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.18.(3分)已知关于x的方程有两个实数根,则实数A 的取值范围是.19.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.20.已知A 、B 是一元二次方程的两个实数根,则代数式的值等于.三、解答题(共8题;共60分)21.解下列方程(1)2x2-x=0(2)x2-4x=422.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).23.在等腰△A B C 中,三边分别为A 、B 、C ,其中A =5,若关于x的方程x2+(B +2)x+6﹣B =0有两个相等的实数根,求△A B C 的周长.24.给定关于的二次函数,学生甲:当时,抛物线与轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;请判断学生甲、乙的观点是否正确,并说明你的理由.25.阅读探索:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=_____,x2=_______,∴满足要求的矩形B 存在.(2)如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .(3)如果矩形A 的边长为m和n,请你研究满足什么条件时,矩形B 存在?26.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?27.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A ,B 两种规格的自行车100辆,已知A 型的进价为500元/辆,售价为700元/辆,B 型车进价为1000元/辆,售价为1300元/辆。
人教版数学九年级上学期《一元二次方程》单元测试【考试时间:90分钟分数:100分】一.选择题(每题4分,共40分)1.下列方程中,关于x的一元二次方程是( )A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=02.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是( )A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,693.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则( )A.m=±2 B.m=2 C.m=﹣2 D.m≠±24.如图,在长70m,宽40m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽xm应满足的方程是( )A.(40﹣x)(70﹣x)=400 B.(40﹣2x)(70﹣3x)=400C.(40﹣x)(70﹣x)=2400 D.(40﹣2x)(70﹣3x)=24005.一元二次方程4x2﹣2x+=0根的情况是( )A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根6.若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为( )A.2019 B.2020 C.2021 D.20227.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×308.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( ) A.50(1﹣x)2=70 B.50(1+x)2=70C.70(1﹣x)2=50 D.70(1+x)2=509.关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a的值是( ) A.0 B.2 C.﹣2 D.2或﹣210.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为( ) A.B.1 C..4 D.3二.填空题(每题4分,共24分)11.一元二次方程x(x﹣3)=3﹣x的根是.12.若等腰三角形(不是等边三角形)的边长刚好是方程x2﹣9x+18=0的解,则此三角形的周长是.13.若关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,则实数m的取值范围是.14.若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.15.将4个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,这个记号叫做2阶行列式.定义,若,则x=.16.已知关于x方程3x2+2(1﹣a)x﹣a(a+2)=0至少有一实根大于1,则a的取值范围是.三.解答题(每题9分,共36分)17.解方程:(1)x2﹣4=0;(2)(x+3)2=(2x﹣1)(x+3).18.关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根.(1)求m的取值范围;(2)当m为正整数时,取一个合适的值代入求出方程的解.19.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?20.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?答案与解析一.选择题1.解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.2.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.3.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B.4.解:由图可得,(40﹣2x)(70﹣3x)=40×70×(1﹣),即(40﹣2x)(70﹣3x)=2400,故选:D.5.解:在方程4x2﹣2x+=0中,∵△=b2﹣4ac=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选:C.6.解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2﹣m=1,∴m 2﹣m +2020=1+2020=2021. 故选:C .7.解:设花带的宽度为xm ,则可列方程为(30﹣2x )(20﹣x )=×20×30, 故选:B .8.解:2018年的产量为50(1+x ),2019年的产量为50(1+x )(1+x )=50(1+x )2, 即所列的方程为50(1+x )2=70. 故选:B .9.解:∵关于x 的一元二次方程(a ﹣2)x 2+x +a 2﹣4=0的一个根是0, ∴a 2﹣4=0, 解得a =±2, ∵a ﹣2≠0, ∴a ≠2, ∴a =﹣2. 故选:C .10.解:由题意可知:a 、b 是方程x 2﹣4x +1=0的两个不同的实数根, ∴由根与系数的关系可知:ab =1,a +b =4, ∴a 2+1=4a ,b 2+1=4b , ∴原式=+= ==1, 故选:B .二.填空题(共6小题) 11.解:x (x ﹣3)+x ﹣3=0, (x ﹣3)(x +1)=0,x ﹣3=0或x +1=0.所以x 1=3,x 2=﹣1.故答案为x 1=3,x 2=﹣1. 12.解:x 2﹣9x +18=0, (x ﹣3)(x ﹣6)=0,x ﹣3=0或x ﹣6=0, x 1=3,x 2=6,因为3+3=6,所以这个三角形的底边长为3,腰长为6, 所以这个三角形的周长为3+6+6=15. 故答案为:15. 13.解:由已知得:△=b 2﹣4ac =(﹣4)2﹣4×1×(﹣m )=16+4m >0, 解得:m >﹣4. 故答案为:m >﹣4.14.解:∵方程x 2﹣3x +2=0的两根是α、β, ∴α+β=3,αβ=2,∴α+αβ+β=α+β+αβ=3+2=5. 故答案为:5.15.解:由题意,得:(x +1)(x +1)﹣(x ﹣1)(1﹣x )=6, ∴x 2+2x +1+x 2﹣2x +1=6, ∴2x 2+2=6, ∴x =±.16.解:将方程左边因式分解得:(x ﹣a )(3x +a +2)=0, ∴方程的解为:x 1=a ,x 2=﹣,∵方程3x 2+2(1﹣a )x ﹣a (a +2)=0至少有一实根大于1, ∴a >1或﹣>1,解得:a >1或a <﹣5, 故答案为:a >1或a <﹣5. 三.解答题(共4小题) 17.解:(1)∵x 2﹣4=0,∴x 2=4,则x 1=2,x 2=﹣2;(2)∵(x +3)2=(2x ﹣1)(x +3), ∴(x +3)2﹣(2x ﹣1)(x +3)=0, ∴(x +3)(﹣x +4)=0, 则x +3=0或﹣x +4=0, 解得x 1=﹣3,x 2=4.18.解:(1)∵关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实数根, ∴△=(﹣2)2﹣4(m ﹣2)=4﹣4m +8=12﹣4m . ∵12﹣4m ≥0, ∴m ≤3,m ≠2. (2)∵m ≤3且m ≠2, ∴m =1或3,∴当m =1时,原方程为﹣x 2﹣2x +1=0.x 1=﹣1﹣,x 2=﹣1+.当m =3时,原方程为x 2﹣2x +1=0.x 1=x 2=1. 19.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元). 答:每天的销售利润为1600元.(2)设每件工艺品售价为x 元,则每天的销售量是[100﹣2(x ﹣50)]件, 依题意,得:(x ﹣40)[100﹣2(x ﹣50)]=1350, 整理,得:x 2﹣140x +4675=0,解得:x 1=55,x 2=85(不合题意,舍去). 答:每件工艺品售价应为55元. 20.解:(1)设BC =xm ,则AB =(33﹣3x )m , 依题意,得:x (33﹣3x )=90, 解得:x 1=6,x 2=5.当x =6时,33﹣3x =15,符合题意,当x =5时,33﹣3x =18,18>18,不合题意,舍去. 答:鸡场的长(AB )为15m ,宽(BC )为6m . (2)不能,理由如下: 设BC =ym ,则AB =(33﹣3y )m ,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.。
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
九年级上册数学《一元二次方程》单元测试卷[考试时间:90分钟分数:100分]一、选择题1.方程:① x2−13x =1,② 2x2−5xy+y2=0,③ 7x2+1=0,④ y22=0中,一元二次方程是().A . ①和②B . ②和③C . ③和④D . ①和③2.将一元二次方程x2−8x−5=0化成(x+a)2=b(A , B 为常数)的形式,则A , B 的值分别是()A . -4,21B . -4,11C . 4,21D . -8,693.把一元二次方程(x+3)2=x(3x﹣1)化成一般形式,正确的是()A . 2x2﹣7x﹣9=0B . 2x2﹣5x﹣9=0C . 4x2+7x+9=0D . 2x2﹣6x﹣10=04.m、n是方程x2−2019x+2020=0的两根, (m2−2020m+2020)⋅(n2−2020n+2020)的值是()A . 2017B . 2018C . 2019D . 20205.已知x=1是一元二次方程(m−2)x2+4x−m2=0的一个根,则m的值为()A . -1或2B . -1C . 2D . 06.x=1是关于x的一元二次方程(a−2)x2−(a2+1)x+5=0的一个根,则A =()A . -1B . 2C . -1或2D . 不存在7.若关于x的方程x2﹣2x+m=0的一个根为﹣1,则另一个根为()A . ﹣3B . ﹣1C . 1D . 38.已知x1, x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2的值为()A . 1B . 2C . 3D . 49.关于x的一元二次方程x2-4x+m=0的两实数根分别为x1、x2, 且x1+3x2=5,则m的值为()A . 74 B . 75C . 76D . 010.受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A . 300(1-x)2=260B . 300(1-x2)=260C . 300(1-2x)=260D . 300(1+x)2=260二、填空题11.将方程x(x﹣2)=x+3化成一般形式后,二次项系数为________.12.若m是方程2x2﹣x﹣1=0的一个根,则代数式2m﹣4m2的值为________.13.当x=________时,代数式x2−x与x-1的值相等.14.将一元二次方程ax2+bx+c=0,化为(x−m)2= b2−4ac4a2,则m为________.15.抛物线y=2x2+2(k−1)x−k(k为常数)与x轴交点的个数是________.16.已知x1, x2是关于的一元二次方程x2﹣3x+A =0的两个实数根,x12﹣3x1x2+x22=4,则A =________.17.若关于x的一元二次方程x2+(k+3)x+2=0的一个根是-1,则另一个根是________.18.已知实数m、n满足x2−7x+2=0,则nm +mn的值________.三、计算题19.解方程:(1)2(x-2)²=18.(2)2x(x+3)-x-3=0四、解答题20.已知关于x的一元二次方程kx2-(2k+1)x+k+3= 0有解,求k的取值范围.21.定理:若x1、x2是关于x的一元二次方程x2+mx+n=0的两实根,则有x1+x2=−m,x1x2=n,请用这一定理解决问题:已知x1、x2是关于x的一元二次方程x2−2(k+1)x+k2+2=0的两实根,且(x1+1)(x2+1)=8,求k的值.22.如图,在宽为20m,长为27m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为450 ,求道路的宽.23.一个两位数,十位上的数字比个位上的数字的平方少9.•如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,求原来的两位数.24.根据扬州市某风景区的旅游信息, A 公司组织一批员工到该风景区旅游,支付给旅行社2800元. A 公司参加这次旅游的员工有多少人?扬州市某风景区旅游信息表答案与解析一、选择题1.解:① x2−13x=1不是一元二次方程;② 2x2−5xy+y2=0不是一元二次方程;③ 7x2+1=0是一元二次方程;④ y22=0是一元二次方程.综上:一元二次方程是③和④故答案为:C .根据一元二次方程的定义:只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐一判断即可.2.解:x2−8x−5=0移项得x2−8x=5,配方得x2−8x+42=5+16,即(x−4)2=21,∴A =-4,B =21.故答案为:A根据配方法步骤解题即可.3.解:由原方程,得x2+6x+9=3x2﹣x,即2x2﹣7x﹣9=0,故答案为:A .方程左边利用完全平方公式将原方程的左边展开,右边按照整式乘法展开,然后通过合并同类项将原方程化为一般形式.4.解:∵m,n是方程x2−2019x+2020=0的两根,代入得:∴m2−2019m+2020=0,n2−2019n+2020=0∴m2−2019m=−2020,n2−2019n=−2020代入得:∴(m2−2020m+2020)(n2−2020n+2020)= (m2−2019m−m+2020)(n2−2019n−n+2020)将m2−2019m=−2020,n2−2019n=−2020代入得:(m2−2020m+2020)(n2−2020n+2020)= mn根据韦达定理:mn=ca =20201=2020故答案为:D将m,n代入方程得到m2−2019m+2020=0,n2−2019n+2020=0从而得出m2−2019m=−2020,n2−2019n=−2020,再代入即可求解.5.解:把x=1代入(m−2)x2+4x−m2=0得:m-2+4-m2=0,-m2+m+2=0,解得:m1=2,m2=﹣1∵(m−2)x2+4x−m2=0是一元二次方程,∴m-2≠0,∴m≠2,∴m=−1,故答案为:B .首先把x=1代入(m−2)x2+4x−m2=0,解方程可得m1=2,m2=-1,再结合一元二次方程定义可得m的值6.解:把x=1代入方程得:−a2+a+2=0解得a=−1或a=2又由于原方程二次项系数不为0即A -2≠0,所以A ≠2所以A =-1故答案为:A把x=1代入方程,解关于A 的一元二次方程, a=−1或a=2,因为原方程A -2≠0,所以a=−1.7.解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.故答案为:D .设方程另一个根为x1, 根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.8.解:∵x1, x2是一元二次方程x2+x﹣3=0的两个根,∴x1+x2=﹣1,x1x2=﹣3,则原式=﹣1﹣(﹣3)=﹣1+3=2.故答案为:B .根据韦一元二次方程根与系数的关系,由x1+x2=−ba =﹣1,x1x2=ca=﹣3,代入计算可得.9. ∵ x 1 +x 2=4,则x 1 +3x 2=5, 得x 1 +x 2+2 x 2=5,2 x 2=5-4=1, x 2= 12,代入原方程得:(12)2−4×12+m=0,m=74故答案为A根据二次方程根与系数的关系求出两根之和,再代入求x2,把x2代入原方程即可求出m.10.由题意可得,元月份为300万元,2月份为300(1-x),3月份为300(1-x)2=260故答案为:A根据平均降低率与月份的关系可列出方程。
人教版数学九年级上学期《一元二次方程》单元测试时间:100分钟 满分:100分一.选择题(每题3分,共30分)1.关于x 的方程(m ﹣3)x﹣mx +6=0是一元二次方程,则它的一次项系数是( ) A .﹣1 B .1 C .3 D .3或﹣12.方程x (x ﹣5)=x ﹣5的根是( )A .x =5B .x =0C .x 1=5,x 2=0D .x 1=5,x 2=13.已知一元二次方程ax 2+bx +c =0(a ≠0)中.下列说法:①若a +b +c =0,则b 2﹣4ac ≥0;②若方程两根为﹣1和2,则2a +c =0;③若方程ax 2+c =0有两个不相等的实根,则方程ax 2+bx +c =0必有两个不相等的实根;④若b =2a +3c ,则方程有两个不相等的实根.其中结论正确的有( )个.A .1个B .2个C .3个D .4个4.已知x 1,x 2是关于x 的一元二次方程x 2﹣(5m ﹣6)x +m 2=0的两个不相等的实根,且满足x 1+x 2=m 2,则m 的值是( )A .2B .3C .2或3D .﹣2或﹣35.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上一个月增长的百分数相同,则每月的平均增长率为( )A .10%B .15%C .20%D .25%6.已知m 、n 是一元二次方程x 2﹣3x ﹣1=0的两个实数根,则=( )A .3B .﹣3C .D .﹣ 7.某中学有一块长30cm ,宽20cm 的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .(30﹣x )(20﹣x )=×20×30B .(30﹣2x )(20﹣x )=×20×30C .30x +2×20x =×20×30D .(30﹣2x )(20﹣x )=×20×308.某商场在销售一种糖果时发现,如果以20元/kg 的单价销售,则每天可售出100kg ,如果销售单价每增加0.5元,则每天销售量会减少2kg .该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x 元/kg ,依题意可列方程为( )A .(20+x )(100﹣2x )=1800B .C .D .x [100﹣2(x ﹣20)]=18009.已知关于x 的一元二次方程mx 2﹣nx =p (m ≠0)的两个根为x 1=3,x 2=5,则方程m (2x +5)2﹣n (2x +5)﹣p =0的根为( )A .x 1=3,x 2=5B .x 1=﹣1,x 2=0C .x 1=﹣2,x 2=0D .x 1=11,x 2=15 10.定义新运算:a *b =a (m ﹣b ).若方程x 2﹣mx +4=0有两个相等正实数根,且b *b =a *a (其中a ≠b ),则a +b 的值为( )A .﹣4B .4C .﹣2D .2二.填空题(每题4分,共20分)11.方程x 2﹣3=0的解是 .12.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= . 13.已知实数a ,b 满足等式a 2﹣2a ﹣1=0,b 2﹣2b ﹣1=0,则的值是 .14.如果两个数的差为3,并且它们的积为88,那么其中较大的一个数为 .15.已知t 是实数,若a ,b 是关于x 的一元二次方程x 2﹣2x +t ﹣1=0的两个非负实根,则(a 2﹣1)(b 2﹣1)的最小值是 .三.解答题(每题10分,共50分)16.解方程:(1)x2﹣4=0;(2)(x+3)2=(2x﹣1)(x+3).17.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式a2﹣2a+5的最小值.方法如下:∵a2﹣2a+5=a2﹣2a+1+4=(a﹣1)2+4,由(a﹣1)2≥0,得(a﹣1)2+4≥4;∴代数式a2﹣2a+5的最小值是4.(1)仿照上述方法求代数式x2+10x+7的最小值;(2)代数式﹣a2﹣8a+16有最大值还是最小值?请用配方法求出这个最值.18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量y(台)和销售单价x (万元)满足如图所示的一次函数关系.(1)求月销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?20.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为m元,则该销售公司该月盈利万元(用含m的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)参考答案一.选择题1.解:由题意得:m 2﹣2m ﹣1=2,m ﹣3≠0,解得m =﹣1或m =3.m =3不符合题意,舍去,所以它的一次项系数﹣m =1.故选:B .2.解:∵x (x ﹣5)﹣(x ﹣5)=0,∴(x ﹣5)(x ﹣1)=0,则x ﹣5=0或x ﹣1=0,解得x =5或x =1,故选:D .3.解:①若a +b +c =0,方程ax 2+bx +c =0有一根为1,又a ≠0,则b 2﹣4ac ≥0,正确; ②由两根关系可知,﹣1×2=,整理得:2a +c =0,正确;③若方程ax 2+c =0有两个不相等的实根,则﹣ac >0,可知b 2﹣4ac >0,故方程ax 2+bx +c =0必有两个不相等的实根,正确;④由b =2a +3c ,b 2﹣4ac =(2a +3c )2﹣4ac =4(a +c )2+5c 2>0,所以④正确. 故选:D .4.解:∵x 1,x 2是关于x 的一元二次方程x 2﹣(5m ﹣6)x +m 2=0的两个不相等的实根, ∴x 1+x 2=5m ﹣6,△=[﹣(5m ﹣6)]2﹣4m 2>0,解得m <或m >2,∵x 1+x 2=m 2,∴5m ﹣6=m 2,解得m =2(舍)或m =3,故选:B .5.解:设这两个月的营业额增长的百分率是x .200×(1+x )2=288,解得:x 1=﹣2.2(不合题意舍去),x 2=0.2,答:每月的平均增长率为20%.故选:C .6.解:根据题意得m +n =3,mn =﹣1, 所以=.故选:B .7.解:设花带的宽度为xm ,则可列方程为(30﹣2x )(20﹣x )=×20×30, 故选:B .8.解:由题意可得,x (100﹣)=1800,故选:C . 9.解:∵关于x 的一元二次方程mx 2﹣nx =p (m ≠0)的两个根为x 1=3,x 2=5, ∴方程m (2x +5)2﹣n (2x +5)﹣p =0中2x +5=3或2x +5=5,解得:x =﹣1或x =0,即x 1=﹣1,x 2=0,故选:B .10.解:∵方程x 2﹣mx +4=0有两个相等实数根,∴△=(﹣m )2﹣4×4=0,解得m 1=4,m 2=﹣4,当m =﹣4时方程有两个相等的负实数解,∴m =4,∴a *b =a (4﹣b ),∵b *b =a *a ,∴b (4﹣b )=a (4﹣a )整理得a 2﹣b 2﹣4a +4b =0,(a ﹣b )(a +b ﹣4)=0,而a ≠b ,∴a +b ﹣4=0,即a +b =4.故选:B .二.填空题(共5小题)11.解:方程x2﹣3=0,移项得:x2=3,解得:x=±.故答案为:±.12.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.13.解:因为实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,(1)当a=b=1+或1﹣时,原式==2﹣2或﹣2﹣2;(2)当a≠b时,可以把a,b看作是方程x2﹣2x﹣1=0的两个根.由根与系数的关系,得a+b=2,ab=﹣1.则原式=﹣2.故填空答案:﹣2或2﹣2或﹣2﹣2.14.解:设较小的数为x,则较大的数为x+3,根据题意得:x(x+3)=88,即x2+3x﹣88=0,分解因式得:(x﹣8)(x+11)=0,解得:x=8或x=﹣11,∴x+3=11或﹣8,则较大的数为11或﹣8,故答案为:11或﹣815.解:∵a ,b 是关于x 的一元二次方程x 2﹣2x +t ﹣1=0的两个非负实根,∴可得a +b =2,ab =t ﹣1≥0,∴t ≥1,又△=4﹣4(t ﹣1)≥0,可得t ≤2,∴2≥t ≥1,又(a 2﹣1)(b 2﹣1)=(ab )2﹣(a 2+b 2)+1=(ab )2﹣(a +b )2+2ab +1,∴(a 2﹣1)(b 2﹣1),=(t ﹣1)2﹣4+2(t ﹣1)+1,=t 2﹣4,又∵2≥t ≥1,∴0≥t 2﹣4≥﹣3,故答案为:﹣3.三.解答题(共5小题)16.解:(1)∵x 2﹣4=0,∴x 2=4,则x 1=2,x 2=﹣2;(2)∵(x +3)2=(2x ﹣1)(x +3),∴(x +3)2﹣(2x ﹣1)(x +3)=0,∴(x +3)(﹣x +4)=0,则x +3=0或﹣x +4=0,解得x 1=﹣3,x 2=4.17.解:(1)∵x 2+10x +7=x 2+10x +25﹣18=(x +5)2﹣18,由(x +5)2≥0,得(x +5)2﹣18≥﹣18;∴代数式x 2+10x +7的最小值是﹣18;(2)﹣a 2﹣8a +16=﹣a 2﹣8a ﹣16+32=﹣(a +4)2+32,∵﹣(a +4)2≤0,∴﹣(a +4)2+32≤32,∴代数式﹣a 2﹣8a +16有最大值,最大值为32.18.解:(1)设BC =xm ,则AB =(33﹣3x )m ,依题意,得:x (33﹣3x )=90,解得:x 1=6,x 2=5.当x =6时,33﹣3x =15,符合题意,当x =5时,33﹣3x =18,18>18,不合题意,舍去.答:鸡场的长(AB )为15m ,宽(BC )为6m .(2)不能,理由如下:设BC =ym ,则AB =(33﹣3y )m ,依题意,得:y (33﹣3y )=100,整理,得:3y 2﹣33y +100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m 2的矩形养鸡场.19.解:(1)设y 与x 的函数关系式为y =kx +b , 依题意,得解得所以y 与x 的函数关系式为y =﹣5x +200.(2)依题知(x ﹣25)(﹣5x +200)=130.整理方程,得x 2﹣65x +1026=0.解得x 1=27,x 2=38.∵此设备的销售单价不得高于35万元,∴x 2=38(舍),所以x =27.答:该设备的销售单价应是27 万元.20.解:(1)∵当月仅售出1辆汽车,则该辆汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,∴该公司当月售出3辆汽车,则每辆汽车的进价为25﹣2×0.2=24.6万元;故答案为:24.6;(2)∵当月售出5辆汽车,∴每辆汽车的进价为25﹣4×0.2=24.2万元,∴该月盈利为5(m ﹣24.2)+5×0.6=5m ﹣118,故答案为:(5m ﹣118);(3)设需要售出x 辆汽车,由题意可知,每辆汽车的销售利润为:25.6﹣[25﹣0.2(x﹣1)]=(0.2x+0.4)(万元),当0≤x≤10,根据题意,得x•(0.2x+0.4)+0.6x=16.8,整理,得x2+5x﹣84=0,解这个方程,得x1=﹣12(不合题意,舍去),x2=7,当x>10时,根据题意,得x•(0.2x+0.4)+1.2x=16.8,整理,得x2+8x﹣84=0,解这个方程,得x1=﹣14(不合题意,舍去),x2=6,因为6<10,所以x2=6舍去.答:需要售出7辆汽车.。
人教版数学九年级上学期《一元二次方程》单元测试(满分120分,考试用时120分钟)一.选择题(共10小题,满分30分,每小题3分)1.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±22.将一元二次方程2x2+7=9x化成一般式后,二次项系数和一次项系数分别为() A.2,9B.2,7C.2,﹣9D.2x2,﹣9x3.已知一元二次方程2x2+3x﹣b=0的一个根是1,则b=()A.3B.0C.1D.54.以x=为根的一元二次方程可能是()A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=0 5.用配方法解方程2x2﹣8x﹣3=0时,原方程可变形为()A.(x﹣2)2=﹣B.(x﹣2)2=C.(x+2)2=7D.(x﹣2)2=7 6.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是() A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.已知(x2+y2)(x2+y2﹣4)=5,则x2+y2的值为()A.1B.﹣1或5C.5D.1或﹣58.有一只鸡患了禽流感,经过两轮传染后共有625只鸡患了禽流感,每轮传染中平均一只鸡传染()只鸡.A.22B.24C.25D.269.已知P=m﹣1,Q=m2﹣m(m为任意实数),则P与Q的大小关系为() A.P>Q B.P=Q C.P<Q D.不能确定10.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3B.4C.5D.6二.填空题(共8小题,满分32分,每小题4分)11.下列方程中,①7x2+6=3x;②=7;③x2﹣x=0;④2x2﹣5y=0;⑤﹣x2=0中是一元二次方程的有.12.把一元二次方程x(x+1)=4(x﹣1)+2化为一般形式为.13.方程(2x﹣5)2=9的解是.14.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为.15.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的取值范围是.16.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是cm2.17.已知一元二次方程2x2+bx+c=0的两个实数根为﹣1,3,则b+c=.18.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程x2﹣6x+8=0的根为的x1=2,x2=4,则x1=x2,则称方程x2﹣6x+8=0为“半根方程”.若方程ax2+bx+c=0是“半根方程”,且点P(a,b)是函数y=x图象上的一动点,则的值为.三.解答题(共8小题,满分58分)19.(8分)解下列一元二次方程:(1)x2﹣2x﹣1=0; (2)3x(2x+3)=4x+6.20.(6分)已知△ABC的三边长为a、b、c且关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等的实数根,请判断△ABC的形状并加以说明.21.(6分)某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.求进馆人次的月平均增长率.22.(6分)一个两位数的个位数字与十位数字的和为9,并且个位数字与十位数字的平方和为45,求这个两位数.23.(7分)关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.24.(8分)2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?25.(8分)适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.26.(9分)先阅读下面的内容,再解决问题:问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:a2﹣8a+15=;(2)若△ABC的三边长是a,b,c,且满足a2+b2﹣14a﹣8b+65=0,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B.2.解:2x2+7=9x化成一元二次方程一般形式是2x2﹣9x+7=0,则它的二次项系数是2,一次项系数是﹣9.故选:C.3.解:把x=1代入2x2+3x﹣b=0,得2+3﹣b=0.解得b=5.故选:D.4.解:由题意可知:二次项系数为1,一次项系数为﹣b,常数项为c,故选:C.5.解:∵2x2﹣8x﹣3=0,∴2x2﹣8x=3,则x2﹣4x=,∴x2﹣4x+4=+4,即(x﹣2)2=,故选:B.6.解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.7.解:设x2+y2=m,则由题意得:m(m﹣4)=5∴(m﹣5)(m+1)=0∴m=5或m=﹣1(舍)∴x2+y2=5故选:C.8.解:设每轮传染中平均一只鸡传染x只,则第一轮后有x+1知鸡感染,第二轮后有x(x+1)+x+1只鸡感染,由题意得:x(x+1)+x+1=625,即:x1=24,x2=﹣26(不符合题意舍去).故选:B.9.解:∵Q﹣P=m2﹣m﹣m+1=m2﹣m+1=(m﹣)2+≥>0∴Q>P,故选:C.10.解:∵整数a使得关于x的一元二次方程(a+2)x2+2ax+a﹣1=0有实数根,∴△=(2a)2﹣4(a+2)(a﹣1)≥0且a+2≠0,解得:a≤2且a≠﹣2,∵关于x的不等式组有解且最多有6个整数解,∴解不等式组得:a<x≤3,∴a可以为2,1,0,﹣1,﹣3,共5个,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.解:①③⑤是一元二次方程,②是分式方程,④是二元二次方程,故答案为:①③⑤.12.解:x2+x=4x﹣4+2,x2﹣3x+2=0,故答案为:x2﹣3x+2=0.13.解:∵(2x﹣5)2=9,∴x=4或1,故答案为:x=4或114.解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=2023.故答案为:2023.15.解:∵方程ax2+3x﹣2=0是一元二次方程,∴a≠0,∵原方程有两个不相等的实数根,∴△=9+8a>0,解得:a,综上可知:a且a≠0,故答案为:a且a≠0.16.解:设小长方形的长为xcm,宽为xcm,根据题意得:(x+2×x)•x=135,解得:x=9或x=﹣9(舍去),则x=3.所以3×3=9(cm2).故答案为:9.17.解:根据题意得﹣1+3=﹣,﹣1×3=,解得b=﹣4,c=﹣6,所以b+c=﹣4﹣6=﹣10.故答案为﹣10.18.解:不妨设方程ax2+bx+c=0的两根分别为x1,x2,且x1=x2,∵点P(a,b)是函数y=x图象上的一动点,∴b=a,∴方程化为ax2+ax+c=0,∴由韦达定理得:x1+x2=x2=﹣=﹣.∴x2=﹣,x1x2===××6=.故答案为:.三.解答题(共8小题,满分58分)19.解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1;(2)∵3x(2x+3)=2(2x+3),∴3x(2x+3)﹣2(2x+3)=0,∴(2x+3)(3x﹣2)=0,则2x+3=0或3x﹣2=0,解得x=﹣或x=.20.解:△ABC是直角三角形.方程整理得(c﹣a)x2+2bx+(c+a)=0;由方程有两个相等的实数根知△=4b2﹣4(c+a)(c﹣a)=4(b2﹣c2+a2)=0,∴b2+a2=c2,∴△ABC是直角三角形.21.解:设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x﹣7=0∴(2x﹣1)(2x+7)=0,∴x=0.5=50%或x=﹣3.5(舍)答:进馆人次的月平均增长率为50%.22.解:设这个两位数的个位数字为x,则十位数字为(9﹣x),依题意,得:x2+(9﹣x)2=45,整理,得:x2﹣9x+18=0,解得:x1=3,x2=6.当x=3时,这个两位数为63;当x=6时,这个两位数为36.答:这个两位数为36或63.23.解:(1)根据题意得:△=(2m)2﹣4(m2+m)>0,解得:m<0.∴m的取值范围是m<0.(2)根据题意得:x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=12,∴﹣2x1x2=12,∴(﹣2m)2﹣2(m2+m)=12,∴解得:m1=﹣2,m2=3(不合题意,舍去),∴m的值是﹣2.24.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.25.解:(2)根据题意得:(1﹣x)(100x+30)=40,整理得:10x2﹣7x+1=0,解得:x1=0.2,x2=0.5.答:当x为0.2或0.5时,才能使该文具店每天卖2B铅笔获取的利润为40元.(2)根据题意得:(1﹣x)(100x+30)=50,整理得:10x2﹣7x+2=0,△=b2﹣4ac=(﹣7)2﹣4×10×2=﹣31<0.答:该文具店每天卖2B铅笔获取的利润不可以达到50元.26.解:(1)a2﹣8a+15=(a2﹣8a+16)﹣1=(a﹣4)2﹣12=(a﹣3)(a﹣5);故答案为:(a﹣3)(a﹣5);(2)∵a2+b2﹣14a﹣8b+65=0,∴(a2﹣14a+49)+(b2﹣8b+16)=0,∴(a﹣7)2+(b﹣4)2=0,∴a﹣7=0,b﹣4=0,解得,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=5,7,9,当a=7,b=4,c=5时,△ABC的周长最小,最小值是:7+4+5=16;(3)﹣2x2﹣4x+3,=﹣2(x2+2x+1﹣1)+3,=﹣2(x+1)2+5,∴当x=﹣1时,多项式﹣2x2﹣4x+3有最大值,最大值是5.。
第1页 共2页
秋《一元二次方程》测试题
姓名____________ 分数_______________
一、选择题(每小题3分,共30分)
1.若方程013)2(|
|=+++mx x
m m 是关于x 的一元二次方程,则( )
A .2±=m
B .m=2
C .m= —2
D .2±≠m
2. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=3、x 2=1,那么这个一元二次方程是( )
A. x 2+3x +4=0
B.x 2+4x -3=0
C.x 2-4x +3=0
D. x 2+3x -4=0
3. 对于任意实数x,多项式x 2-5x+8的值是一个( )
A .非负数
B .正数
C .负数
D .无法确定
4. 如果关于x 的方程ax 2+x–1= 0有实数根,则a 的取值范围是( ) A .a >–14 B .a ≥–14 C .a ≥–14 且a ≠0 D .a >–1
4 且a ≠0
5. 方程x 2+ax+1=0和x 2-x -a=0有一个公共根,则a 的值是( )
A .0
B .1
C .2
D .3
6. 已知1x 、2x 是方程2560x x --=的两个根,则代数式2212x x +的值( )
A .37
B .26
C .13
D .10
7. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A.225003600x =
B.2
2500(1)3600x +=
C.2
2500(1%)3600x += D.2
2500(1)2500(1)3600x x +++= 8. 关于x 的一元二次方程x 2+kx -1=0的根的情况是( )
A 、有两个不相等的同号实数根
B 、有两个不相等的异号实数根
C 、有两个相等的实数根
D 、没有实数根
9. 若t 是一元二次方程)0(02
≠=++a c bx ax 的根,则判别式ac b 42-=∆和完全平方式2
)2(b at M += 的关系是( )
A.△=M
B. △>M
C. △<M
D. 大小关系不能确定
10. 三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是( )
A .24
B .24或58
C .48
D .58
二、填空题(每小题3分,共30分)
11. 一元二次方程(x+1)(3x -2)=10的一般形式是 。
12. 把一元二次方程3x 2-2x -3=0化成3(x+m )2=n 的形式是 ;若多项式x 2-ax+2a -3是一个完全平方式,则a= 。
13. 已知两个连续奇数的积是15,则这两个数是__________。
14.已知x=1是一元二次方程2x 2-2mx+1=0的一个解,则m 的值是
15. 当x= 时,1532++x x x 与既是最简二次根式,被开方数又相同。
16. 已知实数x 满足4x 2
-4x+l=O ,则代数式2x+
x
21
的值为________. 17. 写出一个两实数根符号相反的一元二次方程:______
18. 设x 1,x 2是方程x(x-1)+3(x-1)=0的两根,则│x 1-x 2│= 。
19. 当m 时,关于x 的方程5)3(7
2
=---x x m m
是一元二次方程;
当m 时,此方程是一元一次方程。
20. 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2. 三、解答题
21.解下列方程(每小题4分,共8分)
(1) (2)
22.(6分)已知:关于x 的方程2210x kx +-=
2230x x --=2
310x x --=
第2页 共2页
20cm 30cm B
C
A E
D
F
北
东
D A B (1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是1-,求另一个根及k 值
23.(8分)已知12x x ,是方程220x x a -+=的两个实数根,且12232x x +=-.
(1)求12x x ,及a 的值;
(2)求32111232x x x x -++的值.
24.(8分)常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?
25.(8分)如图,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、 竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如 何设计每个彩条的宽度?
26.(12分)如图,△ABC 中,已知∠BAC =45°,AD ⊥BC 于D ,BD =2,DC =3,求AD 的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB 、AC 为对称轴,画出△ABD 、△ACD 的轴对称图形,D 点的 对称点为E 、F ,延长EB 、FC 相交于G 点,证明四边形AEGF 是正方形; (2)设AD =x ,利用勾股定理,建立关于x 的方程模型,求出x 的值.
27.(12分)中新网2010年8月23日电. 中央气象台消息,今日8时,南海热带低压加强为今年第5号热带风暴“蒲公英”,逐渐向海南岛南部近海靠近。
已知,如图,一艘轮船以20海浬/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海浬/时的速度由南向北移动,距台风中心2010都属于台风区,当轮船到达A 处时,测得台风中心移动到位于点A 正南方的B 处,且AB =100海浬.
(1)若这艘轮船自A 处按原速继续航行,在途中会不会遇到台风? 若会,试求出轮船最初遇到台风的时间;若不会,请说明理由。
(2)现轮船自A 处立即提高速度,向位于东偏北30°方向,相距60海浬的D 港驶去.为使轮船在台风
到来之前到达D 13 3.6≈)。