动量守恒(人船模型专题)
- 格式:ppt
- 大小:758.50 KB
- 文档页数:2
动量守恒的十种模型解读人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:mv 人-Mv 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=m M +mL 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m 。
“人船模型”的拓展(某一方向动量守恒)【典例分析】1如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
【针对性训练】1(2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
当细绳断裂后,木块与铁块均在竖直方向上运动,木块刚浮出水面时,铁块恰好同时到达池底。
仅考虑浮力,不计其他阻力,则池深为()A.M +m M hB.M +m m (h +2a )C.M +m M (h +2a )D.M +m Mh +2a 2(2024全国高考模拟)一小船停靠在湖边码头,小船又窄又长(估计重一吨左右)。
一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船。
用卷尺测出船后退的距离d ,然后用卷尺测出船长L 。
人船模型1.人船模型两个原来静止的物体发生相互作用时,若所受外力的矢量和为0,则系统动量守恒。
在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比。
2.模型分析【问题】如图所示,长为L ,质量为m 船的小船停在静水中,一个质量为m 人的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地的位移各是多少? 【分析】由动量守恒定律,得 0=-人人船船v m v m 由于在全过程动量都守恒,所以有0=-人人船船v m v m 同乘以时间t ,得 0=-t v m t v m 人人船船 即 人人船船x m x m = 由图知 L x x =+人船 解得两物体位移分别为 L m m m x 人船人船+=, Lm m m x 人船船人+=3.模型特点(1)“人船模型”适用于由两物体组成的系统,当满足动量守恒条件(含某一方向动量守恒)时,若其中一个物体向某一方向运动,则另一物体在其作用力的作用下向相反方向运动。
)两物体满足动量守恒定律:m 1v 1-m 2v 2=0。
(2)运动特点:人动船动,人停船停,人快船快,人慢船慢;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1。
解题时要画出两物体的位移关系草图,找出各位移间的关系。
注意,公式v 1、v 2和x 一般都是相对地面的速度。
4.真题示例【2019·江苏卷】质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v ,此时滑板的速度大小为( ) A .m v M B .M v m C .mv m M+ D .Mv m M+ 【答案】B【解析】u 0mu Mv =-Mu v m=设滑板的速度为,小孩和滑板动量守恒得:,解得:,故B 正确。
5.例题精选【例题1】如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( ) A .mh M +m B .Mh M +mC .αtan )(m M mh + D .αtan )(m M Mh+【答案】C【解析】此题属“人船模型”问题。
动量守恒(四)——人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系)基本题型:如图所示,长为L,质量为M的船停在静火中,一个质量为的人站在船头,若不计火的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?则mv2-Mv1=0,在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv2t-Mv1t=0,即ms2-Ms1=0,而几何关系满足:s1+s2=L变化1:某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹水平射出枪口相对于地的速度为v0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n颗子弹时,小船后退的距离为多少?变化2:一个质量为M,底面边长为 b 的劈静止在光滑的水平面上,如图,有一质量为 m 的物块由斜面顶部无初速滑到底部时,劈移动的距离是多少?变化3:一只载人的热气球原来静止于空中,热气球本身的质量是M,人的质量是m ,已知气球原来离地高H,若人想沿软梯着地,这软梯至少应为多长。
变化4:如图所示,质量为M,半径为R的光滑圆环静止在光滑水平面上,有一质量为 m 的小滑块从与环心O等高处开始无初速下滑到达最低点时,圆环发生的位移为多少?变化5:如图所示,一质量为ml的半圆槽体A,A槽内外皆光滑,将A置于光滑水平面上,槽半径为R.现有一质量为m2的光滑小球B由静止沿槽顶滑下,设A 和B均为弹性体,且不计空气阻力,求槽体A向一侧滑动的最大距离.参考答案:基本题型:s1=ML/(M+m) s2=mL/(M+m)变化1:s2=nmL/(M+m)变化2:s2=mb/(M+m)变化3:L=(M+m)H/M变化4:s2=mR/(M+m)变化5:系统在水平方向上动量守恒,当小球运动到糟的最右端时,糟向左运动的最大距离设为s1,则m1s1=m2s2,2R /(m1+m2)又因为s1+s2=2R,所以s1=m2。
动量守恒的条件爆炸、反冲运动人船模型考点一动量守恒的条件考点二爆炸、反冲运动考点三人船模型考点四连续射击问题1.动量守恒定律内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
2.动量守恒定律常用表达式:m1v1+m2v2=m1v1′+m2v2′.1)p=p′:相互作用前系统的总动量p等于相互作用后的总动量p′.2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前动量的矢量和等于作用后动量的矢量和.3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.4)Δp=0:系统总动量增量为零.考点一动量守恒的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
附:机械能守恒的条件:只有重力、系统内弹力做功.1.下列四幅图所反映的物理过程中,说法正确的是()A.甲图中子弹射入木块过程中,子弹和木块组成系统动量守恒,能量不守恒B.乙图中M、N两木块放在光滑水平面上,剪断束缚M、N的细线,在弹簧从压缩状态恢复原长过程中,M、N与弹簧组成的系统动量不守恒,机械能守恒C.丙图中细线断裂后,木球和铁球在水中运动的过程,两球组成的系统动量不守恒,机械能守恒D.丁图中木块沿光滑固定斜面下滑,木块和斜面组成的系统动量守恒,机械能守恒2.如图所反映的物理过程中,以物体A和物体B为一个系统符合系统机械能守恒且水平方向动量守恒的是()A.甲图中,在光滑水平面上,物块B以初速度v0滑上上表面粗糙的静止长木板AB.乙图中,在光滑水平面上,物块B以初速度v0滑下靠在墙边的表面光滑的斜面AC.丙图中,在光滑水平上面有两个带正电的小球A、B相距一定的距离,从静止开始释放D.丁图中,在光滑水平面上物体A以初速度v0滑上表面光滑的圆弧轨道B3.(多选)如图所示,A、B两物体质量之比为m A∶m B=3∶2,原来静止在足够长的平板小车C上,A、B间有一根被压缩的弹簧,地面光滑.当两物体被同时释放后,则( )A.若A、B与平板车上表面间的动摩擦因数相同,则A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,则A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,则A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,则A、B、C组成系统的动量守恒4. (2021·全国乙卷·T14)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。
角色交换图2中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。
另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离l 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回出发点P 并停止,滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为l 2,重力加速度为g ,求A 从P 出发时的初速度v 0。
图2解析:令A 、B 质量皆为m ,A 刚接触B 时速度为v 1(碰前) 由功能关系,有121202121mgl mv mv μ=- A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2 有212mv mv =碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有)2()2()2(21)2(2122322l g m v m v m μ=- 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有12321mgl mv μ= 由以上各式,解得)1610(210l l g v +=μ用轻弹簧相连的质量均为2kg 的A 、B 两物块都以s m v /6=的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg 的物体C 静止在前方,如图3所示,B 与C 碰撞后二者粘在一起运动。
求:在以后的运动中,图3(1)当弹簧的弹性势能最大时物体A 的速度多大? (2)弹性势能的最大值是多大? (3)A 的速度有可能向左吗?为什么?解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大,由于A 、B 、C 三者组成的系统动量守恒,有A CB A B A v )m m m (v )m m (++=+解得:s m v A /3=(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为'v ,则s m v v m m v m C B B /2'')(=+=,设物块A 速度为v A 时弹簧的弹性势能最大为E P ,根据能量守恒J v m m m v m v m m E A C B A A C B P 12)(2121')(21222=++-++=(3)由系统动量守恒得B C B A A B A v m m v m v m v m )(++=+设A 的速度方向向左,0<A v ,则s m v B /4> 则作用后A 、B 、C 动能之和J v m m v m E B C B A A k 48)(212122>++=实际上系统的机械能J v m m m E E A C B A P 48)(21'2=+++=根据能量守恒定律,'E E k >是不可能的。
人船模型的经典例题讲解
人船模型是一种物理模型,用于描述两个物体在相互作用下各自的运动情况,其中物体所受的合外力为零,总动量守恒。
下面通过一个例题来讲解人船模型的运用。
题目:在平静的湖面上停泊着一条长为L,质量为M的船。
如果有一质量
为m的人从船的一端走到另一端,求船和人相对水面的位移各为多少?
解析:
1. 设人从船的一端走到另一端所用时间为t,人、船的速度分别为v和u。
2. 由人和船组成的系统在水平方向上满足动量守恒,则mv=Mu。
3. 由于人在走动过程中任意时刻人和船的速度v和u均满足上述关系,所
以运动过程中,人和船平均速度大小也应满足相似的关系,即mv=Mu。
而v=x/t,u=y/t,所以上式可以转化为:mx=My。
4. 又因为x+y=L,得:x=[M/(m+M)]L,y=[m/(m+M)]L。
综上,人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
以上就是运用人船模型解决的一个经典例题。
如需更多信息,建议查阅相关文献或咨询专业物理老师。