高速铁路牵引网保护方案
- 格式:pdf
- 大小:1.12 MB
- 文档页数:12
全并联AT 供电方式下馈线保护的配置与整定摘要:高速铁路牵引供电系统的安全可靠运行是保证列车安全运行的前提,继电保护装置是保障牵引供电系统安全可靠运行的重要手段。
针对我国高铁广泛采用的全并联AT供电方式,从正常供电和越区供电两个方面分析了馈线保护的要求,配置了相应的保护方案并探讨了整定计算的方法。
关键词:AT供电;馈线保护;整定1全并联AT供电方式目前,我国高铁通常采用全并联AT供电方式,如图1所示。
其特点是在AT供电方式的基础上,将上、下行接触网在每个AT所都进行一次横向电连接。
这种接线方式可减少接触网单位长度阻抗,减少电压损失,增强供电能力,改善供电质量,但是这种供电方式的拓扑结构较普通AT或其他供电方式要复杂,在故障情况下电气参数变得更加复杂,使其对继电保护提出了更高的要求。
2全并联AT供电方式馈线保护配置的总体思路由于全并联AT供电方式结构的特殊性,保护配置方案与传统的牵引网保护有所不同。
在这里主要体现的一个设计思路就是:当发生故障时,继电保护应首先将复杂的网络简单化,将系统解裂,让其变为不并联的单线供电臂,然后再利用各断路器重合闸逐一排除故障,这样就会大大简化保护的配置,快速锁定故障范围。
例如图1 所示的全并联AT 供电牵引网中,当k1 点发生暂时性短路故障时保护启动,首先应将断路器QF1、QF2 分断,然后ATI所的断路器QF3、QF4和分区所SP的断路器QF5、QF6 因失压保护而分断,将系统解裂让其变为不并联的单线供电臂。
QF5和QF6分断以后,QF1和QF2自动重合闸,馈线恢复供电。
之后通过AT1所和分区所SP设置的检有压自动重合闸装置,将AT1所、分区所SP的QF3、QF4、QF5、QF6重合闸,系统恢复正常供电。
当k1点发生永久性短路故障时,应首先跳开QF1和QF2,然后因失压保护跳开QF3、QF4、QF5、QF6,重合闸整定时间到后QF1、QF2优先重合闸,但由于是永久性短路故障,QF2重合后又跳闸而QF1 重合闸成功,QF5因无压不重合闸,QF6重合闸成功,QF3因无压不重合闸,QF4重合闸成功,整个系统上行供电臂停止供电,下行供电臂恢复AT供电。
高速铁路牵引供电关键技术分析摘要:随着铁路建设的不断推进,牵引供电技术也得以快速发展。
文章介绍了高速铁路牵引供电系统的组成,分析了高速铁路牵引供电技术的特点,并结合实际案例对高速铁路牵引供电的关键技术进行了探讨,有效保证了列车运营的稳定性和安全性。
关键词:高速铁路;牵引供电系统;接触网技术一、高速铁路牵引供电系统组成在铁路系统运行过程中,牵引供电系统为列车的正常运营提供了动力支持。
由于高速铁路列车运行密度大、车辆运行速度快、列车运行可靠性要求比较高,所以高速铁路列车设备选型和技术方案和普通铁路均有所不同。
高速铁路牵引供电系统主要可以划分为接触网和牵引变电所两个组成部分。
其中,牵引变电所主要通过牵引变压器将区域电力系统电源变压为适合电力机车运行的电压,然后利用馈线将电压引到接触网。
电力机车通过受电弓从接触网获得连续电能,为其运营提供足够的能量。
三、高速铁路牵引供电关键技术分析3.1项目背景本高速铁路工程项目为客运专线,总长度约为120km,基本是由高架线构成,最大设计速度为350km/h,最大运营速度为300km/h,沿线共设5座车站,其整个机电系统在运营速度300km/h、列车编组8辆的条件下,达到最小追踪列车间隔时间3min的综合能力目标值。
3.2牵引供电系统技术特性3.2.1可靠性牵引供电系统必须具备科学的冗余设计体系、高质量的设备与施工体系,为列车运行提供可靠的能量支持。
3.2.2可用性外界故障或内部人员疏忽引起的故障不至于导致系统的失效。
如双回路供电、接触网系统合理电分段,结构稳定、智能化继电保护控制系统。
3.2.3可维护性建立系统维修体制,牵引供电系统应保障不间断供电,采用少维护、免维修产品。
3.2.4安全性采取合适的、具有可操作性的安全管理措施避免出现安全性灾难;牵引供电系统不应产生铁路内部危害性干扰及对与其他系统的危害性相互作用的影响。
3.2.5环保和可持续性发展牵引供电系统建设应符合中国环境保护法的要求,电磁干扰、噪声指标等对人体健康及环境的影响符合相关规定,具有绿色、环保、节能的功能措施,对周边环境无污染或少污染,设备材料的使用具有可回收性和二次利用性,保证整个系统的可持续发展。
可编辑修改精选全文完整版高速铁路牵引供电系统1.牵引变电所牵引变电所是电气化铁路的心脏,其作用是将110 kV(220 kV)三相交流电变换成27.5 kV(或55 kV)单相工频交流电,并供给电力牵引网和电力机车。
此外,有少数牵引变电所还需担负10 kV动力负荷。
所以,牵引变电所具有3个主要功能:接受三相电能,降压分配电能,减相以单相馈出供给牵引网。
2.分区亭在电气化铁路上,为了提高运行的可靠性,增加供电工作的灵活性,在相邻变电所供电的相邻两供电分区的分界处常用分相绝缘器断开,若在断开处设置开关设备和相应的配电装置,则组成分区亭。
在复线电气化区段,分区亭的主要功能如下:(1)使同一供电臂上的上、下行接触网并联工作或单独工作。
当并联工作时,分区亭内的断路器闭合以提高接触网的末端电压;当单独工作时,断路器打开。
(2)当同一供电臂上的上、下行接触网(并联工作)发生短路事故时,由牵引变电所相应的馈线断路器和分区亭中的断路器配合动作,切除事故区段,缩小事故范围;非事故区段仍可正常供电。
(3)当某牵引变电所全所停电时,可闭合分区亭中的越区隔离开关,由相邻牵引变电所向停电牵引变电所进行越区供电。
总之,分区亭的作用是:对单线牵引网,使两相邻供电臂单独工作或实现越区供电;对双线牵引网,使上、下行接触网并联,提高末端电压,缩小事故范围和实行必要时的越区供电。
3.开闭所当远离牵引变电所的枢纽站、电力机务段等大宗负荷需要多条馈电线向这些接触网分组供电时,一般采用建立开闭所的办法来解决。
开闭所是指不进行电压变换而用开关设备实现电路开闭的配电所。
开闭所一般有两条进线,然后多路馈出向枢纽站场接触网各分段供电,进线和出线均经过断路器,以实现接触网各分段停、供电的灵活运行,又由于断路器对接触网短路故障进行保护,从而可以缩小事故停电范围。
开闭所的作用是增加馈线数目,将主线接触网与分支接触网分开,缩小事故范围,提高供电可靠性,保证枢纽站、站场装卸作业和接触网分组检修的灵活性和安全性;降低牵引变电所的复杂程度,还可实现上、下行扭接,保证在事故情况下供电,正常情况下扭接有利于改善牵引网电压水平,降低电能损失。
仅供参考[整理] 安全管理文书高速铁路接触网安全工作规程日期:__________________单位:__________________第1 页共18 页高速铁路接触网安全工作规程第一章总则第1条在高速铁路接触网运行和检修工作中,为确保人身、行车和设备安全,特制定本规程。
本规程适用于高速铁路(含城际铁路、动车所及相关联络线)接触网的运行检修工作。
第2条牵引供电各单位(包括高速铁路牵引供电设备管理、维修单位和从事高速铁路牵引供电的施工单位,下同)在接触网作业中必须贯彻“施工不行车,行车不施工”的原则;经常进行安全技术教育,组织有关人员认真学习和熟悉本规程,不断提高安全技术管理水平,切实贯彻执行本规程的各项规定。
第3条各级管理部门要认真建立健全各级岗位责任制,抓好各管理岗位、作业岗位基础工作,依靠科技进步,积极采用新技术、新工艺、新材料,不断提高和改善高速铁路接触网的安全工作和装备水平,确保人身和设备安全。
各铁路局(公司)可根据本规程规定的原则和要求,结合具体情况制定细则,并报铁路总公司核备。
第二章一般规定第4条高速铁路所有的接触网设备,自第一次受电开始即认定为带电设备。
之后,接触网上的一切作业,必须按本规程的规定严格执行。
封闭栅栏防护网内(以下简称“网内”)进行的接触网作业,必须在上下行线路同时封锁,或本线封锁、邻线限速的情况下进行。
第5条凡参加高速铁路牵引供电各单位接触网作业的有关人员,必须达到《高速铁路主要行车工种岗位标准》的职业资格要求,取得本职业相应等级的《职业资格证书》和《铁路岗位培训合格证书(CRH)》。
从事高速铁路管理工作的各级管理干部,上岗前必须经过培训,并经考试合格取得《高速铁路管理干部上岗证》后方准上岗。
第6条从事高速铁路接触网作业的有关人员,必须实行安全等级制度。
经过考试评定安全等级,取得《高速铁路供电安全合格证》之后(安全合格证格式和安全等第 2 页共 18 页级的规定,分别见附录1、2),方准参加与所取得的安全等级相适应的接触网运行和检修工作。
高铁电力牵引供电工程方案一、工程背景高铁作为一种现代化的交通运输工具,具有运行速度快、行驶平稳等优势,已经成为人们出行的首选方式。
而高铁的电力牵引供电系统作为支撑其运行的重要组成部分,对于高铁的安全、稳定运行至关重要。
因此,高铁电力牵引供电工程方案一直备受关注和重视。
二、工程目标1. 稳定供电:确保高铁全线能够稳定供电,避免供电不稳定或中断的情况发生,保障高铁运行的安全和顺畅。
2. 提高效率:通过科学合理的设计和施工工艺,提高电力牵引供电系统的效率,减少能源损耗,节省运行成本。
3. 安全可靠:确保供电系统的安全稳定运行,避免事故发生,保障高铁运行的安全。
4. 绿色环保:尽量采用清洁能源,减少对环境的污染,做到绿色环保,为社会和环境做出更大的贡献。
三、工程内容1. 设计方案:根据高铁线路的实际情况和运行需求,采用先进的电力牵引供电技术,设计出科学合理的电力供电系统,包括供电设备的选型、布局、参数设计等。
2. 施工工艺:采用先进的施工工艺,确保供电系统的施工质量和效率,包括供电线路的铺设、设备的安装调试等。
3. 安全监控:建立完善的供电系统安全监控机制,监测供电设备的运行状态,做好预防性维护,确保供电系统的安全可靠运行。
4. 环境保护:在供电系统的设计和施工过程中,尽量采用清洁能源,减少对环境的影响,做到绿色环保。
四、工程实施1. 设计阶段:组织专业团队进行现场勘察和分析,根据高铁线路的实际情况和运行需求,制定供电系统设计方案。
2. 施工阶段:根据供电系统设计方案,组织施工队伍进行供电线路的铺设、供电设备的安装调试等工作,确保供电系统的施工质量和进度。
3. 测试阶段:进行供电系统的整体测试和调试工作,确保供电系统的安全可靠运行。
4. 运行阶段:建立供电系统的运行管理机制,定期进行供电设备的检修和维护工作,确保供电系统的长期稳定运行。
五、工程效果1. 稳定供电:通过科学合理的设计和施工,确保高铁全线能够稳定供电,避免供电不稳定或中断的情况发生,保障高铁运行的安全和顺畅。