工频变压器设计
- 格式:docx
- 大小:242.88 KB
- 文档页数:11
工频变压器设计工频变压器是最简单的变压器,基本不用考虑分布电感、分布电容、信号源内阻、等效电路各种指标等复杂因素,直接按标准化步骤操作即可,所以用工频变压器来进行变压器设计入门是最好不过了。
简单说就是根据功率选择铁心,然后计算匝数,再看能否绕下。
不同的人设计标准不同,可能和下面计算有偏差,但是本质思想都是一样的。
有时算到后面需要重新再来,其实相当于一个迭代设计过程,反复设计直至满足要求为止。
理论计算完成后还需要实际测试效果进行验证,因为铁心参数,制作工艺可能和我们假设的不一样,所以设计完成后基本都需要再根据实测结果进行调整。
要求:高压输出:260V,150ma ;灯丝1:5V,3A;灯丝2:6.3v,3A 中心处抽头;初、次级间应加有屏蔽层。
根据要求铁芯型号采用“GEIB一35”。
计算如下:(1)计算变压器功率容量(输入视在功率):P =(1.4×高压交流电压×电流+灯丝1电压×电流+灯丝2电压×电流)/ 效率=(1.4×260×0.15+5×3+6.3×3)/ 0.9=(54.6+15+18.9)/ 0.9= 98.33VA(2)计算原边电流I1=1.05×P / 220=0.469A(3)按照选定的电流密度(由计划的连续时间决定),选取漆包线直径。
如按照3A/mm2计算:D=0.65×√I(0.65×电流的开方)并规整为产品规格里有的线径(可查资料):选定:原边直径D1=0.45mm高压绕组直径D2=0.25mm灯丝绕组直径D3=D4=1.12mm(4)铁心截面面积S0=1.25√(P)=1.25×√98=12.5CM2(5)铁心叠厚:根据他的要求铁芯型号采用“GEIB一35”,查到:舌宽=35MM=3.5CM则:叠厚=12.5 / 3.5 =3.6CM一般地(叠厚/舌宽)在1-2之间是比较合适的。
高频变压器设计解读高频变压器是现在电子变压器行业关注的热点,想来很多工程师对高频变压器的设计方法应该都挺感兴趣的,今天和大家分享高频变压器设计方法的详解,希望对大家有用。
高频变压器的设计包括:线圈参数的设计,磁芯材料的选择,磁芯结构的选择,磁芯参数的设计,组装结构的选择等内容。
下面对高频变压器线圈参数的计算与选择、磁芯材料的选择、磁芯结构的选择、磁芯参数的设计和组装结构的选择进行详细介绍。
高频变压器线圈参数的计算与选择高频变压器的线圈参数包括:匝数、导线截面(直径)、导线形式、绕组排列和绝缘安排。
原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多也不能过少。
如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘[5]。
副绕组匝数由输出电压决定。
导线截面(直径)决定于绕组的电流密度。
还要注意的是导线截面(直径)的大小还与漏感有关。
高频变压器的绕组排列形式有:①如果原绕组电压高,副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排②如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组排列形式,这样有利于减少漏感。
另外,当原绕组为高压绕组时,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。
对于绝缘安排,首先要注意使用的电磁线和绝缘件的绝缘材料等级要与磁芯和绕组允许的工作温度相匹配。
等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。
其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以保证绝缘,又可以简化绕线工艺。
另外,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。
如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。
高频变压器磁芯材料的选择高频变压器磁芯一般使用软磁材料。
工频变压器设计步骤1.根据负载的实际需要,确定变压器的输出功率2P 及输出电流2I :0.91U 3P I 222==式中:2U ——次级绕组相电压有效值,要求带负载后为220伏。
NOTE :在变压器参数计算中,忽略电力电子电路的损耗,因此整机输出功率可视为变压器输出功率。
2.计算变压器的输入功率1P 及输入电流1I :ηP P 21=式中:η——变压器的效率。
当容量小于1KW 时,η在0.8~0.9之间取值,此处取η=0.8。
()111U 3P 1.2~1.1I =式中:1.1~1.2——考虑变压器励磁电流分量的经验系数。
1U ——初级绕组相电压有效值。
3.确定变压器磁芯截面积S 和选用硅钢片尺寸:变压器磁芯材料选用硅钢片,磁芯形状选用E 型。
1P K S =式中:K ——经验系数,其大小与变压器的功率有关,功率越大,K 越小,此处取 1.35K =。
根据变压器磁芯截面积S 查相关技术手册,即可确定硅钢片尺寸。
4.计算初、次级绕组的匝数1W 、2W :由电磁感应定律可知,每匝线圈上产生的感应电动势为:SfwB 4.44Φf 4.44E m m ==ω式中:f ——频率,此处为50Hz 。
m B ——磁芯磁感应强度。
m B 的大小与采用材料有关,对于一般硅钢片,取T 8.0GS 8000B m ==。
初级绕组匝数为:SfB 4.44U E U W m 111==整流变压器是Y −∆型联结方式,为了保证初、次级绕组绕组相电压均为220V ,则匝大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m数比应满足:13W W 21=次级绕组匝数为:12W 31W =5.计算初、次级绕组的导线截面积q 及选用导线:导线截面积:2mm jIq =式中:j ——电流密度,按长期工作制考虑,取2mm A/2.5j =。
根据导线实际截面积q 查相关技术手册,即可确定初、次级绕组的导线型号。
高频电源变压器设计原则要求和程序电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用.根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~0.5kVA为中功率,0.5kVA~25VA为小功率,25VA以下为微功率.传送功率不同,电源变压器的设计也不一样,应当是不言而喻的.有人根据它的主要功能是功率传送,把英文名称“Power Transformers”译成“功率变压器”,在许多文献资料中仍然在使用.究竟是叫“电源变压器”,还是叫“功率变压器”好呢?有待于科技术语方面的权威机构来选择决定.同一个英文名称“PowerTransformer”,还可译成“电力变压器”.电力变压器主要用于电力输配系统中起功率传送、电压变换和绝缘隔离作用,原边电压为6kV以上的高压,功率最小5kVA,最大超过上万kVA.电力变压器和电源变压器,虽然工作原理都是基于电磁感应原理,但是电力变压器既强调功率传送大,又强调绝缘隔离电压高,无论在磁芯线圈,还是绝缘结构的设计上,都与功率传送小、绝缘隔离电压低的电源变压器有显著的差别,更不能将电力变压器设计的优化设计条件生搬硬套地应用到电源变压器中去.电力变压器和电源变压器的设计方法不一样,也应当是不言而喻的.高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的.按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、 500kHz~1MHz、1MHz以上.传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高.这样,既有工作频率的差别,又有传送功率的差别,工作频率不同档次的电源变压器设计方法不一样,也应当是不言而喻的.如上所述,作者对高频电源变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文.正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频电源变压器的设计问题弄清楚.如有说得不对的地方,敬请几位作者和广大读者指正.2 高频电源变压器的设计原则高频电源变压器作为一种产品,自然带有商品的属性,因此高频电源变压器的设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好.有时可能偏重性能和效率,有时可能偏重价格和成本.现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本.其中成为一大难点的高频电源变压器,更需要在这方面下功夫.所以在高频电源变压器的“设计要点”一文中,只谈性能,不谈成本,不能不说是一大缺憾,如果能认真考虑一下高频电源变压器的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来.不谈成本,市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰.往往一种新产品最后被成本否决.一些“节能不节钱”的产品为什么在市场上推广不开值得大家深思.产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本.因此,为了节约时间,根据以往的经验,对高频电源变压器的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,有什么不好?为什么一定要按步就班地来回进行推算和仿真,才不是概念错误?作者曾在20世纪80年代中开发高频磁放大器式开关电源,以温升最低为条件,对高频电源变压器进行过优化设计.由于热阻难以确定,结果与试制样品相差甚远,不得不再次修正.现在有些公司的磁芯产品说明书中,为了缩短用户设计高频电源变压器的时间,有的列出简化的设计公式,有的用表列出磁芯在某种工作频率下的传送功率.这种既为用户着想,又推广公司产品的双赢行为,是完全符合市场规律的行为,绝不是什么需要辨析的错误概念.问题是提供的参考数据,推荐的方案是否是经验的总结?有没有普遍性?包括“辨析”一文中提出的一些说法,都需要经过实践检验,才能站得住脚.总之,千万记住:高频电源变压器是一种产品(即商品),设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好.检验设计的唯一标准是设计出的产品能否经受住市场的考验.3 高频电源变压器的设计要求以设计原则为出发点,可以对高频电源变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本.3.1 使用条件使用条件包括两方面内容:可靠性和电磁兼容性.以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性.可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止.一般使用条件对高频电源变压器影响最大的是环境温度.有些软磁材料,居里点比较低,对温度敏感.例如:锰锌软磁铁氧体,居里点只有215℃,其磁通密度,磁导率和损耗都随温度发生变化,故除正常温度25℃外,还要给出60℃, 80℃,100℃时的各种参考数据.因此,将锰锌软磁铁氧体磁芯的工作温度限制在100℃以下,也就是环境温度为40℃时,温升只允许低于60℃,相当于 A级绝缘材料温度.与锰锌软磁铁氧体磁芯相配套的电磁线和绝缘件,一般都采用E级和B级绝缘材料,采用H级绝缘的三重绝缘电磁线和聚酰胺薄膜,是不是大材小用?成本增加多少?是不是因为H级绝缘的高频电源变压器优化的设计方案,可以使体积减少1/2~1/3的缘故?如果是,请举具体实例数据.作者曾开发H 级绝缘工频50Hz,10kVA干式变压器,与B级绝缘工频50Hz,10kVA干式变压器相比,体积减小15%到20%,已经相当可观了.本来体积就比较小的高频100kHz10VA高频电源变压器,如次级绕组采用三重绝缘线,能把体积减小1/2~1/3,那一定是很宝贵的经验.请有关作者详细介绍优化设计方案,以便广大读者学习.电磁兼容性是指高频电源变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰.电磁干扰包括可闻的音频噪声和不可闻的高频噪声.高频电源变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩.磁致伸缩大的软磁材料,产生的电磁干扰大.例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上.因此锰锌软磁铁氧体磁芯产生的电磁干扰大.高频电源变压器产生电磁干扰的主要原因还有磁芯之间的吸力和绕组导线之间的斥力.这些力的变化频率与高频电源变压器的工作频率一致.因此,工作频率为100kHz左右的高频电源变压器,没有特殊原因是不会产生20kHz以下音频噪声的.既然提出10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz,一定有其原因. 由于没有画出噪声频谱图,具体原因说不清楚,但是由高频电源变压器本身产生的可能性不大,没有必要采用玻璃珠胶合剂粘合磁芯.至于采用这种粘合工艺可将音频噪声降低5dB,请给出实例与数据以及对噪声原因的详细说明,才会令人可信.屏蔽是防止电磁干扰,增加高频电源变压器电磁兼容性的好办法.但是为了阻止高频电源变压器的电磁干扰传播,在设计磁芯结构和设计绕组结构也应当采取相应的措施,只靠加外屏蔽带并不一定是最佳方案,因为它只能阻止辐射干扰,不能阻止传导干扰.3.2 完成功能高频电源变压器完成功能有3个:功率传送,电压变换和绝缘隔离.功率传送有两种方式.第一种是变压器功率的传送方式,加在原绕组上的电压,在磁芯中产生磁通变化,使副绕组感应电压,从而使电功率从原边传送到副边.在功率传送过程中,磁芯又分为磁通单方向变化和双方向变化两种工作模式.单方向变化工作模式, 磁通密度从最大值Bm变化到剩余磁通密度Br,或者从Br变化到Bm.磁通密度变化值ΔB=Bm-Br.为了提高ΔB,希望Bm大,Br小.双方向变化工作模式磁通度从+Bm变化到-Bm,或者从-Bm变化到+Bm.磁通密度变化值ΔB=2Bm,为了提高ΔB,希望Bm大,但不要求Br小,不论是单方向变化工作模式还是双方向变化工作模式,变压器功率传送方式都不直接与磁芯磁导率有关.第二种是电感器功率传送方式,原绕组输入的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁使副绕组感应电压,变成电能释放给负载.传送功率决定于电感磁芯储能,而储能又决定于原绕组的电感.电感与磁芯磁导率有关,磁导率高,电感量大,储能多,而不直接与磁通密度有关.虽然功率传送方式不同,要求的磁芯参数不一样,但是在高频电源变压器设计中,磁芯的材料和参数的选择仍然是设计的一个主要内容.在电源变压器“设计要点”一文中,很遗憾缺少这一个主要内容.只是在“交流损耗”一条中,提出BAC典型值为 0.04~0.075T.显然,文中的高频电源变压器是采用电感功率传送方式,为什么不提磁导率,而提BAC弄不清楚.经查阅,在《电源技术应用》2003年1/2期,同一主要作者写的开关电源“设计要点”一文中,列出了“磁芯的选择”,也没有提磁导率,只是提出最大磁通密度Bm为0.275T.由于没有画磁通密度变化波形,弄不清楚前文中的BAC和后文中的Bm是否一致:为什么BAC和Bm相差6.8~3.7倍?更不清楚,选的是哪一种软磁铁氧体材料?为什么选这种型号?两文中都没有一点说明,只好让读者自己去猜想了.电压变换通过原边和副边绕组匝数比来完成.不管功率传送是哪一种方式,原边和副边的电压变换比等于原绕组和副绕组匝数比,只要不改变匝数比,就不影响电压变换.但是,绕组匝数与高频电源变压器的漏感有关.漏感大小与原绕组匝数的平方成正比.有趣的是,漏感能不能规定一个数值?《电源技术应用》2003年第6期同时刊登的两篇文章有着不同的说法.“设计要点”一文中说:“对于一符合绝缘及安全标准的高频变压器,其漏感量应为次级开路时初级电感量的1% ~3%”.“辨析”一文中说:“在很多技术单上,标注着漏感=1%的磁化电感或漏感<2%的磁化电感等类似的技术要求.其实这种写法或设计标准很不专业.电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制.在制作变压器的过程中,应在不使变压器的其他参数(如匝间电容等)变差的情况下尽可能减小漏感值,而非给出漏感与磁化电感的比例关系作为技术要求”.“否则这将表明你不理解漏感知识或并不真正关心实际的漏感值”.虽然两篇文章说法不一样,但是有一点是共同的,就是尽可能减小漏感值.因为漏感值大,储存的能量也大,在电源开关过程中突然释放,会产生尖峰电压,增加开关器件承受的电压峰值,对绝缘不利,也产生附加损耗和电磁干扰.绝缘隔离通过原边和副边绕组的绝缘结构来完成.为了保证绕组之间的绝缘,必须增加两个绕组之间的距离,从而降低绕组间的耦合程度,使漏感增大.还有,原绕组一般为高压绕组,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路.这样,匝数有下限,使漏感也有下限.总之,在高频电源变压器绝缘结构和总体结构设计中,要统筹考虑漏感和绝缘强度问题.3.3 提高效率提高效率是对电源和电子设备的普遍要求.虽然从单个高频电源变压器来看,损耗不大.例如,100VA高频电源变压器,效率为98%时,损耗只有2W,并不多.但是成十万个,成百万个高频电源变压器,总损耗可能达到上100kW,甚至上MW.还有,许多高频电源变压器一直长期运行,年总损耗相当可观,有可能达到上10GW·h.这样,提高高频电源变压器效率,可以节约电力.节约电力后,可以少建发电站.少建发电站后,可以少消耗煤和石油,可以少排放CO2, SO2,NOx,废气,废水,烟尘和灰渣,减少对环境的污染.既具有节约能源,又具有环境保护的双重社会经济效益.因此,提高效率是高频电源变压器一个主要的设计要求,一般效率要提高到95%以上,损耗要减少到5%以下.高频电源变压器损耗包括磁芯损耗(铁损)和绕组损耗(铜损).有人关心变压器的铁损和铜损的比例.这个比例是随变压器的工作频率发生变化的.如果变压器的外加电压不变,工作频率越低,绕组匝数越多,铜损越大.因此在50Hz工频下,铜损远远超过铁损.例如:50Hz,100kVAS9型三相油浸式硅钢电力变压器,铜损为铁损的5倍左右.50Hz,100kVASH11型三相油浸式非晶合金电力变压器,铜损为铁损的20倍左右.并不存在“辨析”一文中所说那样,工频变压器从热稳定热均匀角度出发,把铜损等于铁损作为经验设计规则.随着工作频率升高,绕组匝数减少,虽然由于趋表效应和邻近效应存在而使绕组损耗增加,但是总的趋势是铜损随着工作频率升高而下降.而铁损包括磁滞损耗和涡流损耗,随着工作频率升高而迅速增大.在某一段工作频率,有可能出现铜损和铁损相等的情况,超过这一段工作频率,铁损就大于铜损.造成铁损不等于铜损的原因,也并不象“辨析”一文中所说那样是由于“高频变压器采用非常细的漆包线作为绕组”.导线粗细的选择,虽然受趋表效应影响,但主要由高频电源变压器的传送功率来决定,与工作频率不存在直接关系.而且,选用非常细的漆包线作为绕组,反而会增加铜损,延缓铜损的下降趋势.说不定在设计选定的工作频率下,还有可能出现铜损等于铁损的情况.根据有的资料介绍,中小功率高频电源变压器的工作频率在100kHz左右,铁损已经大于铜损,而成为高频电源变压器损耗的主要部分.正因为铁损是高频电源变压器损耗的主要部分,因此根据铁损选择磁芯材料是高频电源变压器设计的一个主要内容.铁损也成为评价软磁芯材料的一个主要参数.铁损与磁芯的工作磁通密度工作频率有关,在介绍软磁磁芯材料铁损时,必须说明在什么工作磁通密度下和在什么工作频率下损耗.用符号表示时,也必须标明PB/f〔式中工作磁通密度B的单位是T(特斯拉),工作频率f的单位是Hz(赫芝)〕.例如,P0.5/400表示工作磁通密度为0.5T,工作频率为 400Hz时的损耗.又例如,P0.1/100k表示工作磁通密度为0.1T,工作频率为100kHz时的损耗.铁损还与工作温度有关,在介绍软磁磁芯材料铁损时,必须指明它的工作温度,特别是软磁铁氧体材料,对温度变化比较敏感,在产品说明书中都要列出25℃至100℃的铁损.软磁材料的饱和磁通密度并不完全代表使用的工作磁通密度的上限,常常是铁损限制了工作磁通密度的上限.所以,在新的电源变压器用软磁铁氧体材料分类标准中,把允许的工作磁通密度和工作频率乘积B×f,作为材料的性能因子,并说明在性能因子条件下允许的损耗值.新的分类标准根据性能因子把软磁铁氧体材料分为PW1,PW2,PW3,PW4,PW5等5类,性能因子越高的,工作频率越高,极限频率也越高.例如,PW3类软磁铁氧体材料,工作频率为 100kHz,极限频率为300kHz,性能因子B×f为10000mT×kHz,即在100mT(0.1T)和100kHz下,100℃时损耗a 级≤300kW/m(300mW/cm3),b级≤150kW/m3(150mW/cm3).日本TDK公司生产的PC44型软磁铁氧体材料达到PW3a级标准,达不到PW3b级标准.“设计要点”一文中提出高频变压器使用的铁氧体磁芯在100kHz时的损耗应低于50mW/cm3,没指明是选哪一类软磁铁氧体材料,也没说明损耗对应的工作磁通密度.读者只好去猜:损耗对应的工作磁通密度是《电源技术应用》2003年6期“设计要点”一文中的BAC典型值0.04~0.075T?还是《电源技术应用》2003年1/2期“设计要点”一文中的Bm值0.237T?不管是0.075T,还是0.237T?要达到100kHz下铁损低于 50mW/cm3的铁氧体材料是非常先进的.请介绍一下是哪家公司哪种型号产品,以便读者也去购买.在某一段工作频率下,高频电源变压器的绕组损耗(铜损)与铁损相接近时,例如,铜损/铁损=100%~25%范围内,铜损也不能忽视,也应当考虑采取措施来减少铜损.由于原绕组和副绕组承担的功率相近,往往在设计中取原绕组的铜损等于副绕组的铜损,以便简化设计计算过程,这并不象“辨析”一文中所说的那样:“只是工频变压器设计的一种经验规则,”对一定工作频率下高频电源变压器设计也适用.不能只强调依靠温升来设计高频电源变压器,由于热阻不容易准确确定,设计计算相当麻烦.因此,为了简化计算,有时根据经验预先推荐一些原则和数据是必要的.同样,为了简化计算,对不同工作频率,不同功率的高频电源变压器推荐不同的绕组电流密度,也是必要的,但不限于某一个电流密度值,例如,2A/mm2~3A/mm2.应当看到:实现高频电源变压器设计要求的方法并不限于一种,应当允许进行多种多样的探索.“你走你的阳关道,我走我的独木桥”.为什么一定要按你指定的道路走,才不是“错误概念”呢?3.4 降低成本降低成本是高频电源变压器的一个主要设计要求,有时甚至是决定性的要求.高频电源变压器作为一种产品,和其他商品一样,都面临着市场竞争.竞争的内容包括性能和成本两个方面,缺一不可.不注意降低成本,往往会在竞争中被淘汰.高频电源变压器的成本包括材料成本,制造成本和管理成本.设计是高频电源变压器降低成本的主要手段.高频电源变压器所用的材料和零部件的贵贱和数量的多少?是否方便采购?是否要备有多少库存量?磁芯,线圈和总体结构的加工和装配工艺复杂还是简单?需要人工占的比例多大(实现生产过程的机械化和自动化,可以减少人工工时,更能保证产品的一致性和质量)?是否需要工模具?质量控制中需要检测的工序和参数:哪些参数要在加工过程中检测?哪些参数要在出厂试验中检测(出厂试验的参数应选择能决定性能的关键参数,数量不要多,以便能即时判断产品质量.)?哪些参数要在型式试验中检测?要用什么检测仪器和设备,价格如何?等等,都是由设计来决定的.因此,高频电源变压器的设计者除了要了解高频电源变压器的理论和设计方法而外,还要了解各种软磁材料和磁芯的性能和价格,各种电磁线的性能和价格,各种绝缘材料的性能和价格;还要了解磁芯加工热处理工艺,线圈绕制和绝缘处理工艺及变压器组装工艺;还要了解实现质量控制的检测参数和仪器设备;还要了解生产管理的基本知识以及高频电源变压器的市场动态等等.只有知识全面的设计者,才能设计出性能好,成本低的高频电源变压器产品.降低成本是促进高频电源变压器技术发展的一种推动力.为什么轻、薄、短、小成为高频电源变压器的发展方向?原因之一是这样既能降低材料成本,又能降低制造成本.提高工作频率,可以使高频电源变压器的重量和体积下降.但是,要克服高频带来的负面影响,必须采用新的软磁材料和导电材料并增加抑制高频电磁干扰的措施,因此,对具体使用条件下的高频电源变压器究竟选用多高的工作频率?要在综合考虑性能和总体成本后决定.提高效率,降低损耗发生的热量,可以减少高频电源变压器散热的表面积,从而使体积和重量下降.但是,降低损耗必须采用新材料和新工艺.因此,对具体使用条件下的高频电源变压器究竟达到多高的效率?也要在综合考虑性能和总体成本后决定. 4高频电源变压器的设计程序高频电源变压器的设计程序,包括磁芯材料,磁芯结构,磁芯参数,线圈参数,组装结构和温升校核等内容.下面分别进行讨论.4.1 磁芯材料根据高频电源变压器的设计要求,选择软磁材料本来应当是设计程序的第一项.但是,现在一般都认为高频电源变压器应当选择软磁铁氧体,是自然而然的事情.许多有关高频电源变压器的论文,专著和教材,只针对软磁铁氧体进行讨论,而对其他软磁材料有时说明一下,有时只字不提.而且究竟选择哪一类软磁铁氧体,也不加以说明,好象大家都知道.《电源技术应用》2003年第6期中的两篇文章就是一例.和任何软磁磁芯材料一样,软磁铁氧体有自己的优缺点.软磁铁氧体的优点是电阻率高、交流涡流损耗小,价格便宜,易加工成各种形状的磁芯.缺点是工作磁通密度低,磁导率不高,磁致伸缩大,对温度变化比较敏感.因此,有些高频电源变压器并不适合选择软磁铁氧体.例如,工作频率比较低(50kHz以下),功率比较大的高频电源变压器,如果选择软磁铁氧体,由于工作磁通密度低,用材料多,磁芯体积大,加工困难,易碎,成品率不高,显不出价格便宜的优势.又例如,工作频率高(500kHz以上),功率比较小的高频电源变压器,磁芯重量和体积本来都小,如果选择软磁铁氧体,必须用PW4、PW5类材料,价格也不便宜, 与其他软磁材料相比,磁芯价格基本相当,有时反而由于体积大,而处于不利地位.即使在适合于软磁铁氧体的工作频率范围内,也要对选择哪一类软磁铁氧体更能全面满足高频电源变压器的设计要求,进行认真考虑,才可以使设计出来的高频电源变压器达到比较理想的性能价格比.4.2 磁芯结构高频电源变压器设计中选择磁芯结构时考虑的因素有:降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配接线方便等.漏磁和漏感与磁芯结构有直接关系.如果磁芯不需要气隙,则尽可能采用封闭的环形和方框型结构磁芯,特别是工作频率高的电源变压器,因为,有一点漏感,就容易产生比较大的漏阻抗.封闭磁芯的磁通基本上集中在磁芯里面,漏磁小.同时,不论外界干扰磁场从哪个方向侵入,都在磁芯中分为两个方向通过,产生的干扰互相抵消.但是,封闭磁芯绕线困难,且环形磁芯散热要通过线圈,而且内层引出线也要穿过线圈引出,故必须加强绝缘.不封闭磁芯绕线容易,磁芯散热面大,可直接散热,引出线也容易.建议装线圈的磁路部分为圆柱形截面,减少平均匝长,降低损耗.矮胖圆柱形磁芯的漏磁和漏感比瘦高圆柱形磁芯大,一个原因是胖,圆柱形大,漏磁辐射面大;另一个原因是矮,上下两磁轭距离近,容易形成漏磁通的路径.不封闭磁芯中的气隙大小和位置与漏磁和漏感有密切关系.在保证完成功能所需的气隙条件下,尽可能减少气隙尺寸.因为,气隙尺寸增大,不但增加漏磁和漏感,还减少等值磁导率,增加激磁功率,对高频电源变压器工作不利.另外,气隙的位置最好处于线圈的中间部位,可以起到减少气隙漏磁通的作用.窗口面积的大小与线圈发热损耗和散热面积有关.窗口面积大,绕的电磁线截面。
变压器技术:工频变压器低频变压器设计原理工频变压器被大家称为低频变压器,以示与开关电源用高频变压器有区别,工频变压器在过去传统的电源中大量使用,而这些电源的稳定方式又是采用线性调节的,所以那些传统的电源又被称为线性电源。
工频变压器的原理非常简单,理论上推导出相关计算式也不复杂,所以大家形成了看法:太简单了,就那三、四个计算公式,没什幺可研究的。
设计时只要根据那些简单的公式,立马成功。
我认为上面的认识既有可取之处,也有值得研究的地方。
可取之处:根据计算式,可以很快就计算出结果,解决了问题;值得研究的地方是:你是否了解自己设计出的产品性能?设计合理吗?设计优化过吗?经济性如何? 举个例子吧,根据功率选铁芯规格就是个很繁杂的问题,因为涉及的因素比较多。
有些书推荐采用下面的半经验公式去选取: S = K·Sqrt(P) (1) 定下S后,然后进行其它的计算。
这确实是一种实用的方法,但也要认识到,这也是一种简化了的设计方法,大多数情况下存在着浪费。
这种设计方法对业余爱好者来说用不着讨论(只是偶尔设计一个变压器自己用),但对企业来说,值得讨论,产品中大批量采用这种设计时,体现的是降低了经济效益。
那幺,在专业的场合,比如变压器生产企业,他们是怎样的方法? 原理上,是根据导线在窗口中的占用系数去选取铁芯规格,但这样的计算很繁,而且关系不简单,比如相关计算式是: P = 0.0222·f·B·J·Sc·Sm (2) 当电流密度由电压调整率决定时,计算式为: P = 0.0555(f·f)(B·B)(Sc·Sc)·Sm·ΔU/(Z·Lm) (3) 这样复杂的关系,要人工拿出一个设计方案是非常头疼的,于是,专家们就根据实际情况,将这些关系结合数据编制成一系列表,设计工程师只要根据不同的设计指标查对应的表,就可以得到一组实用的数据,比如根据功率及其它指标查表,得到铁芯规格等。
高频变压器设计与参数设计高频变压器设计与参数设计是一项重要的技术,它能够帮助电子设备充分发挥性能。
高频变压器是指使用高频信号来改变交流电压的变压器,它通常用在微波炉、通信设备、打印机和医疗设备等领域,并且也用于高频功率转换、无线电、太阳能应用等等。
高频变压器的设计涉及到许多因素,包括电气特性,例如变压器的电压比、额定电流、变压器的绝缘耐压、损耗和过载能力。
同时,还必须考虑到变压器尺寸大小、重量、成本和可靠性等机械特性。
这些特性都会影响变压器的性能,从而影响其最终的性能表现。
在设计高频变压器时,首先应考虑变压器的工作频率。
一般来说,高频变压器的工作频率范围在1kHz~100MHz 之间,而且高频变压器的工作频率越高,其尺寸越小,耗散越低,性能也越好。
随后,应该考虑高频变压器的结构设计,采用的线圈数目,线圈的绕组方式,芯股的结构,冷却方式和绝缘材料等。
其中,线圈绕制方式和线圈的绕组方式是影响高频变压器的主要要素,它们会影响变压器的额定输出功率、输出纹波、温升和其他电气特性。
此外,还必须考虑到变压器的电压比以及母线电压。
电压比是指输出电压与输入电压之间的比率,它影响变压器的输出功率。
母线电压是指用于变压器的输入电压,它会影响变压器的最大输出功率,而且也会影响变压器的可靠性。
另外,在设计高频变压器时还应考虑变压器的外壳结构,这不仅影响变压器的重量和体积,还会影响变压器的热效应。
外壳结构应考虑到变压器的散热性能,以及变压器内部温度的分布情况等。
最后,需要重点考虑变压器的绝缘系统。
绝缘系统是高频变压器的核心部件,它具有高的绝缘强度和耐温性能,可以有效防止电路受到外界环境的干扰,也可以提高变压器的可靠性和安全性。
总之,高频变压器的设计与参数设计是一项复杂的工作,从上述内容可以看出,在设计高频变压器时,需要考虑变压器的电气特性、机械特性、工作频率、结构设计、电压比和母线电压、外壳结构以及绝缘系统等多个方面。
最终,变压器的设计与参数设计都是为了满足应用需求,并且有效地提高变压器的性能,以及提高变压器的可靠性和安全性。
EI 工频变压器设计的几个问题中国三江航天集团 黄永吾工频变压器在被大家称为低频变压器,以示与开关电源用高频变压器有区别。
工频变压器在过去传统的电源中大量使用,而这些电源的稳定方式又是采用线性调节的,所以那些传统的电源又被称为线性电源工频变压器的原理非常简单,理论上推导出相关计算式也不复杂,所以大家形成了看法:太简单了,就那三、四个计算公式,没什么可研究的。
设计时只要根据那些简单的公式,立马成功。
掌握了电压高了拆掉几圈,电压低了加几圈,空载电流大了,适当增加初级圈数,也觉的低工频变压器的非常简单。
我认为上面的认识既有可取之处,也有值得研究的地方。
可取之处:根据计算式或自己打样,可以很快就得出结果,解决了问题;加上有六七年以上得实际工作经验,可说是在某单位得心应手,鹤立鸡群。
值得研究的地方是:你是否了解自己设计出的产品性能?设计合理吗?设计优化过吗?经济性如何?过去电源变压器的设计由电子部牵头组织专家学者成立变压器工作组,编写典型计算免费发放各单位,作为计算依据,每个单位都有自己的变压器设计人员,由于有了参数表的存在,各厂设计出来的变压器各参数基本一致,连圈数和线径都可能一一模一样。
验收的规则也是统一到变压器总技术条件上来。
改革开放以后国营企业的变压器设计人员,除极少数外,下海的不多。
典型计算资料本不可多得,要按失密论处。
加上典型计算是原苏联的一套铁心规格与现行得EI 铁心片规格不符,无参照价值。
目前基本上是采用师傅带徒第的方式带出来一大批变压器工程人员。
与过去不同现有的工程技术人员大都是自己打样,由于工频变压器市场广泛,小单子很多。
而这些单子很多是从关系接来的。
不十分计较价格,因此理论水平一般,实际经验丰富的工程技术人员大有人在。
从设计角度来看师师傅带徒第的方式带出来一大批变压器工程人员,他门的设计风格各不相同。
A. 根据功率选铁芯规格就是个很繁杂的问题,因为涉及的因素比较多,有以下几种方法1. 采用下面的半经验公式去选取:)1(---⨯=P K A fe式中A fe --铁心有效截面积cm 2K--- 系数P —变压器输出功率 w定下A fe 后,然后进行其它的计算。
小功率整流工频变压器设计一般工频硅钢片C型O型变压器工作在50HZ到400HZ,设计方法和材料都是一样的。
用非晶材料频率可从50HZ到20KHZ,作出的变压器体积很小。
现在大容量变压器几乎全用非晶材料代替了硅钢片。
工频变压器工作在磁滞回线的1、3象限,铁芯的利用率比较大,变压器在负载状态下初级线圈匝数比次级线圈匝数等于初级电压比次级电压,初级电流反比于次级电流,除耗散功率,初次级能量相等。
,P1=η*P2, η=0.8~0.9一.确定初级输入功率P1,额定功率P0由于变压器存在着铜损和铁损,次级功率P2总小于初级功率P1,效率η一般在0.8~0.9,功率越小的变压器效率越低,变压器的额定功率 :2. 铁心选择:P0 伏安5—1010—5050—100100—500500—1000K2—1.75 1.75—1.51.5—1.351.35—1.251.25—1铁心截面积也可表示为a是E1型铁心,b是铁心叠厚。
变压器设计数据表。
3. 计算每伏匝数N0根据法拉第电磁感应定律 (系数正弦波=4.44,方波=4)工频变压器f=50HZ初级每伏匝数:Sc为铁心截面积单位,B为硅钢片磁感应强度单位高斯 1T(特斯拉)= CTS(高斯)一般硅钢片B取7000~8000高斯,优质硅钢片10000~18000高斯,次级绕组可按初级每伏匝数乘以本组电压再乘以1.05。
4. 选导线外径 :环境温度比较高的场合电流密度可按,Φ,一般室内温度可按,Φ 也可根据美国线规安培400cm查表求得。
5. 设计举例输入电压220V50HZ(160V~242V),次级N o1:16.5V 200mA ,No2:17V250ma(1) .求P0,选铁心:P2=16.5*0.20+17*0.25=2.475+4.25=7.55P1=P2/0.85=8.12,选η=0.85P0=(P1+P2)/2=(7.55+8.12)/2=7.8358VA根据变压器设计经验数据表选出8VA变压器用铁心为a 16mm,b 23mm因考虑高绝缘特性下限低电压160V,尼龙阻燃框架式骨架内带保护可恢复保险器,叠厚改为28mm。
500kv串级工频试验变压器设计
要设计一个500kV串级工频试验变压器,需要考虑以下几个关键因素:
1. 额定电压:根据试验需求,所设计的变压器的额定电压应为500kV。
2. 容量:根据试验需求,确定所需的容量。
容量大小会影响变压器的外形尺寸和重量。
3. 绕组结构:串级工频试验变压器一般采用螺绕式绕组结构。
根据电场分布的需要,可以考虑采用分层和分相绕组等结构。
4. 绝缘结构:由于额定电压较高,变压器的绝缘结构需要特别注意。
采用绝缘油或绝缘纸来实现绝缘。
5. 冷却方式:变压器在运行过程中会产生热量,需要采用合适的冷却方式来保证变压器的正常运行。
常用的冷却方式有自然冷却和强迫冷却等。
6. 绝缘材料:由于高电压试验需要承受较高电场强度,变压器绝缘材料需要具备较高的绝缘性能和耐电压能力。
绝缘材料可以选择油纸、油纸复合等。
7. 结构材料:变压器的外壳和支撑结构需要采用具有足够强度和耐腐蚀能力的结构材料。
设计一个500kV串级工频试验变压器是一项复杂的任务,需要考虑很多因素。
上述只是其中的一些关键因素,还需要根据具体要求进行更加详细的设计和计算。
变压器设计方法与技巧变压器设计方法与技巧一、设计2kVA以下的电源变压器及音频变压器一些电子线路设计人员及电子、电工爱好者经常碰到设计好的变压器,绕制时却绕不下;另外,设计的变压器,在带足负载后,次级电压明显下降。
还有一部分设计的变压器的性能良好,但成本较高而没有商业价值。
笔者在这里谈谈变压器的设计方法与技巧。
●变压器截面积确定:大家知道铁芯截面积是根据变压器总功率“P”确定的(A=1.25*SQRT(P)。
在设计时,假定负载是恒定不变的,则其铁芯截面积通常可选取计算的理论值。
如果其负载是变化比较大的,例如,音频、功放电源等变压器的截面积,则应适当大于理论计算值.这样才能保证有足够的功率输出能力(因为一旦截面积确定后,就不可能再选择功率余量了)。
如何确定这些变压器的"P"值呢?应该计算出使用时负荷的最大功率。
并且估算出某些变压器在使用中需要输出的最大功率。
特别是音频变压器、功放电路的电源变压器等(笔者测试过多种功放电路的音频变压器、功放电路的电源变压器;音频变压器在大动态下明显失真,电源变压器在大动态下次级电压明显下降。
经测算,截面积不够是产生上述现象的主要原因之一)。
●每伏匝数的确定:变压器的匝数主要取决于铁芯截面积和硅钢片的质量,通常从参考书籍计算出的每伏匝数是比较多的,经实验证明,从理论设计的数值上,将每伏匝数降低10%~15%是没有问题的。
例如,一只35W的电源变压器,根据理论计算(中矽钢片8500高斯)每伏匝数为7.2匝,而实际每伏只需6匝就可以了,且这样绕制的变压器空载电流在26mA左右。
笔者和同行在解剖过日本生产的家用电器上的电源变压器时发现。
他们生产的变压器每伏匝数比我们国产的变压器线圈匝数要少得多,同样35W的电源变压器每伏匝数只有4.8匝,空载电流45mA左右。
通过适当减少匝数。
绕制出来的变压器不但可以降低内阻,而且避免了采用普通规格硅钢片时经常出现的绕不下的麻烦。
电机与拖动课程
设计报告
课程名称:电机与拖动课程设计
设计题目:工频电源变压器设计
院系:电气工程系
班级:
设计者
学号:
同组人:
指导教师:
设计时间:
课程设计(论文)任务书
指导教师签字:系(教研室)主任签字:
年 月 日
小型单相变压器简介
变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。
实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。
小型变压器指的是容量1000V.A 以下的变压器。
最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、 彼此绝缘的绕组(构成电路)构成。
这类变压器在生活中的应用非常广泛。
一、变压器的工作原理
变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。
变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。
变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。
一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。
原绕组各量用下标1表示,副绕组各量用下标2表示。
原绕组匝数为1N ,副绕组匝数为2N 。
图(1)变压器结构示意图
理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通 ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。
(1) 电压变换
当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将
产生既与一次绕组交链,又与二次绕组交链的主磁通φ。
(1-2)
(1-3)
(1-4)
说明只要改变原、副绕组的匝数比,就能按要求改变电压。
(2) 电流变换
变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流1I 的大小则取决于2I 的大小。
2211I U I U = 又 (1-5) K I
I U U I 22121==
∴ (1-6)
说明变压器在改变电压的同时,亦能改变电流。
小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。
二、 变压器的基本结构
1、 铁心:铁心是变压器磁路部分。
为减少铁心内磁滞损耗涡流损耗,通常铁心用含硅量较高的、厚度为0.35或0.5mm 、表面涂有绝漆的热轧或冷轧硅钢片叠装而成。
铁心分为铁柱和铁轭两部分,铁柱上套装有绕组线圈,铁轭则是作为闭合磁路之用,铁柱和铁轭同时作为变压器的机械构件。
铁心结构有两种基本形式:心式和壳式。
2、 绕组:绕组是变压器的电路部分。
一般采用绝缘纸包的铝线或铜线绕成。
为了节省铜材,我国变压器线圈大部分是采用铝线。
图(2)
3、 其它结构部件:储油柜、气体继电器、油箱。
图(3)单相心式变压器
1—铁柱;2—铁轭;3—高压线圈;4—低压线圈
二、 变压器各结构设计
1.两侧功率计算
变压器的额定功率是1kw ,根据表1,可查得
00.9
12000 1.2m B K η取取取
表1
()12211112
222
1
,2
1.2105
2.63w =5.45A?
947.37w
8.61N N
S S S S S S I U S S I A U η=
+=====
=由S 得: 2.变压器结构选择及其横截面的计算
需要设计的变压器是小功率变压器,所以采用了壳式结构,中间芯柱放置绕组。
结构如图3
图3
根据中柱(铁芯)截面积F 与变压器输出总视在功率,可计算出横截面积为:
22F 36.935333693.53K cm mm ====
F 73.87
ab F
b a
===因为选用a=50则
选用0.35mm 厚,两面涂绝缘漆Kc=0.92
'73.870.9280.298080
=1.61250
b =÷=取在到之间,故合适
根据表2,我们取
50802575
150
125
a b c h A H ======
表2
3.计算每个绕组的匝数 因为频率是50Hz
所以绕组中每伏电压所需要的匝数为
85
010 4.5100.924.4450m m N B F B F
⨯===⨯
122200.92202
%1.051100.92106
N N =⨯==⨯⨯=所以一次侧的匝数为二次侧的匝数为(副绕组匝数增加5,以补偿负载时变压器内部阻抗压降)
4.计算绕组的导线直径及选择导线 导线截面积
d I F j
=
需要设计的是电源变压器需要长时工作所以j 选3A 2/mm ,可求得:
212
2 1.812.87d d mm mm ==一次侧的导线截面积为F 二次侧的导线截面积为F
根据公式d =
=
12 1.521.91mm mm
==一次侧的导线直径为d 二次侧的导线直径为d
表3
根据表3 一次侧我们选取 1.56mm 的QZ-2,最大外径是1.67mm 二次侧我们选取1.90mm 的SQZ ,最大外径是2.1mm 5.计算绕组总的尺寸,核算铁心窗口面积 按选定的窗口高h 计算每层可绕的匝数
'
0.9(3)
c h N d
-=
38一次侧导线为匝/层 二次侧导线为30匝/层
每组绕组所需层数
12202106
5.31 3.533830
m m =
=== 所以一次侧是6层,二次侧是4层
变压器外侧套上绕组框架(用弹性纸1毫米厚),对地(铁心)绝缘用两层电缆纸(0.07毫米)加一层黄蜡纸(0.14毫米),
010.140.14 1.28E mm =++=
在框架外每绕一层绕组后就需要包上层间绝缘
10.04mm 20.07mm
δδ==一次侧绕组较细用百玻璃纸一层二次侧绕组较粗用电缆纸一层
当整个一次侧绕组绕完后,在外面包上组间绝缘,厚度为0.28mm
126(1.670.04)0.2810.544(2.10.07)8.68E mm E mm =⨯++==⨯+=
总厚度为
1.1(1.2810.548.68)2
2.55E c =++=<
校核时E<C ,说明设计计算符合要求,可以采用。
6.计算绕组用铜量 绕组尺寸如图4
图4
'101'20122(42)312.4mm 2(4442)391.28
w w l a b E E l a b E E r E =+++==+++++=所以一次侧绕组每匝平均长度为二次侧绕组每匝的平均长度为
绕组用铜量计算公式为
-58.910cu d w G NF l =⨯
515
28.9202 1.91131.2410 1.088.9106 2.83539.12810 1.05cu cu G kg G kg --=⨯⨯⨯⨯==⨯⨯⨯⨯=
所以总的用铜量为
108.37105.46 2.13cu G kg =+=
三、电气参数计算
变压器的变比12220
2110
U k U =
==
2022202010%=122.22V
U U u U -∆==由额定电压调整率得:
U =110V 二次侧空载电压为
U
一次侧电阻为69.384202312.4100.6-⨯⨯⨯=
二次侧电阻为66.331106391.28100.26-⨯⨯⨯=
四、实验小结
通过整个课程设计的完成,不仅对于变压器的原理结构有了更深刻的理解和认识,也在完成过程中锻炼了正确有效搜集和利用相关专业资料的能力,在独立思考,主动学习的过程中,也提升了团队合作共同解决问题的水平。
受限时间紧蹙,已知条件不足,个人能力有限等诸多主观和客观因素,设计难免略显不足,很多参数不能非常准确的计算和表示出来,更多的数据还需要在实验中进行探索和验证。
五、参考文献
1.贾大义 艾高烈;常用电机原理与设计 中国轻工业出版社 1995
2.贝冠祺; 小功率电源变压器设计制作与修理 人民邮电出版社 1995
3.陈伯时; 电机与拖动 清华大学出版社 2005。