数学人教版八年级下册平行四边形的性质及应用
- 格式:doc
- 大小:14.50 KB
- 文档页数:3
人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。
通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。
二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。
但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。
在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。
三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。
2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:平行四边形的性质及其应用。
2.难点:对角线的性质和判定平行四边形的方法。
五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。
六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。
2.课件:平行四边形的性质及其应用。
七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。
2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。
设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。
3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。
学生互相检查,教师巡回指导。
设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。
4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。
设计意图:巩固所学知识,提高学生的判断能力。
第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。
表示:平行四边形用“□”表示。
2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。
的顺序依次排列。
点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。
平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。
如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。
∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。
第十八章平行四边形18.1 平行四边形平行四边形的性质第1课时教课目的【知与技术】1.理解平行四形定,能依照定研究平行四形的性.2.掌握平行四形的角相等,相等性,能用它解决的.3.掌握两条平行的距离的含.【程与方法】培育学生的推理和研究平行四形的性及运用性解决的的程,演能力,展学生的抽象思和形象思.【感情度】在研究平行四形的性及运用性解决的程中,培育学生独立思虑的,感觉得成功的趣,激学情 .教课重难点【教课要点】.平行四形的角相等,相等的性的研究和用【教课点】两条平行的距离的含.课前准备无教课过程一、情境入,初步世界中,四形也在装点着我的生活,宏的建筑物、地面的地板、具一格的窗、天空舞的筝⋯⋯都有四形的身影,此中平行四形与我的生活关系更亲密,你能出一些平时生活中的平行四形的例子?【教课明】学生互相沟通,通平时生活中的平行四形例感觉平行四形的含,初步体平行四形的特点 .二、思虑研究,取新知平行四形的观点两分平行的四形是平行四形,往常用“如“平行四形ABCD”可作“ABCD” .思虑如所示的ABCD中,除了“两分平行”外,它的、角之有什么关系?你能明原由?【教课说明】教师提出问题后,学生独立思虑并互相沟通. 教师关注学生的沟通活动,针对学生思虑结果的实质状况,展开师生互动,如教师发问、学生自主沟通或学生向教师提出怀疑等,让学生能感觉到要想获取察看和猜想中结论“平行四边形的对角相等”、“平行四边形的对边相等”时,需经过增添协助线获取全等三角形来达到目的,从而理解并掌握平行四边形的这些性质. 在指引学生连结对角线AC(或 BD)后,让学生自己达成证明,达到获取知识的目的,教师也可指引学生在论证“两组对角分别相等”时,还可利用平行四边形的平行线性质获取结论.平行四边形的性质平行四边形的对边相等;平行四边形的对角相等.研究如图, a,b 是两条平行线,从直线 a 上任一点 A 向直线 b 作垂线,垂足为 B,再过 a 上另一点 C 作 CD⊥ b 于 D,你能发现 AB与 CD的关系吗?【教课说明】学生互相沟通,教师关注学生对问题的商讨过程,让学生获取平行线间的距离的感性认识,最后教师予以解说、概括和总结,得出结论,两条平行线间的距离:过一条平行线上任一点作另一条平行线的垂线,这点和垂足之间的线段的长度叫做两条平行线间的距离 .三、典例精析,掌握新知例 1 如图,小明用一根长为 36m的绳索围成了一个平行四边形场所,此中 AB 边长为8m,其余三边的长各是多少?解:∵四边形ABCD是平行四边形,∴AB=CD, AD=BC.∵AB=8m,∴ CD=8m又. AB+BC+CD+DA=36m,∴AD=BC=10m即.其余三边长分别为 10m,8m,10m.例 2如图,在ABCD中, BE均分∠ ABC交 AD于 E, DF均分∠ ADC交 BC于 F. 求证:BE∥ DF.【剖析】要证明BE∥ DF,依照图形特点,需获取同位角∠BEA=∠ FDA或∠ EBF=∠DFC.这时联想到平行四边形的性质有∠ ABC=∠ADC , AD ∥ BC ,再借助角均分线定义可获取结论 .证明:∵四边形 ABCD 是平行四边形,∴ AD ∥ BC ,∠ ABC=∠ ADC. ∵ BE 均分∠ ABC ,∴∠ 2= 1∠ ABC.2又 DF 均分∠ ADC ,∴∠ 3= 1∠ ADC ,∴∠ 2=∠ 3.2∵ AD ∥BC ,∴∠ 1=∠ 2. ∴∠ 1=∠ 3,∴ BE ∥ DF.【教课说明】上述两例均可让学生自己独立达成,最后教师再展现解答过程四、运用新知,深入理解.1. 一个平行四边形的一个内角是 58°,这个平行四边形的每个内角的度数是多少?为何?2. 如图,在ABCD 中, AE ⊥ BC 于 E , AF ⊥CD 于 F ,且∠ EAF=60°, BE=2cm , DF=3cm ,试求ABCD 的周长 .【教课说明】第 1 题可由学生独立达成, 而第 2 题教师应赐予适合点拨, 先求∠ C=120°,从而∠ B=∠D=60° . 易有∠ BAE=∠ DAF=30°,从而 AB=2BE=4cm ,AD=2DF=6cm ,从而可得结论 .【答案】 1. 解:因为平行四边形的两组对边分别平行,故它的邻角互补,因此它的每个内角分别为 122°, 58°, 122°, 58° .2. 解:∵ AE ⊥ BC , AF ⊥ CD ,∠ EAF = 60°, ∴∠ C = 360° -90 ° -90 °-60 °= 120° .∴∠ B =∠ D = 180° -120 °= 60°. ∴∠ BAE=∠ DAF=90° -60 ° =30° . 在 Rt △ ABE 中,∠ BAE = 30°, BE = 2cm ,∴ AB=2BE =4cm. 同理: AD=2DF =6cm.故 ABCD 的周长为 2(AB+AD )= 2×( 4+6)= 20cm. 五、师生互动,讲堂小结1. 在研究平行四边形性质的过程中,你有哪些认识?2. 在运用平行四边形的性质解题时,应注意哪些问题?课后作业1. 部署作业:从教材“习题 18.1 ”中选用 .2. 达成练习册中本课时练习 .教课反省教课反省本课时中,课本的设计企图是利用图形平移和旋转的特点来得出平行四边形的性质. 因此教课时应先列出平时生活中所用到的一些物体,领会平行四边形在平时生活中的宽泛应 用,从而给出平行四边形的定义, 从定义出发获取第一个性质,再由学生着手操作和教师演示旋转获取其余性质 . 因为本章课注明确要修业生可以严格说理过程,因此教师在得出平行四边形性质的同时要加上几何语言的描绘,在练习中也要注意规范学生的说理过程.。
平行四边形的性质(1)教学设计教学目标1.理解平行四边形的概念;2.探索并掌握平行四边形对边相等、对角相等的性质;教学重点、难点平行四边形边角性质的证明和应用.教学过程一、情境引入问题1:观察这些图片,它们有什么共同特点问题2:平行四边形的定义二、合作探究1表示方法:问题1:类比三角形的表示方法,表示平行四边形2.猜想性质:测量平行四边形的四条边和四个角,猜想性质3证明性质:在平行四边形中,求证:1AB=CD,AD=BC; 2∠B=∠D,∠A=∠C4归纳性质:5应用性质:中,AD=3 cm,AB=2 cm,则平行四边形ABCD的周长等于()A.10 cm B.6 cm C.5 cm D.4 cm2.如图,在平行四边形ABCD中,若∠A=135°,则∠C等于A.45° B.55° C.65° D.135°3.在平行四边形ABCD中,AB=3 cm,BC=5 cm,∠A=30°,则CD=____,AD=_______,∠B=_______,∠C=____,∠D=_____4.如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是_________________.(两条平行线之间的任何两条平行线段都相等)三、例题示范例1 如图,平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:AE=CF .(2)DE=BF 吗小结:1、两条平行线中,一条直线上任一点到另一条直线的距离,叫这两条平行线间的距离2、平行线之间的距离处处相等四、当堂检测5.在平行四边形ABCD 中,∠B =60°,那么下列各式中,不能成立的是A ∠D =60°B ∠A =120°C ∠C +∠D =180° D ∠A +∠C =180°∥b ,A 是直线a 上的一个动点,线段BC 不变,移动过程中△ABC 的面积( )A: 变大 B: 变小 C: 不变 D: 无法确定7如图,方格纸中每个小正方形的边长为1,则两平行直线AB ,CD 之间的距离是________. ,周长为32cm ,则两邻边的长分别为 9如图,平行四边形ABCD 中,CM ⊥AD 于点M ,CN ⊥AB 于点N ,若∠B=45,∠MCN=五、自主归纳1、通过本节课的学习,你有哪些收获六、拓展延伸8.如图,四边形ABCD 是平行四边形,,A ,求△APB 的周长.9.如图,E 是平行四边形ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F 1求证:△ADE ≌△FCE ;2若∠BAF =90°,BC =5,EF =3,求CD 的长. 第7题图第6题图 第9题图。
平行四边形的性质及应用
一、教材分析:
1、教材的地位和作用:
平行四边形是在学习了平行线和三角形之后编排的,是平行线和三角形知识的应用和深化。
同时又是为了后面学习矩形、菱形、正方形、圆,甚至高中立体几何打基础的,起着承上启下的桥梁作用。
平行四边形在生产生活实践中应用也很广泛,学习他可以把理论和实际联系起来,更好地为实现科技现代化服务。
在前一章《三角形》的学习中,学生对几何“证明”开始入门,通过本章的学习可以使学生的推理论证的能力得到进一步的巩固和提高,对培养和发展学生的逻辑思维能力也有一定的帮助。
为此,根据教学大纲的要求和编写教材的意图,结合学生认知规律和素质教育的要求,确定本课的教学目标和重、难点如下:
2、教学目标:
(1)双基目标:使学生掌握平行四边形的概念和性质,理解平行线间距离,并会运用平行四边形的性质解决简单的问题。
(2)能力目标:培养学生观察、分析、猜想、归纳知识的自学能力和培养学生联想、类比、转化、推导、论证、演绎、抽象知识的数学思维品质。
(3)非智力目标(思想目标):渗透从具体到抽象,特殊到一般,未知到已知的数学思想以及事物之间互相转化的辨证唯物主义观点。
3、教学重点:理解并掌握平行四边形的概念、性质以及性质的应用。
4、教学难点:平行四边形性质的灵活应用。
二、教法:
“教学有法,教无定法,贵在得法”,行之有效的教法是取得良好教学效果的保证,按教学论中教为主导,学为主体的原则,教师的任务是制定目标,组织教学活动,控制教学活动的进程,并随机应变、排除障碍,承认和尊重学生的主体地位。
为了适应素质教育,培养学生的能力,本节课采用“五点”教学法。
具体如下:
1、以“问题”为学生学习的“起点”;
2、以“范式”为学生学习的“焦点”;
3、以“变式”为学生学习的“重点”;
4、以“创新”为学生学习的“难点”;
5、以“评价”为学生学习的“疑点”;
三、学法
教学活动是教与学的双边相互促进的活动。
在教学活动中,学生始终是学习的主体,为了激发学生自主学习科学的方法,真正做到课堂教学中面向全体学生,针对本课内容和以上教法,采用的学法如下:
四、教学程序
1、设问激趣,导入新课(起点):
首先复习四边形的概念、明确四边形的性质,然后用特殊化方法设计一问题:若四边形的两组对边分别平行,则该四边形是什么样的四边形?这样导入新课的目的是使学生在已有的知识基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣,并提高学生的发散思维能力,让学生敢于探索和猜想。
2、诱导思维,以诱达思(焦点):
其次通过设问、质疑,进一步引导学生区分平行四边形与一般四边形,进而猜想出平行四边形的特殊性质。
同时教师整理出一种推导平行四边形性质的范式,再让学生联想范式,演绎其他推导模式,这样做的目的是让学生去观察、猜想出平行四边形的性质,在教师的范式的有诱导下,达到演绎数学论证过程的能力。
3、变式问题,突出“重点”:
通过具体问题的观察、猜想、演绎出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质。
通过投影不同层次的典型习题给不同层次的学生练习,让学生自己去掌握“重点”。
4、引导创新,化解“难点”:
设计“无图形”和“无结论”问题,引导学生读题、审题、画图、观分析、猜想、归纳,然后把问题中所有可能的结论推导出来,通过这种开放式问题的解决,既达到突出“重点”,又化解“难点”的目的。
5、反馈补缺,消除“疑点”:
在学生自主探索学习的过程中,遇到自己无法解决的疑难问题时,教
师做适当的评价和提示,以弥补学习不足之处,从而达到消除“难点”的目的。
6、总观全课,找到收获:
教师对此课学生的表现作一小结、评价,特别是对“两头”的学生予以表扬,告诉学生本节是本章及以后学习的基础,要求他们在以后学习中会用平行四边形的性质去解决实际问题。
7、布置做业:
有针对地布置少量重、难、疑点知识的家庭作业,可以把“单一性结论”问题改为“无结论”问题,以巩固知识。