反冲运动之人船模型
- 格式:ppt
- 大小:377.50 KB
- 文档页数:17
动量守恒的条件爆炸、反冲运动人船模型考点一动量守恒的条件考点二爆炸、反冲运动考点三人船模型考点四连续射击问题1.动量守恒定律内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
2.动量守恒定律常用表达式:m1v1+m2v2=m1v1′+m2v2′.1)p=p′:相互作用前系统的总动量p等于相互作用后的总动量p′.2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前动量的矢量和等于作用后动量的矢量和.3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.4)Δp=0:系统总动量增量为零.考点一动量守恒的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
附:机械能守恒的条件:只有重力、系统内弹力做功.1.下列四幅图所反映的物理过程中,说法正确的是()A.甲图中子弹射入木块过程中,子弹和木块组成系统动量守恒,能量不守恒B.乙图中M、N两木块放在光滑水平面上,剪断束缚M、N的细线,在弹簧从压缩状态恢复原长过程中,M、N与弹簧组成的系统动量不守恒,机械能守恒C.丙图中细线断裂后,木球和铁球在水中运动的过程,两球组成的系统动量不守恒,机械能守恒D.丁图中木块沿光滑固定斜面下滑,木块和斜面组成的系统动量守恒,机械能守恒2.如图所反映的物理过程中,以物体A和物体B为一个系统符合系统机械能守恒且水平方向动量守恒的是()A.甲图中,在光滑水平面上,物块B以初速度v0滑上上表面粗糙的静止长木板AB.乙图中,在光滑水平面上,物块B以初速度v0滑下靠在墙边的表面光滑的斜面AC.丙图中,在光滑水平上面有两个带正电的小球A、B相距一定的距离,从静止开始释放D.丁图中,在光滑水平面上物体A以初速度v0滑上表面光滑的圆弧轨道B3.(多选)如图所示,A、B两物体质量之比为m A∶m B=3∶2,原来静止在足够长的平板小车C上,A、B间有一根被压缩的弹簧,地面光滑.当两物体被同时释放后,则( )A.若A、B与平板车上表面间的动摩擦因数相同,则A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,则A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,则A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,则A、B、C组成系统的动量守恒4. (2021·全国乙卷·T14)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。
人船模型与反冲运动一、人船模型1.若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。
在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。
如果系统是由两个物体组成的,合外力为零,且相互作用前均静止。
相互作用后运动,则由0=m 11v +m 22v 得推论0=m 1s 1+m 2s 2,但使用时要明确s 1、s 2必须是相对地面的位移。
2、人船模型的应用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零.二、反冲运动1、指在系统内力作用下,系统内一部分物体向某发生动量变化时,系统内其余部分物体向相反方向发生动量变化的现象2.研究反冲运动的目的是找反冲速度的规律,求反冲速度的关键是确定相互作用的物体系统和其中各物体对地的运动状态.规律方法1、人船模型及其应用【例1】如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?解析:当人从船头走到船尾的过程中,人和船组成的系统在水平方向上不受力的作用,故系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则mv 2-Mv 1=0,即v 2/v 1=M/m.在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t=0,即ms 2-Ms 1=0,而s 1+s 2=L 所以1,m s L M m =+2M s L M m=+ 思考:(1)人的位移为什么不是船长?(2)若开始时人船一起以某一速度匀速运动,则还满足s 2/s 1=M/m 吗?【例2】载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长?解析:气球和人原静止于空中,说明系统所受合力为零,故人下滑过程中系统动量守恒,人着地时,绳梯至少应触及地面,因为人下滑过程中,人和气球任意时刻的动量大小都相等,所以整个过程中系统平均动量守恒.若设绳梯长为l ,人沿绳梯滑至地面的时间为 t ,由图4—15可看出,气球对地移动的平均速度为(l -h )/t ,人对地移动的平均速度为-h/t (以向上为正方向).由动量守恒定律,有M (l -h )/t -m h/t=0.解得 l=M m M +h . 答案:Mm M +h 说明:(1)当问题符合动量守恒定律的条件,而又仅涉及位移而不涉及速度时,通常可用平均动量求解.(2)画出反映位移关系的草图,对求解此类题目会有很大的帮助.(3)解此类的题目,注意速度必须相对同一参照物.【例3】如图所示,一质量为m l 的半圆槽体A ,A 槽内外皆光滑,将A 置于光滑水平面上,槽半径为R.现有一质量为m 2的光滑小球B 由静止沿槽顶滑下,设A 和B 均为弹性体,且不计空气阻力,求槽体A 向一侧滑动的最大距离.解析:系统在水平方向上动量守恒,当小球运动到糟的最右端时,糟向左运动的最大距离设为s 1,则m 1s 1=m 2s 2,又因为s 1+s 2=2R,所以21122m s R m m =+ 思考:(1)在槽、小球运动的过程中,系统的动量守恒吗?(2)当小球运动到槽的最右端时,槽是否静止?小球能否运动到最高点?(3)s 1+S 2为什么等于2R,而不是πR?【例4】某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n 颗子弹,每颗子弹的质量为m ,枪口到靶的距离为L ,子弹水平射出枪口相对于地的速度为v 0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n 颗子弹时,小船后退的距离为() ()()0;;;11mnl nml mnl A B C D M n m M nm M n m⋅⋅⋅⋅+-+++ 解析:设n 颗子弹发射的总时间为t,取n 颗子弹为整体,由动量守恒得nmv 0=Mv 1,即nmv 0t=Mv 1t;设子弹相对于地面移动的距离为s 1,小船后退的距离为s 2,则有: s 1=v 0t, s 2= v 1t;且s 1+s 2=L解得:2nml s M nm=+.答案C 【例5】如图所示,质量为m 、半径为R 的小球,放在半径为2R,质量为2m 的大空心球内.大球开始静止在光滑的水平面上,当小球从图示位置无初速度地沿大球壁滚到最低点时,大球移动的距离是多少?解析:设小球相对于地面移动的距离为s 1,大球相对于地面移动的距离为s 2.下落时间为t,则由动量守恒定律得12122;s s m m s s R t t =+=;解得213s R =【例6】如图所示,长20 m 的木板AB 的一端固定一竖立的木桩,木桩与木板的总质量为10kg ,将木板放在动摩擦因数为μ=0. 2的粗糙水平面上,一质量为40kg 的人从静止开始以a 1=4 m/s 2的加速度从B 端向A 端跑去,到达A 端后在极短时间内抱住木桩(木桩的粗细不计),求:(1)人刚到达A端时木板移动的距离.(2)人抱住木桩后木板向哪个方向运动,移动的最大距离是多少?(g取10 m/s2)解析:(1)由于人与木板组成的系统在水平方向上受的合力不为零,故不遵守动量守恒.设人对地的位移为s1,木板对地的速度为s2,木板移动的加速度为a2,人与木板的摩擦力为F,由牛顿定律得:F=Ma1=160N;()2 2160500.2106.0/10F M m ga m smμ-+-⨯⨯===设人从B端运动到A端所用的时间为t,则s1=½a1t, s2=½a2t; s1+s2=20m由以上各式解得t=2.0s,s2=12m(2)解法一:设人运动到A端时速度为v1,木板移动的速度为v2,则v1=a1t=8.0m/s, v2=a2t=12.0m/s,由于人抱住木桩的时间极短,在水平方向系统动量守恒,取人的方向为正方向,则Mv1-mv2=(M+m)v,得v=4.0m/s.由此断定人抱住木桩后,木板将向左运动.由动能定理得(M+m)μgs=½(M+m)v2解得s=4.0m.解法二:对木板受力分析,木板受到地面的摩擦力向左,故产生向左的冲量,因此,人抱住木桩后,系统将向左运动.由系统动量定理得(M+m)μgt=(M+m)v,解得v=4.0m/s由动能定理得(M+m)μgs=½(M+m)v2解得s=4.0m.2、反冲运动的研究【例7】如图所示,在光滑水平面上质量为M的玩具炮.以射角α发射一颗质量为m的炮弹,炮弹离开炮口时的对地速度为v0。
人与船作用模型的解读和拓展模型解读:人与船开始时都静止,突然人从一端走向另一端的过程中,船向相反方向运动,类似反冲,人停止,船也停止。
很多复杂难解的相互作用问题,都可以归结到人船模型上来,从而使问题轻松解决. 拓展1 人船作用的对地位移例1:如图1所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少?解析:以人和船组成的系统为研究对象,在水平方向不受外力作用,满足动量守恒.设某时刻人的速度为v 1,船的速度为v 2,取人行进的方向为正,则有:021=-Mv mv 上式换为平均速度仍然成立,即 021=-v M v m 两边同乘时间t ,021=-t v M t v m ,设人、船位移大小分别为s 1、s 2,则有,21Ms ms = ① 由图可以看出:L s s =+21 ② 由①②两式解得L m M m s +=1,L m M M s +=2 答案:L m M m s +=1,L mM Ms +=2点评:人船模型中的动力学规律:由于组成系统的两物体受到大小相同、方向相反的一对力,故两物体速度大小与质量成反比,方向相反。
这类问题的特点:两物体同时运动,同时停止。
人船模型中的动量与能量规律:由于系统不受外力作用,故而遵从动量守恒定律,又由于相互作用力做功,故系统或每个物体动能均发生变化:力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化。
拓展2 球和圆筒的作用例2.如图2所示,一质量为m l 的圆筒A ,圆筒内外皆光滑,将A 置于光滑水平面上,圆筒半径为R.现有一质量为m 2的光滑小球B (可视为质点),由静止从圆筒的水平直径处沿筒壁滑下,设A 和B 均为弹性体,且不计空气阻力,求圆筒向一侧滑动的最大距离.解析: 小球滑动过程圆筒先向左加速,再先向左减速,当小球运动到圆筒的最右端时, 如图3所示,圆筒向左运动的距离最大,小球和圆筒组成的系统可视为“人船模型”,在水平方向上动量守恒,设圆筒向左运动的最大距离为s 1, 此时小球向右运动的距离为s 2,由人船模型方程得: m 1s 1=m 2s 2 ① 又因为s 1+s 2=2R ② 由①②得 21212m m Rm s +=点评:本题以小球带动圆环为情景设置题目,考查对动量守恒条件的理解与灵活运用能力.小球和圆槽体作用过程,系统所受合外力并不为0,但在水平方向上系统不受外力,在水平方向上动量守恒.当小球运动到槽的最右端时,槽瞬间静止;有同学会因为对动量守恒理解不深刻,不能将“人船模型”迁移过来,感到无从求解,也有同学会误认为两个物体相对于地面移动的距离之和等于πR 而导致错误。
爆炸、反冲及人船模型学校:_________班级:___________姓名:_____________模型概述1.爆炸1)爆炸问题的特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.3)由于爆炸问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.2.反冲现象:1)反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.2)在反冲现象里,系统不受外力或内力远大于外力,系统的动量是守恒的.3)反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加3.人船模型1)模型图示2)模型特点①两物体满足动量守恒定律:m人v人-m船v船=0②两物体的位移大小满足:m人x人t-m船x船t=0,又x人+x船=L得x人=m船m船+m人L,x船=m人m船+m人L③运动特点Ⅰ、人动则船动,人静则船静,人快船快,人慢船慢,人左船右;Ⅱ、人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x人x船=v人v船=m船m人.典题攻破1.爆炸1.(2024·青海海南·二模)斜向上发射的炮弹在最高点爆炸(爆炸时间极短)成质量均为m 的两块碎片,其中一块碎片沿原路返回。
已知炮弹爆炸时距地面的高度为H ,炮弹爆炸前的动能为E ,重力加速度大小为g ,不计空气阻力和火药的质量,则两块碎片落地点间的距离为()A.2EHmgB.22EH mgC.23EH mgD.42EH mg【答案】D【详解】火箭炸裂的过程水平方向动量守恒,设火箭炸裂前的速度大小为v ,则E =122mv 2得v =Em设炸裂后瞬间另一块碎片的速度大小为v 1,有2mv =-mv +mv 1解得v 1=3Em根据平抛运动规律有H =12gt 2得t =2H g两块碎片落地点之间的距离x =(v +v 1)t =42EH mg故D 。
第6点 透析反冲运动的模型——“人船”模型模型建立:如图1所示,长为L 、质量为m 船的小船停在静水中,质量为m 人的人由静止开始从船的一端走到船的另一端,不计水的阻力,求船和人相对地面的位移各为多少? 以人和船组成的系统为研究对象,在人由船的一端走到船的另一端的过程中,系统水平方向不受外力作用,所以整个系统水平方向动量守恒.图1设某时刻人对地的速度为v 人,船对地的速度为v 船,取人前进的方向为正方向,根据动量守恒定律有:m 人v 人-m 船v 船=0,即v 船∶v 人=m 人∶m 船.因此人由船的一端走到船的另一端的过程中,人的平均速度与船的平均速度也与它们的质量成反比.而人的位移x 人=v 人t ,船的位移x 船=v 船t ,所以船的位移与人的位移也与它们的质量成反比,即x 船∶x 人=m 人∶m 船①①式是“人船模型”的位移与质量的关系,此式的适用条件是原来处于静止状态的系统,在系统内部发生相对运动的过程中,某一个方向的动量守恒.由图可以看出:x 船+x 人=L ②由①②两式解得x 人=m 船m 人+m 船L ,x 船=m 人m 人+m 船L . 此模型可进一步推广到其他类似的情景中,进而能解决大量的实际问题,例如:人沿着静止在空中的热气球下面的软梯滑下或攀上,求热气球上升或下降高度的问题;小球沿放在光滑水平地面上的弧形槽滑下,求弧形槽移动距离的问题等.对点例题 如图2所示,质量m =60 kg 的人,站在质量M =300 kg 的车的一端,车长L =3 m ,相对于地面静止.当车与地面间的摩擦可以忽略不计时,人由车的一端走到另一端的过程中,车将( )图2A .后退0.5 mB .后退0.6 mC .后退0.75 mD .一直匀速后退解题指导 人车组成的系统动量守恒,则mv 1=Mv 2,所以mx 1=Mx 2,又有x 1+x 2=L ,解得x 2=0.5 m.答案 A 方法点评 人船模型是典型的反冲实例,从瞬时速度关系过渡到平均速度关系,再转化为位移关系,是解决本题的关键所在.1. 一个质量为M 、底边长为b 的三角形斜劈静止于光滑的水平桌面上,如图3所示.有一质量为m 的小球由斜面顶部无初速度地滑到底部时,斜劈移动的距离为多少?图3答案 mb M +m解析 斜劈和小球组成的系统在整个运动过程中都不受水平方向的外力,所以系统在水平方向上动量守恒.斜劈和小球在整个过程中发生的水平位移如图所示,由图知斜劈的位移为x ,小球的水平位移为b -x ,由m 1x 1=m 2x 2,得Mx =m (b -x ),所以x =mb M +m.2. 如图4所示,一个质量为m 的玩具蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上,若车长为L ,细杆高为h ,且位于小车的中点,试求:当玩具蛙最小以多大的水平速度v 跳出,才能落到桌面上.图4答案 LM m+M 2g h解析 蛙跳出后做平抛运动,运动时间为t = 2h g,蛙与车水平方向动量守恒,可知mx =M (L2-x ),蛙要能落到桌面上,其最小水平速度为v =x t,上面三式联立求得v =LM m +M 2g h .3. 质量为m 、半径为R 的小球,放在半径为2R 、质量为M 的大空心球内,大球开始静止在光滑水平面上,如图5所示,当小球从图中所示位置无初速度地沿内壁滚到最低点时,大球移动的距离为多大?图5答案 mM +m R 解析 小球与大球组成的系统水平方向不受力的作用,系统水平方向动量守恒.因此小球向右滚动,大球向左滚动.在滚动过程中,设小球向右移动的水平距离为x 1,大球向左移动的水平距离为x 2,两者移动的总长度为R .因此有mx 1-Mx 2=0而x 1+x 2=R .由以上两式解得大球移动的距离为x 2=m M +m R。
人船模型在利用动量守恒定律解题的题型中有一种特殊的题型,那就是反冲。
这种题型可归结为“人船模型”问题,其特点是:整个系统由两个物体组成,开始系统处于静止状态,然后仅在内力作用下各自向相反的方向运动,用一句成语把这个过程概括为“一分为二”。
“一分为二”分的是两个相互作用物体的“相对位移”但并不是平分,除非两个物体的质量相同。
这样即使不画图也能分析出来。
例1.质量为m 的人站在船尾上,船的质量为M ,长为L ,整个静止在水面上(水的阻力不计),现在从船尾向船头走去,当人走到船头时,船移动的距离为多少?解析:(本题分的是船长L )人在船上走动,无论人怎样走动(匀速、变速),选人和船为系统平均动量守恒。
m v 人=M 船vm t v M t v 船人=mS 人=MS 船m(L -S 船)=M S 船S 船=Mm mL + 变式:质量为200Kg ,长为3.2m 的小船静止在水面上,船尾站着一个质量为70 Kg 的人,船头站着一个质量为50 Kg 的人,不计水的阻力,当两个人交换位置后,船的位移大小是多少?解析:两人交换位置相当于20 Kg 的人从船尾走到船头只不过船的质量不是200 Kg 而是300Kg以下解法同上,S 船=M m mL +=300202.320+⨯m=0.2m 例2.一个质量为M ,底面长为b 的三角形劈静止于光滑的水平桌面上,如图,有一质量为m 的小球由斜面顶部无初速滑到底部时,劈移动的距离为多少?S 人S 船S 人S 船 50Kg 70 Kg解析:球和劈组成系统在水平方向上动量守恒(本题分的是底边长m 球v =M 劈vmS 球=MS 劈m(b-S 劈)=MS 劈S 劈=b Mm m + 例3.如图质量为m ,半径为R 的小球,放在半径为2R ,质量为2m 的大空心球内,大球开始静止在光滑水平面上,当小球从图示位置无初速地沿大球内壁滚到最低点时,大球移动的距离是多少?解析:小球和大球在水平面上动量守恒( m 小v =2m 大vmS 小=2mS 大S 小=2S 大R-S 大=2S 大S 大=31R 例4.如图所示,AB 为一光滑水平横杆,杆上套一质量为m 1 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 2的小球,现将绳拉直,且与AB 平行,由此位置释放小球,当摆到与水平方向夹角为θ的位置时,求环移动距离为多少?解析:(分的是绳长L ) m 1S 环=M 2S 球m 1S 环=M 2(L-Lcos θ-S 环)S 环=212cos 1(m m L m +-)θ 劈球S 小+S 大 A B。
反冲运动与人船模型的应用一、模型的建立如图1所示,长为L 、质量为m 1的小船停在静水中,一个质量为m 2的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少? 选人和船组成的系统为研究对象,由于人从船头走到船尾的过程中,系统在水平方向不受外力作用,所以水平方向动量守恒。
人起步前系统的总动量为零.当人起步加速前进时,船同时向后加速运动;当人匀速前进时,船同时向后匀速运动;当人停下来时,船也停下来.设某一时刻人对地的速度为v 2,船对地的速度为v 1,选人前进的方向为正方向,根据动量守恒定律有22110m v m v -=,即2112v m v m =. 因为在人从船头走到船尾的整个过程中,每一时刻系统都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量成反比。
从而可以得出判断:在人从船头走到船尾的过程中,人的位移s 2与船的位移s 1之比,也等于它们的质量的反比,即2112s m s m = ① 由图可以看出, 12s s L += ②由①、②两式联立解得 2112m s L m m =+,1212m s L m m =+ (一)、人船模型说明:人在静止的船上行走时(不计水的阻力)则有以下结论:⑴.由于在运动方向上人船组成的系统动量为零,故人走船行,人停船止;⑵. 船长L 不是人行走的位移,而是人相对于船的位移;⑶。
当人从船的一端走到另一端时,人和船行走的位移与本身的质量成反比. 这种人和船具有相对运动而衍生出来的关于动量守恒定律应用的模型称为人船模型.(二)、人船模型特点⑴。
系统由两部分组成(若为多部分也可以转化为两部分);⑵。
系统总动量守恒且总动量为零;⑶.组成系统的两部分有相对运动;⑷.要求与位移相关的物理量.(三)、人船模型解法⑴。
画出运动过程中初末位置对比示意图,通过分析找出与位移相关的关系式; ⑵。
列出运动过程中某时刻系统动量守恒的方程,如m 1V 1=m 2V 2,再利用微积分的思想将其转换为与位移相关的方程,如m 1X 1=m 2X 2;⑶.联合两个与位移相关的方程即可求解。
爆炸 反冲 人船模型1.爆炸与反冲运动的特点:由于系统不受外力或内力远大于外力,所以动量守恒;由于系统内有其他形式的能量(如化学能)转化为动能,所以系统总动能增加.2.“人船模型”的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1. (3)应用此关系时要注意一个问题:公式中v 1、v 2和x 一般都是相对地面而言的.1.(2019·安徽合肥市二模)如图1所示,某人站在一辆平板车的右端,车静止在光滑的水平地面上,现人用铁锤子连续敲击车的右端.下列对平板车的运动情况描述正确的是( )A .锤子向右抡起的过程中,车向右运动B .锤子下落的过程中车向左运动C .锤子抡至最高点时,车速度为零D .锤子敲击车瞬间,车向左运动2.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.m M v 0B.M m v 0C.M M -m v 0D.m M -m v 03.如图2所示,小车(包括固定在小车上的杆)的质量为M ,质量为m 的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O 点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是( )A.2LM M +mB.2Lm M +mC.ML M +mD.mL M +m4.(2019·湖北稳派教育上学期第二次联考)某同学为研究反冲运动,设计了如图3所示的装置,固定有挡光片的小车内表面水平,置于光滑水平面上,挡光片宽为d ,小车的左侧不远处有固定的光电门,用质量为m 的小球压缩车内弹簧,并锁定弹簧,整个装置处于静止,解除锁定,小球被弹射后小车做反冲运动并通过光电门,与光电门连接的计时器记录挡光片挡光时间为t ,小车、弹簧和挡光片的总质量为3m ,则小球被弹出小车的瞬间相对于地面的速度大小为( )A.d tB.2d tC.3d tD.4d t5.(多选)如图4所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,下列说法正确的是()A.弹簧伸长过程中C向右运动,同时AB也向右运动B.C与B碰前,C与AB的速率之比为M∶mC.C与油泥粘在一起后,AB立即停止运动D.C与油泥粘在一起后,AB继续向右运动6.(2020·广东揭阳市模拟)如图5所示,水平地面上可视为质点的物体A和B紧靠在一起静止于b处,已知A的质量为3m,B的质量为m.两物体在足够大的内力作用下突然沿水平方向左右分离.B碰到c处的墙壁后等速率反弹,并追上已停在ab段的A,追上时B的速率等于两物体刚分离时B的速率的一半.A、B 与水平地面的动摩擦因数均为μ,b与c间的距离为d,重力加速度为g.求:(1)分离瞬间A、B的速率之比;(2)分离瞬间A获得的动能.答案精析1.C [锤子、人和车组成的系统在水平方向动量守恒,锤子向右抡起的过程中,车向左运动,故A 错误;锤子下落的过程中,有水平向左的速度,根据动量守恒定律,车向右运动,故B 错误;锤子抡至最高点时,速度为零,根据动量守恒定律,车的速度也为零,故C 正确;锤子向左敲击车瞬间,根据动量守恒定律,车向右运动,故D 错误.]2.D [取向下为正方向,由动量守恒定律可得:0=m v 0-(M -m )v ′,故v ′=m v 0M -m,选项D 正确.] 3.B [小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v 1、v 2,有m v 1=M v 2,故mx 1=Mx 2,x 1+x 2=2L ,其中x 1代表小球的水平位移大小,x 2代表小车的水平位移大小,因此x 2=2Lm M +m,选项B 正确.] 4.C [解除锁定,小球被弹射后小车做反冲运动,经时间t 通过光电门,则小车匀速运动的速度大小为v 1=d t,设小球的速度大小为v 2,根据反冲运动的特点可知,小车与小球总动量为零,根据动量守恒定律得:3m v 1=m v 2,得小球的速度大小为v 2=3d t,故选C.] 5.BC [AB 与C 组成的系统在水平方向上动量守恒,C 向右运动时,AB 应向左运动,故A 错误;设碰前C 的速率为v 1,AB 的速率为v 2,则0=m v 1-M v 2,得v 1v 2=M m,故B 正确;设C 与油泥粘在一起后,AB 、C 的共同速度为v 共,则0=(M +m )v 共,得v 共=0,故C 正确,D 错误.]6.(1)13 (2)2423μmgd 解析 (1)以水平向左为正方向,分离瞬间对A 、B 系统应用动量守恒定律有:3m v A -m v B =0解得:v A v B =13; (2)A 、B 分离后,A 物体向左匀减速滑行,对A 应用动能定理:-μ·3mgs A =0-12×3m v A 2 对B 从两物体分离后到追上A 的过程应用动能定理:-μmgs B =12m ⎝⎛⎭⎫v B 22-12m v B 2 两物体的路程关系是s B =s A +2d分离瞬间A 获得的动能E k A =12×3m v A 2 联立解得:E k A =2423μmgd .。
动量守恒定律的应用之爆炸、反冲及“人船模型”1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,发生爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒。
(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加。
(3)位置不变:爆炸的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动。
2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动的现象。
(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向上动量守恒。
反冲运动中机械能往往不守恒。
(3)实例:喷气式飞机、火箭等都是利用反冲运动的实例。
3.“人船模型” (1)模型的适用条件物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为0. (2)模型特点1)遵从动量守恒定律,如图所示.2)两物体的位移满足: m x 人t -M x 船t =0 x 人+x 船=L即x 人=M M +m L ,x 船=m M +m Lmv 人-Mv 船=0(3)利用人船模型解题需注意两点 1)条件①系统的总动量守恒或某一方向上的动量守恒。
②构成系统的两物体原来静止,因相互作用而反向运动。
③x 1、x 2均为沿动量方向相对于同一参考系的位移。
2)解题关键是画出草图确定初、末位置和各物体位移关系。
【典例1】如图所示,光滑水平面上有三个滑块A 、B 、C ,质量关系是m A =m C =m 、m B =m2.开始时滑块B 、C 紧贴在一起,中间夹有少量炸药,处于静止状态,滑块A 以速度v 0正对B 向右运动,在A 未与B 碰撞之前,引爆了B 、C 间的炸药,炸药爆炸后B 与A 迎面碰撞,最终A 与B 粘在一起,以速率v 0向左运动.求:(1)炸药爆炸过程中炸药对C 的冲量; (2)炸药的化学能有多少转化为机械能? 【答案】 (1)52mv 0,方向向左 (2)758mv 20【典例2】将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出,在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【答案】 A【解析】 燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -mv 0=0,解得p =mv 0=0.050 kg×600 m/s =30 kg·m/s ,选项A 正确.【典例3】如图所示,小车(包括固定在小车上的杆)的质量为M,质量为m的小球通过长度为L的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上,现把小球从与O点等高的地方释放,小车向左运动的最大位移是()A.2LMM+m B.2Lm M+mC.MLM+mD.mLM+m解题指导小球和小车在水平方向上不受外力作用,整个过程中在水平方向系统动量守恒,总动量始终为零,满足“人船模型”.【答案】B【典例4】载人气球静止于高h的空中,气球的质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?【答案】M+mM h。