六年级式与方程比和比例
- 格式:docx
- 大小:13.86 KB
- 文档页数:1
小升初六年级数学比和比例专题讲解第二讲比和比例教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a:b=c:d,则(a+c):(b+d)=a:b=c:d;性质2:若a:b=c:d,则(a-c):(b-d)=a:b=c:d;性质3:若a:b=c:d,则(a+xc):(b+xd)=a:b=c:d;(x 为常数)性质4:若a:b=c:d,则a×d=b×c;(即外项积等于内项积) 正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例xaabybxy①;;;XXXxamxaxma②(其中m);;XXXxaxax ya bx ya b③。
ybx ya bx ya bxaxaycxac④,;x:y:zXXXcdadbc⑤x的等于y的,则x是y的,y是x的.abbcad三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照a:b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x axbx的比分别为a:a b和b:a b,以是甲分派到个,乙分派到个.a ba b⑵两组物体的数量比和数量差,求各个种别数量的问题ax比方:两个种别A、B,元素的数量比为a:b(这里a b),数量差为x,那么A的元素数量为,B的a bbx元素数量为,以是解题的关键是求出a b与a或b的比值.a b四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。
题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。
一、比例与比例方程的概念:1.比例:比例是两个量之间的相对关系,表示为a:b,也可以写成a/b。
例如,如果有两个数量相等的物体A和B,它们的重量分别是2千克和4千克,则A和B的比例为2:4,或者可以简化为1:22.比例方程:比例方程是指用比例关系表示的等式,一般形式为a:b=c:d,其中a、b、c、d是已知的数,其中有一个未知数,目的是求解该未知数。
二、比例解方程的方法:1. 交叉相乘法:适用于解第一类比例方程,即已知a:b=c:d,求解其中一个未知数的值。
通过交叉相乘得到等式ad=bc,然后解这个等式即可得到未知数的值。
2.逐差法:适用于解第二类比例方程,即已知a:b=c:d,求解其中一个已知数的值。
通过逐差运算把已知数的差与未知数的差相等,即得到等式a-c=b-d,然后解这个等式即可得到已知数的值。
三、比例解方程的应用:比例解方程可以应用于各种实际问题中,例如:1.用于比例问题的求解:比如已知一些物体的重量和长度成比例,求解未知物体的长度或重量。
2.用于价格计算:比如已知一些商品的价格和数量成比例,求解未知商品的价格或数量。
3.用于图形的放缩:比如已知一座房子的平面图的尺寸与实际房子的尺寸成比例,求解未知房子的尺寸。
四、例题及解法:例题1:已知a:b=3:5,求解a的值。
解法:根据交叉相乘法,得到等式5a=3b。
然后我们需要知道b的值才能解得a的值。
如果已知b的值为15,则代入等式中,得到5a=3*15=45,将等式两边同除以5,得到a=9、所以当b=15时,a的值为9例题2:已知a:b=2:3,求解b的值。
解法:根据逐差法,得到等式a-c=b-d。
已知a:b=2:3,所以a-2=b-3、然后我们需要知道a的值才能解得b的值。
如果已知a的值为4,则代入等式中,得到4-2=b-3,即2=b-3、将等式两边同加3,得到5=b。
所以当a=4时,b的值为5以上就是六年级比例解方程的知识点,希望能够帮助你更好地理解和应用比例解方程的方法。
六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
六年级解比例及解方程练习题解比例:1.求 x:10 = 1:4:1/3解法:将 1:4:1/3 化为同分母分数,得到 3/3 : 12/3 : 1/3,即 3:12:1.因此,x:10 = 3:12:1,可得到 x = 4.2.求 0.4:x = 1.2:2解法:交叉相乘得到 0.4 × 2 = 1.2 × x,即 0.8 = 1.2x,因此 x = 0.8 ÷ 1.2 = 0.6667.3.求 123:2.4x = 1:2543解法:交叉相乘得到 123 × 2543 = 2.4x,因此 x = 123 ×2543 ÷ 2.4 = .125.4.求 3:12 = x:0.8:4解法:将 0.8 转化为小数,得到 3:12 = x:1:5.因此,x = 0.75.5.求 :9xx3 = 4.:x解法:将 :9xx3 化简为 :27,得到 ÷ 27 = .2963.因此,x = .2963 ÷ 4. = 2300.0004.6.求 x:8 = 0.8:4解法:将 0.8 转化为分数,得到 x:8 = 2:10.因此,x = 1.7.求 2.8:4.2 = x:9.6解法:交叉相乘得到 2.8 × 9.6 = 4.2x,因此 x = 6.3.8.求 1084: = 11x:24解法:交叉相乘得到 1084 × 24 = × 11x,因此 x = 0.077.9.求 = 1.5:x解法:将 110.6 转化为分数,得到 = 15: x。
因此,x = 3011.2.10.求 6:4 = 2.4:x解法:交叉相乘得到 6x = 9.6,因此 x = 1.6.11.求 1.25:0.25 = x:1.6解法:交叉相乘得到 1.25 × 1.6 = 0.25x,因此 x = 5.12.求 3141:1425 = x:解法:交叉相乘得到 3141 × = 1425x,因此 x = 685.2.13.求 10:50 = x:40解法:交叉相乘得到 10 × 40 = 50x,因此 x = 8.14.求 6:x = 18:26解法:将 18:26 化简为 9:13,得到 6:x = 9:13.因此,x = 8.67.解方程:1.求 X:223/3 X - X = 2X + 70% X + 20% X = 3.6解法:将百分数转化为小数,得到 2.7X - X = 3.6,因此X = 3.6 ÷ 1.7 = 2.1176.2.求 X:7554/314 X + X = 121 5X - 3 × 314/545 = X ÷解法:将 X + X = 121 化简为 2X = 121,得到 X = 60.5.将5X - 3 × 314/545 = X ÷化简为 2725X - 3 × 314 = X,代入 X = 60.5 可得到 X = 497.5.3.求 X:/327 6X + 5 = 13.4 3X = X ÷ 8716解法:将 6X + 5 = 13.4 化简为 6X = 8.4,得到 X = 1.4.将3X = X ÷ 8716 化简为 X = X,代入 X = 1.4 可得到 X = 0.4.求 X:8716/732 X + X = 4X - 6 × 2解法:将 X + X = 4X - 6 × 2 化简为 2X = 4X - 12,得到 X = 6.5.求 X:X × 0.8 = 20 × 25% + 10 X = X - 15% X = 68解法:将 20 × 25% 转化为小数,得到 X × 0.8 = 5 + 10X,即 X = 5 ÷ 0.2 = 25.将 X - 15% X = 68 化简为 X = 80,代入 X ×0.8 = 5 + 10X 可得到 X = 25.6.求 X:123/3258 ÷ X = X = 12X解法:将 123/3258 ÷ X 化简为 123 ÷ 3258 = X²,得到 X = √(123/3258) = 0.122.7.求 X:4X - 3 × 9 = 29X + X = 4解法:将 4X - 3 × 9 = 29X 化简为 25X = 27,得到 X = 1.08.8.求 X:/545 X - 21 × 32 = 4 6X + 5 = 13.4 X - X = 38解法:将 X - 21 × 32 = 4 化简为 X = 676,将 6X + 5 = 13.4 化简为 X = 1.9,将 X - X = 38 化简为 X = 0.9.求 X:5310/103 X = X ÷ 1544 xxxxxxxx/xxxxxxxx X = X ÷ 12解法:将 X = X ÷ 1544 化简为 543X = X,得到 X = 0.将X = X ÷ 12 化简为 xxxxxxxxX = X,得到 X = 0.10.求 X:xxxxxxx/626 X = X ÷ 0.25 - 30% xxxxxxxx3545/+ 0.7X = 102 X + X = 42 X + X = 105 X - X = 400解法:将 X = X ÷ 0.25 - 30% 化简为 X = 4,将xxxxxxxx3545/ + 0.7X = 102 化简为 X = 149.3,将 X + X = 42化简为 X = 21,将 X + X = 105 化简为 X = 52.5,将 X - X = 400 化简为 X = 200.11.求 X:/4X - 0.375X = X × 4 X - X = 125 X - 2.4 × 5 = 8解法:将 /4X - 0.375X = X × 4 化简为 - 1.5X² = 4X²,得到 X = 18.将 X - X = 125 化简为 X = 125,将 X - 2.4 × 5 = 8 化简为 X = 3.3333.以上就是解方程及解比例的练题,希望能对大家的数学研究有所帮助。
六年级数学比和比例试题答案及解析1.(6分)求未知数x4.2+0.5x=5.6:=:x=.【答案】x=2.8;x=;x=6【解析】①依据等式的性质,方程两边同时减去4.2,再同除以0.5求解;②先根据比例的基本性质,把原式转化为x=×,然后根据等式的性质,在方程两边同时乘4求解;③先根据比例的基本性质,把原式转化为0.6x=4×0.9,然后根据等式的性质,在方程两边同时除以0.6求解.解:①4.2+0.5x=5.64.2+0.5x﹣4.2=5.6﹣4.20.5x÷0.5=1.4÷0.5x=2.8②:=:xx=×x×4=××4x=③=0.6x=4×0.90.6x÷0.6=3.6÷0.6x=6点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.2.一个直径4mm的手表零件,画在图纸上直径是8cm,这幅图纸的比例尺是()。
【答案】20:1【解析】比例尺表示图上距离和实际距离的比,所以这幅图的比例尺是:8cm:4mm,统一单位化简后是80mm:4mm=20:1。
3. a、b是两种相关联的量,如果a、b成正比例,那么“?”处应该填();如果a、b成反比例,那么“?”处应该填()。
【答案】2.4【解析】如果ab成正比例,那么它们的比值就是一定的,即3:4=5:?,解比例得到?=。
如果a、b成反比例,那么它们的乘积就是一定的,即3×4=5×?,得到?=2.4。
4.一段路,甲小时走完,乙小时走完,甲乙两人的速度比是3:4。
()【答案】√【解析】审题时要看清,条件给出的是甲乙的时间,而最后表示的是两人的速度之比。
根据条件得到甲的速度是1÷,乙的速度是1÷,所以甲乙的速度比是3:4,题目正确。
5.①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?【答案】5:4【解析】如下表所示,由②知,一、二、三班的男生总数比二、三班总人数多1;由③知,四至九班的男生总数比四、五、六班总人数少1.因此,一至九班的男生总数是二、三、四、五、六共五个班的人数之和,由于每班人数均相等,则女生总数等于四个班的人数之和.所以,男、女生人数之比是.6.在比例尺为1:2000000的这个地图上,量得北京到郑州的距离是32厘米;把它画在比例尺为的地图上。
16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。
在计算中,要注意各种量的单位要统一。
二、按比例分配的应用题把一个数量按照一定的比分配成几部分。
按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。
关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。
三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。
四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。
2.设未知数为x,并注明单位名称。
3.根据比值(一定)或积(一定)建立比例式,并解比例。
4.检验,写答语。
考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。
一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。
要分的总数是390,总份数是42+45+43=130。
其中一班占总数的42130,二班占总数的45130,三班占总数的43130,要求各班应植树的棵数,实际上是分别求390的42130,45130,43130各是多少。
【答案】解法一:按比例分配法42+45+43=130390×42130=126(棵)390×45130=135(棵)390×43130=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。
六年级数学比和比例
(实用版)
目录
1.比和比例的定义
2.比和比例的性质
3.比和比例的应用
4.提高比和比例的解题技巧
正文
1.比和比例的定义
比和比例是数学中常见的概念,比是指两个数相除的结果,比例则是指两个比相等的式子。
比如,如果我们说一个长度为 10 厘米的线段是另一个长度为 5 厘米的线段的两倍,我们就可以说这两个线段的比是 2:1,也可以说这两个线段的比例是 2/1。
2.比和比例的性质
比和比例有一些基本的性质。
比如,如果两个比的比值相等,那么这两个比就是相等的,也就是说,如果 a:b=c:d,那么 a/b=c/d。
另外,比例也有一个基本性质,那就是如果两个比例相等,那么它们的乘积也相等,也就是说,如果 a:b=c:d,那么 a*d=b*c。
3.比和比例的应用
比和比例在实际生活中应用广泛,比如在商业中,我们常常需要通过比例来计算成本和利润;在科学研究中,我们常常需要通过比来描述两个量的关系。
此外,比和比例也是解决许多数学问题的基础,比如在解方程时,我们常常需要通过比例来找到未知数的值。
4.提高比和比例的解题技巧
要提高比和比例的解题技巧,首先我们需要理解比和比例的概念,熟悉它们的基本性质。
其次,我们需要多做一些有关比和比例的练习题,这样可以帮助我们加深对比和比例的理解,提高我们的解题能力。
最后,我们需要学会灵活运用比和比例的知识,比如在解题时,我们可以通过比例来简化方程,这样更容易找到未知数的值。
总的来说,比和比例是数学中非常重要的概念,它们在实际生活中的应用也非常广泛。
六年级式与方程、比和比例
一.式与方程
(一)
(一)用字母表示数。
班里有男生a人,女生b人,一共有()人。
(二)有字母表示数量关系。
路程=速度·时间。
(三)用字母表示计算公式。
长方形的周长、面积、体积。
(四)用字母表示运算定律。
(五)用字母表示计算法则。
同分母分数加减法
(六)用字母表示一般规律。
(二)等式与方程
(一)等式是表示相等关系的式子。
方程式含有未知数的等式。
所有的方程都是等式,但等式不全是方程。
(二)方程的解和解方程
(三)等式的性质
一.两边同加减
二.两边同乘除(0除外)
(四)列方程解决问题的步骤
二.比和比例
(一)比和比例的关系
(一)比表示两个数相除。
前项和后项同时乘除同一个数(0除外),比值不变。
(二)比例表示两个必相等的式子。
内项之积等于外向之积。
(二)
(一)与分数、除法的关系
(二)比的基本性质、分数的基本性质、商不变的规律。
三者的性质实际上是一致的
(三)求比值和化简比
(一)比值:是一个数(整数、分数或小数)
(二)化简比:比的最简形式,还是一个比
(四)比例尺
1.比例尺
2.图形的放大与缩小
(五)正比例和反比例
(六)用比和比例的知识解决问题
1 / 1。