经典算法——动态规划教程
- 格式:pdf
- 大小:11.70 MB
- 文档页数:74
动态规划算法⼊门1. 动态规划算法定义:动态规划,英⽂描述为Dynamic programming. 是⼀种可以把原始问题分解为若⼲相关联的⼦解问题,并通过求取和保存⼦问题的解,获得原问题的解。
动态规划算法可以解决的问题通常包含如下特征:重叠⼦问题最优⼦结构 对于第⼀个特征,⽐较容易理解,即分解的若⼲⼦问题,包含着重复的解。
举例如:斐波那契数列,F(n) = F(n-1) + F(n-2),求解的F(n-1)的过程中,包含着求解F(n-2)的结果。
对于第⼆个特征,参考⽹上的说法为:假设当前决策结果是f[n],则最优⼦结构就是要让f[n-k]最优,最优⼦结构性质就是能让转移到n的状态是最优的,并且与后⾯的决策没有关系,即让后⾯的决策安⼼地使⽤前⾯的局部最优解的⼀种性质。
关键字解读为:当前的决策与后⾯的决策是⽆关的, f[n-k]是最优的,转移到f[n]的状态是最优的2. 动态规划算法的⼀般步骤和难点使⽤动态规划算法解决问题的⼀般步骤是:找到问题的最优解的性质,⽤数学公式或者算法描述拆解⼦问题,确定问题的递推结构,保证可以收敛。
⽤知乎⼤神们的总结就是:找到问题的状态描述和状态转移⽅程。
3. 动态规划算法的分类和理解根据我的理解,以及⽹上的说法,我把动态规划算法分为三个类别和层次:简单动态规划算法,即状态⽅程是⽤⼀个维度的变量的描述的,常见的问题如:斐波那契数列,爬台阶问题等 爬台阶问题问题描述:有⼀座⾼度是10级台阶的楼梯,从下往上⾛,每跨⼀步只能向上1级或者2级台阶。
要求⽤程序来求出⼀共有多少种⾛法。
状态描述:我们使⽤变量n表⽰台阶的级数,F(n)表⽰n级台阶⼀共有多少种⾛法 状态转移⽅程与问题分解:根据每次能跨越的台阶数⽬:1级台阶或者2级台阶,因为⾛到N级台阶之前,⼈⼀定是处于N-1级台阶或者N-2级台阶。
F(n)的⾛法,⼀定是n-1级别的台阶的所有的⾛法和n-2级别台阶的所有⾛法之和。
F(n) = F(n-1) + F(n-2); 关于状态的分解,更详细的说明,可以看这篇⽂章:。
动态规划是对最优化问题的一种新的算法设计方法。
由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。
不存在一种万能的动态规划算法。
但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。
多阶段决策过程最优化问题——动态规划的基本模型在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。
因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。
当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。
这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。
【例题1】最短路径问题。
图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。
现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少?【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。
用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。
具体计算过程如下:S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3S2: K=3,有:F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8F3(C2)=d3(C2,D1)+f4(D1)=5+3=8F3(C3)=d3(C3,D3)+f4(D3)=8+3=11F3(C4)=d3(C4,D3)+f4(D3)=3+3=6S2: K=2,有:F2(B1)=min{d2(B1,C1)+F3(C1),d2(B1,C2)+f3(C2),d2(B1,C3)+F3(C3)}=min {9,12,14}=9F2(m)=min{d2(B2,c2)+f3(C2),d2(B2,C4)+F3(C4)}=min{16,10}=10S4:k=1,有:F1(A)=min{d1(A,B1)+F2(B1),d1(A,B2)+F2(B2)}=min{13,13}=13因此由A点到E点的全过程的最短路径为A—>B2一>C4—>D3—>E。
动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划典型案例解析及计算过程梳理动态规划(Dynamic Programming)是一种通过将问题分解为子问题来解决复杂问题的算法策略。
它通常用于优化问题,通过将问题的解决方案划分为相互重叠的子问题来降低计算复杂度。
下面将通过几个典型案例,详细解析动态规划的应用及其计算过程。
1. 斐波那契数列斐波那契数列是一种经典的动态规划问题。
它的定义是:F(n) =F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
我们需要计算第n个斐波那契数。
通过动态规划的思想,可以将该问题划分为子问题,即计算第n-1和第n-2个斐波那契数。
可以使用一个数组来保存已经计算过的斐波那契数,避免重复计算。
具体的计算过程如下:1. 初始化一个长度为n+1的数组fib,将fib[0]设置为0,fib[1]设置为1。
2. 从i=2开始遍历到n,对于每个i,计算fib[i] = fib[i-1] + fib[i-2]。
3. 返回fib[n]作为结果。
通过上述过程,我们可以快速地得到第n个斐波那契数。
这个案例展示了动态规划的重要特性,即将问题分解为子问题进行求解,并利用已经计算过的结果来避免重复计算。
2. 背包问题背包问题是另一个常见的动态规划问题。
问题的定义是:有一组物品,每个物品有自己的重量和价值,在限定的背包容量下,如何选择物品使得背包中的总价值最大化。
通过动态规划的思想,背包问题可以被划分为子问题。
我们可以定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。
具体的计算过程如下:1. 初始化一个大小为n+1行,m+1列的二维数组dp,其中n为物品数量,m为背包容量。
将所有元素初始化为0。
2. 从i=1开始遍历到n,对于每个i,从j=1开始遍历到m,对于每个j,进行如下判断:- 若当前物品的重量大于背包容量j,则dp[i][j] = dp[i-1][j],即不选择当前物品;- 若当前物品的重量小于等于背包容量j,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi),即选择当前物品或不选择当前物品所能获得的最大价值。
动态规划经典教程第一节动态规划基本概念一,动态规划三要素:阶段,状态,决策。
他们的概念到处都是,我就不多说了,我只说说我对他们的理解:如果把动态规划的求解过程看成一个工厂的生产线,阶段就是生产某个商品的不同的环节,状态就是工件当前的形态,决策就是对工件的操作。
显然不同阶段是对产品的一个前面各个状态的小结,有一个个的小结构成了最终的整个生产线。
每个状态间又有关联(下一个状态是由上一个状态做了某个决策后产生的)。
下面举个例子:要生产一批雪糕,在这个过程中要分好多环节:购买牛奶,对牛奶提纯处理,放入工厂加工,加工后的商品要包装,包装后就去销售……,这样没个环节就可以看做是一个阶段;产品在不同的时候有不同的状态,刚开始时只是白白的牛奶,进入生产后做成了各种造型,从冷冻库拿出来后就变成雪糕(由液态变成固态=_=||)。
每个形态就是一个状态,那从液态变成固态经过了冰冻这一操作,这个操作就是一个决策。
一个状态经过一个决策变成了另外一个状态,这个过程就是状态转移,用来描述状态转移的方程就是状态转移方程。
经过这个例子相信大家对动态规划有所了解了吧。
下面在说说我对动态规划的另外一个理解:用图论知识理解动态规划:把动态规划中的状态抽象成一个点,在有直接关联的状态间连一条有向边,状态转移的代价就是边上的权。
这样就形成了一个有向无环图AOE网(为什么无环呢?往下看)。
对这个图进行拓扑排序,删除一个边后同时出现入度为0的状态在同一阶段。
这样对图求最优路径就是动态规划问题的求解。
二,动态规划的适用范围动态规划用于解决多阶段决策最优化问题,但是不是所有的最优化问题都可以用动态规划解答呢?一般在题目中出现求最优解的问题就要考虑动态规划了,但是否可以用还要满足两个条件:最优子结构(最优化原理)无后效性最优化原理在下面的最短路径问题中有详细的解答;什么是无后效性呢?就是说在状态i求解时用到状态j而状态j就解有用到状态k…..状态N。
动态规划算法的实施步骤1. 算法介绍动态规划是一种常用的求解最优化问题的方法,它适用于求解具有重叠子问题特性的问题。
动态规划算法通过将问题拆分成小问题,并保存这些小问题的解来减少重复计算,从而提高求解效率。
2. 实施步骤步骤一:定义问题的状态在动态规划算法中,第一步是定义问题的状态。
问题的状态是指问题的子问题中需要求解的变量或指标。
这些状态一般可以用一个或多个变量来表示。
步骤二:确定状态转移方程确定状态转移方程是动态规划算法的核心步骤。
状态转移方程可以根据问题的特点和定义的状态来确定。
状态转移方程描述了问题的当前状态和下一个状态之间的关系。
步骤三:确定初始状态初始状态是指问题的最小规模的子问题的解,也就是边界条件。
初始状态的确定需要根据具体问题来定义。
步骤四:计算最优解根据定义的状态转移方程和初始状态,可以通过自底向上(bottom-up)或自顶向下(top-down)的方式,计算出问题的最优解。
步骤五:返回最优解最后一步是返回计算得到的最优解。
根据问题的特点和需求,最优解可以是一个值,也可以是一组值。
3. 实施示例为了更好地理解动态规划算法的实施步骤,下面以求解斐波那契数列为例进行说明。
步骤一:定义问题的状态在求解斐波那契数列的问题中,状态可以定义为第n个斐波那契数F(n)。
步骤二:确定状态转移方程斐波那契数列的状态转移方程为F(n) = F(n-1) + F(n-2)。
步骤三:确定初始状态斐波那契数列的初始状态可以定义为F(0) = 0,F(1) = 1。
步骤四:计算最优解根据状态转移方程和初始状态,可以通过自底向上的方式计算斐波那契数列的最优解。
def fibonacci(n):if n ==0:return0elif n ==1:return1else:dp = [0] * (n+1)dp[0] =0dp[1] =1for i in range(2, n+1):dp[i] = dp[i-1] + dp[i-2]return dp[n]步骤五:返回最优解在上述示例中,最优解为fibonacci(n),即第n个斐波那契数。
动态规划算法设计方法及案例解析动态规划是一种解决多阶段决策问题的常用算法,通过将问题分解为多个子问题,并通过求解子问题的最优解来得到原问题的最优解。
本文将介绍动态规划算法的设计方法,并通过两个实例进行解析,以帮助读者更好地理解和应用该算法。
一、动态规划算法设计方法动态规划算法的设计一般遵循以下几个步骤:1. 确定问题的状态:将原问题划分为若干个子问题,并定义每个子问题的状态。
状态的定义应该包含子问题的变量和可以从子问题中获得的信息。
2. 定义状态转移方程:通过分析子问题之间的关系,确定状态之间的转移方式。
通常使用递推关系式来描述状态之间的转移,以表达每个子问题的最优解与其他子问题解之间的关系。
3. 确定初始状态和边界条件:确定问题的初始状态和边界条件,即最简单的子问题的解,作为求解其他子问题的基础。
4. 计算最优解:根据定义的状态转移方程,利用递推的方式从初始状态开始逐步计算每个子问题的最优解,直到得到原问题的最优解。
二、案例解析1:背包问题背包问题是动态规划算法中经典的案例之一,主要解决如何在限定容量的背包中选择一些物品,使得物品的总价值最大。
以下是一个简化的例子:假设有一个容量为C的背包,以及n个物品,每个物品有重量wi 和价值vi。
要求选择一些物品放入背包中,使得放入背包中物品的总价值最大。
根据动态规划算法的设计方法,我们可以定义子问题的状态为:背包容量为c,前a个物品的最优解用F(c,a)表示。
那么,状态转移方程可以定义为:F(c,a) = max{F(c,a-1), F(c-wa, a-1) + va}其中,F(c,a-1)表示不选择第a个物品时的最优解,F(c-wa, a-1) + va 表示选择第a个物品时的最优解。
初始状态为F(0,a) = F(c,0) = 0,边界条件为c < wa时,F(c,a) =F(c,a-1)。
根据以上定义,我们可以通过递推的方式计算F(c,n),从而得到背包问题的最优解。
动态规划算法详解及应用实例动态规划算法是一种常见的解决各种最优化问题的算法。
它适用于很多复杂的问题,如图形分析、路线规划、搜索引擎等等。
本文将详细讲解动态规划算法的基本原理、特点和应用实例,供大家学习和借鉴。
一、动态规划算法基本原理动态规划,简称DP,是一种递推式算法,通过将问题分解成一系列子问题,并按照一定的顺序对子问题进行求解,最终得到问题的最优解。
其主要思想是:当我们在解题时遇到一个问题时,如果能将这个问题划分成若干个与原问题相似但规模更小的子问题,而这些子问题又可以逐一求解,最终将所有子问题的结果汇总起来得到原问题的解,那么这个问题就可以使用动态规划算法解决。
由于动态规划算法中有“最优解”的要求,所以在求解过程中需要涉及到状态转移方程的设计。
状态转移方程是一个数学公式,它描述了一个状态如何从前一个状态转移而来,以及在当前状态下所做的某些决策对下一个状态的影响。
通过不断迭代求解状态转移方程,我们可以得到最优解。
二、动态规划算法的特点1、动态规划是一种自底向上的策略,通常需要维护一个状态表格,记录下每个阶段的最优解,最后汇总起来得到问题的最终解。
2、动态规划通常具有“无后效性”的特点,即求解某个决策问题时,当前状态之后的决策不会影响之前的决策。
因此,在涉及到状态转移时,只需考虑当前状态和以前的状态即可。
3、动态规划通常包含两个要素:最优子结构和重叠子问题。
最优子结构是指一个问题的最优解由其子问题的最优解递推而来,而重叠子问题则是指在递归求解的过程中,同一问题会被反复求解多次,因此需要使用记忆化搜索等技巧,避免重复计算。
4、动态规划算法的时间复杂度通常是O(n^2)或O(n^3),空间复杂度通常也会比较高。
三、应用实例:0-1背包问题0-1背包问题是指在背包容量固定的情况下,如何选择物品才能使得背包装载的价值最大,其中每个物品只能选择一次。
对于此类问题,可以采用动态规划算法进行求解。
首先需要确定问题的状态转移方程,具体如下:设f(i,j)表示在前i个物品中,当背包的容量为j时,能够装载的最大价值,那么状态转移方程为:f(i,j)=max{f(i-1,j), f(i-1,j-wi)+vi}其中,wi表示第i个物品的重量,vi表示第i个物品的价值。