线性时不变系统因果和稳定性共41页
- 格式:ppt
- 大小:3.59 MB
- 文档页数:41
线性时不变系统的稳定性分析稳定性是控制系统理论中的重要概念,对于线性时不变系统来说尤其重要。
稳定性分析可以帮助我们确定系统的输出是否会在输入变化或干扰的情况下产生不受控制的波动或发散。
本文将探讨线性时不变系统的稳定性分析方法。
一、线性时不变系统的定义线性时不变系统(Linear Time-Invariant System,LTI系统)是指满足叠加性和时移不变性两个性质的系统。
叠加性指系统对输入的响应是可加的,时移不变性指系统对延时输入的响应是不变的。
线性时不变系统可以用微分方程或差分方程来描述。
二、稳定性的定义在系统稳定性分析中,我们关注的是系统的零输入响应或者零状态响应。
稳定性可以分为BIBO稳定性和渐近稳定性两种类型。
1. BIBO稳定性BIBO稳定性(Bounded-Input Bounded-Output Stability)是指当输入有界时,系统的输出也是有界的。
如果对于任意有界的输入信号,系统的输出都有界,则系统是BIBO稳定的。
2. 渐近稳定性渐近稳定性是指当输入信号趋于稳定时,系统的输出也趋于稳定。
如果对于任意渐近稳定的输入信号,系统的输出也渐近稳定,则系统是渐近稳定的。
三、稳定性分析方法稳定性分析的常用方法包括传输函数法、状态空间法和频域法。
下面将分别介绍这三种方法。
1. 传输函数法传输函数法是用传输函数来描述系统的稳定性。
传输函数是输入和输出的关系,它是Laplace变换或Z变换的比值。
对于连续时间系统,传输函数可以表示为H(s);对于离散时间系统,传输函数可以表示为H(z)。
通过分析传输函数的极点(Pole)可以判断系统的稳定性。
对于连续时间系统,如果传输函数的极点都位于左半平面,则系统是BIBO稳定的;如果传输函数的极点有位于右半平面的,则系统是不稳定的。
对于离散时间系统,如果传输函数的极点都位于单位圆内部,则系统是BIBO稳定的;如果传输函数的极点有位于单位圆外部的,则系统是不稳定的。
§1.6线性时不变系统•线性系统与非线性系统•时变系统与时不变系统•因果系统与非因果系统•稳定系统与不稳定系统通信与信息工程学院江帆一、系统的定义若干相互作用、相互联系的事物按一定规律组成具有特定功能的整体称为系统。
电子系统是电子元器件的集合体。
电路侧重于局部,系统侧重于全部。
电路、系统两词通用。
二、系统的分类及性质可以从多种角度来观察、分析研究系统的特征,提出对系统进行分类的方法。
下面讨论几种常用的分类法。
1. 连续系统与离散系统若系统的输入信号是连续信号,系统的输出信号也是连续信号,则称该系统为连续时间系统,简称为连续系统。
若系统的输入信号和输出信号均是离散信号,则称该系统为离散时间系统,简称为离散系统。
2. 动态系统与即时系统若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关,则称为动态系统或记忆系统。
含有记忆元件(电容、电感等)的系统是动态系统。
否则称即时系统或无记忆系统。
3. 线性系统与非线性系统满足线性性质的系统称为线性系统。
(1)线性性质系统的激励f (·)所引起的响应y(·) 可简记为y(·)= T[ f (·)]系统f (·)y (·)线性性质包括两方面:齐次性和可加性。
若系统的激励f (·)增大a倍时,其响应y(·)也增大a倍,即T[a f(·)] = a T[ f (·)]则称该系统是齐次的。
若系统对于激励f1(·)与f2(·)之和的响应等于各个激励所引起的响应之和,即T[f1(·)+ f2(·)] = T[ f1(·)]+T[ f2(·)] 则称该系统是可加的。
若系统既是齐次的又是可加的,则称该系统是线性的,即T[a f 1(·) + b f 2(·)] = a T[ f 1(·)] + bT[ f 2(·)]()()t e t e 2211αα+H()()t r t r 2211αα+)()()()(22112211t t t t r r e e αααα+→+H()t e 2()t r 2H)(1t e ()t r 1(2)动态系统是线性系统的条件动态系统不仅与激励{ f(·) }有关,而且与系统的初始状态{x(0)}有关。