当前位置:文档之家› 第7章-热辐射的基本定律

第7章-热辐射的基本定律

第7章-热辐射的基本定律
第7章-热辐射的基本定律

第七章热辐射的基本定律

在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。太阳对大地的照射是最常见的辐射现象。高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。

本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。

第一节基本概念

1-1 热辐射的本质和特征

由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。人们根据电磁波不同效应把电磁波分成若干波段。波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。

一、热辐射的本质和特点

1、发射辐射能是各类物质的固有特性。当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。由于自身温度或热运动的原因面激发产生的电磁波传播,就称热辐射。显然,热辐射是电磁波,电磁波的波长范围可从几万分之一微米到数千米,它们的名称和分类如图所示。通常把λ=0.1—100μm范围的电磁波称热射线,其中包括可见光线、部分紫外线和红外线具有波动和量子特性。

2、特点

热辐射的本质决定了热辐射过程有如下三个特点:

⑴辐射换热与导热、对流换热不同、它不依赖物体的接触而进行热量传递,而导热和对流换热都必须由冷、热物体直接接触或通过中间介质相接触才能进行。

⑵辐射换热过程伴随着能量形式的两次转化,即物体的部分内能转化为电磁波能发射出去,当此波能射及另一物体表面而被吸收时,电磁波能又转化为内能。

⑶一切物体只要其温度T>0K,都会不断地发射热射线。当物体间有温差时,高温物体辐射给低温物体的能量大于低温物体辐射给高温物体的能量,因此总的结果是高温物体把能量传给低温物体。即使各个物体的温度相同,辐射换热仍在不断进行,只是每一物体辐射出去的能量,等于吸收的能量,从而处于动平衡的状态。

二、物体的热辐射特性-吸收、反射和透射

当热射线投射到物件上时,遵循着可见光的规律,其中部分被物体吸收,部分被反射,其余则透过物体。如图所示,其中反射存在漫反射和镜反射两种情况。

在物体表面对射线的吸收、反射和透射的过程中,能量平衡关系为:

由此可定义吸收率、反射率和透射率:

物体吸收率:;物体反射率:;物体透射率。

其中;对于单色吸收率、单色反射率、单色透射率:。

为研究辐射特性可提出以下理想辐射模型:

黑体:α=1 ρ=0 τ=0;

白体:α=0 ρ=1 τ=0;

透明体:α=0 ρ=0 τ=1

自然界和工程应用中,完全符合理想要求的黑体、白体和透明体虽然并不存在,但和它们根相象的物体却是有的。例如,煤炭的吸收比达到0.96,磨光的金子反射比几乎等于0.98,而常温下空气对热射线呈现透明的性质。但是,在分析实际物体表面的吸收、反射和透过特性的时候,必须非常谨慎地对待波长,尤其要注意不能以肉眼的直观感觉来判断某物体吸收比的高低。

对于τ=1的物体、说明它能允许投射来的辐射能全部透射过去、因此,称为透明体。这种极限状况在自然界中并不存在,只能有近似的透明体,如双原子气体(氧气、氮气)可视为?=1的透明体;干燥的空气也可以近似视为透休,但当空气中掺有水蒸气和二氧化碳气时,它就不再能作为透明体来处理,因为这两种气体的吸收率不等于零。有些物体的透射性能与波长有关。也就是说,它对于某——波长范围的辐射线表现出良好的透射性能,而对另一些波长范围则表现为非透明体性能,这就是物体对波长的选择性。例如普通玻璃对可见光来说是良好的透明体,但对紫外线和红外线来说就不是透明体。因此人们在普通玻璃的室内进行日光浴的效果就与室外显著不同。

对大多数的固体和液体来说,热射线都是不能透射的,即τ=o。这时,α十ρ=1由上式可以看到,对于τ=o的物体,吸收能力越强,它的反射能力就越弱;或者说反射能力越强的非透体,其吸收能力就越弱。这一知识早巳被人们的日常生活所验证。例如夏天人们总是喜欢穿白色衣服,这就是利用白色对可见光反射能力强这一特点,便衣服吸收的可见光减少,达到凉爽的目的。又如在防原子辐射的设施上涂成白色也是这个道理。但是应该注意,颜色对可见光的特性并不能概括为额色对全部热射线的特性,上面已经提及普通玻璃对可见光是透体而对紫外线和红外线却不是进体。而白色涤对可见光具有很高的反射串,但对于红外线的反射率却很低;白族和黑漆对红外线的反射率和吸收牢几乎没有什么差别。可见,对热射线的吸收与反射并不取决于颜色,实际上在很大程度上取决于物体表面的状况、粗糙度等因素。

对于物体P=1的极限情况,说明物体能将投射来的辐射能全部反射掉。这种物体称为白体。物体对投射来的射线的反射可分为镜反射和漫反射。镜反射时射线入射角等于射线的反射角,而漫反射则比较地元规律。表面粗糙度对射线的反射有决定性的影响。注意,这里所指的表面扭糙度是相对于辐射线的波长而言的。当表面不平整度(粗极度)小于投射射线的波长时,即为光滑表面,这时形成镜反射,如高度抛光的金属表面。一般的:t程材料表面对热射线来说均可视力粗糙表面,所以形成漫反射。在本课程所涉及的范围内都只限十漫射表面。对于。=1的物体,意味着它能全部吸收投射来的各种波长的辐射能,可见它是物体吸收能力最强的一种物体,因此称之为绝对黑体或黑体。在自然界中并不存在绝对黑体。人们可以制造出近似的黑体。例如在高吸收率不透明材料构成的等壁温空腔上开一小扎,就可以把该小孔视为该温度下的黑体。由于投射到小7L上的射线进入空腔后,经过反复吸收、反射,而最后从小孔反射出去的能量可以忽略。可以认为能量全部被小孔吸收。

在理解上述基本概念时,应注意以下几个问题:

⑴镜反射和漫反射。一般工程材料均形成漫反射。

⑵物体的颜色。关键在于是物体本身发射可见光还是物体反射可见光。

⑶理想辐射模型均是对全波长而言的。

三、辐射强度和辐射力

所有的固体和液体表面都随时向其上方的整个空间(称为半球空间)发射不同波长的辐射能量。为了进行辐射换热的工程计算,必须研究物体辐射能量随波长的分布特性,以及在半球空间各个方向亡的分布规律。

㈠辐射强度

1、立体角:是一个空间角度。定义为:

,单位为立体弧度Sr

其中θ的变化范围是0-900,β的变化范围则是0-3600。

2、辐射强度:

是物体给定辐射方向上,物体在与发射方向垂直的方向上的单

位投影面积,在单位时间和单位立体角内所发射全波长的能量,符

号为I,单位为W/(m2Sr)。

,其中

3、单色辐射强度

如果辐射强度是指在波长λ附近的单位波长间隔内所发射的能量,称为单色辐射强度,符号为Iλ,单位为W/(m2μm Sr)。

㈡辐射力

1、辐射力:发射物体每单位表面积在单位时间内向半球空间所发射的全波长能量,称为辐射力,符号为E,单位为W/m2。

E与I的关系为:;E与Iλ的关系为:

2、单色辐射力:如果辐射力是指在波长λ附近的单位波长间隔内所发射的能量,称为单色辐射力,符号为Eλ,单位为W/(m2μm)。

3、定向辐射力:如果辐射力是指在某规定方向上的单位面积上所发射的能量,称为定向辐射力,符号为Eθ,单位为W/(m2μm)。

第二节热辐射的基本定律

重点内容:

热辐射的基本定律及实际物体的热辐射特性简化方法

一、黑体

黑体具有最大的吸收力(α=1),同时亦具有最大的辐射力(ε=1)。

在实际物体中不存在绝对黑体,为此引出人工黑体,如图所示。

具有一个小孔的等温空腔表面,若有外部投射辐射从小孔进入空腔内,必将在其内表面经历无数次的吸收和反射,最后能够从小孔重新选出去的辐射能量必定微乎其微。于是有理由认为,几乎全部入射能量都被空腔吸收殆尽。从这个意义上讲,小孔非常接近黑体的性质。另外,腔内空间的辐射场系由腔内表面的发射和反射叠加而成,是各向同性的,而且必定和从小孔选出的辐射具有相同的性质,也等于腔壁温度所对应的黑体辐射力。

二、普朗克(M.Planck)定律

1、表达式

其中C1、C2分别称为普朗克第一常数和第二常数。

该规律描述了黑体单色辐射力随波长及温度的变化规律,如图所示。

2分析

⑴在一定温度下,黑体在不同波长范围内辐射能量各不相同。

⑵维恩位移定律:随着温度T增高,最大单色辐射力E bλ,ma x所对应的峰值波长λmax逐渐向短波方向移动。λmax T=2897.6μK。

⑶黑体T<1400K,辐射大部分能量集中在λ=0.76-10 μ内,从而可以忽略可见光。常温下,实际物体的辐射主要是红外辐射。

三、斯蒂芬-玻尔兹曼定律

E b=σb T4W/m2;σb=5.67*10-8W/(m2K4)

描述了黑体辐射力随表面温度的变化规律。

也可以计算某一波长范围内的辐射力。

其中称为黑体辐射系数。

四、兰贝特(Lambert)余弦定律

包括三个方面的内容:

1、半球空间上,黑体的辐射强度与方向无关。即:

,而各朝向辐射同性的表面称为漫辐射表面。

2、漫辐射表面定向辐射力与辐射强度间满足:

3、漫辐射表面的辐射力是辐射强度的π倍。

该定律描述了黑体及漫辐射表面定向辐射力按空间方向的分布变化规律。

7-3、实际固体何液体的辐射特性

黑体是所有物体当中吸收能力最大,同时发射能力也最大的理想化表面,这个特点使它很自然地成了描述实际表面的吸收和发射能力大小的最佳基准。通常实际表面(固体或液体)的光谱辐射力比同温度的黑体小,而且表现出不像黑体那么有规律。一般对实际物体表面辐射特性进行一定程度的简化,再用辐射率和吸收率进行修正。引入辐射率是为了定量描述实际物体在发射辐射方面与黑体的差别,而引入吸收率是为了定量描述实际物体在吸收辐射方面与黑体的差别。

㈠辐射率

(全波长)辐射率;定向辐射率;单色辐射率

单色辐射率在图中,是两段线段长度之比;辐射率则是阴影面积(即实际物体辐射力)与实线下的面积(即黑体辐射力)之比;实际物体用灰体近似替代,在图上就意味着,虚线下的面积与阴影面积相同。

㈡单色辐射率与灰体

实际材料表面的光谱辐射力不遵守普朗克定律,或者说不同波

长下光谱发射率随波长的变化比较大,并且不规则。

某一温度下,实际物体的单色辐射力随波长的变化是不规则的。

但工程上,实际物体一般可用灰体近似替代。

灰体:是指物体单色辐射力与同温度黑体单色辐射力随波长的

变化曲线相似,或它的单色发射率不随波长变化,即:ελ≠f(λ);αλ≠f(λ)

⑴辐射是连续的光谱:Eλ=ελE b,λ

⑵辐射力符合四次方定律:E=εE b=ελE b

一般实际物体表面在红外线波长范围内,可以近似作为灰体处理。

㈢定向辐射率与漫射表面

某一温度下,实际物体的定向辐射强度在各方向上的变化是不规则的。

但从图中可以看出,金属在θ=0-400、非金属在θ=0-600的单色辐射率基本为常数,所以较为粗糙的实际物体表面可作为漫射表面处理,但其辐射率应做如下修正:(非金属);

(磨光金属表面)。

漫射表面:各朝向辐射同性的表面称为漫辐射表面,εθ≠f(θ);αθ≠f(θ)

⑴符合兰贝特余弦定律

⑵定向吸收率与空间方向无关。

⑶辐射力符合四次方定律:E=εE b=εθE b

一般较为粗糙的实际物体表面可作为漫射表面处理。

7-4、实际物体的吸收比与基尔霍夫定律

掌握辐射的基本定律、漫射表面及灰体表面的辐射和吸收特性、实际物体的热辐射特性及其简化方法。

一、实际物体的吸收特性

实际物体的辐射换热比较复杂,在表面间将形成多次反射、吸收的现象。因此,确定其辐射和吸收特性也是极其重要的。

实际物体吸收率不仅与本身性质和状况有关,还取决于投射辐射的特性。日常生活中也有明显例子:红光投射到红玻璃上时,玻璃背面有红光透出,说明红玻璃对红光的吸收率不大:但当绿光投射到红玻璃上时.玻璃背面无光透出,说明红玻璃对绿光的吸收率很大。可见,投射光的波长对红玻璃的吸收率有很大的影响。

实际物体辐射率的计算方法:

实际物体吸收率的计算方法:

二、基尔霍夫定律

描述了物体发射辐射的能力和吸收投射辐射的能力之间的关系。

在热平衡条件下,αλ,θ,T=ελ,θ,T

1、对于实际物体表面: αλ,θ=ελ,θ

2、对于灰体: αθ=εθ

3、对于漫射表面: αλ=ελ

4、对于漫-灰表面(及黑体): α=ε

例题

例题1、ε=ελ与ε=εθ的区别是什么?

答:区别在于ε=ελ的适用条件为漫射表面,而ε=εθ的适用条件为灰体表面。

例题2、应用维恩定律解释金属加热过程的颜色变化。

答:维恩定律λmax·T=2897.6 μm·K表明,物体随着温度T的升高,λmax向波长减小的方向移动。金属发射的能谱中可见光部分的份额越来越多,其可见光中的短波部分也越来越多,因而感觉到金属加热过程随着T升高颜色由黑逐渐变为暗红、橘红、鲜红,甚至白亮色。

例题3、试从热辐射观点分析,用电炉来烘烤某一工件,把工件放在电炉的正上方热得快还是放在电炉的边沿热得快?为什么?

答:虽然不论是放在上方,还是放在边沿,工件被辐射照射面积相同,所张立体角也相同,但一个是法向,一个是成θ角的偏向,而Eθ=E n cosθ,所以工件放在电炉正上方(即法向)得到的辐射热多,热得快。

例题4、实际物体表面的发射率和吸收率主要受哪些因素影响?

答:发射率ε与物体本身的性质(种类)、表面状况、温度及方向有关。吸收率α与物体的种类、表面状况及温度有关,而且与入射的波长有关。

例题5、何谓“漫──灰表面”?有何实际意义?

答:“漫─灰表面”是研究实际物体表面时建立的理想体模型。漫辐射、漫反射指物体表面在辐射、反射时各方向相同。灰表面是指在同一温度下表面的辐射光谱与黑体辐射光谱相似,吸收率也取定值。“漫─灰表面”的实际意义在于将物体的辐射、反射、吸收等性质理想化,可应用热辐射的基本定律了。大部分工程材料可作为漫辐射表面,并在红外线波长范围内近似看作灰体。从而可将基尔霍夫定律应用于辐射换热计算中。

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

ANSYS热分析详解

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。

热辐射的基本概念_黑体、白体、镜体、透明体

热辐射的基本概念·黑体、白体、镜体、透明体 凤谷工业炉 吸收率α=1 的物体叫做绝对黑体,简称黑体 ; 反射率ρ=1 的漫反射的物体叫做绝对白体,简称白体;反射率ρ=1 的镜面反射的物体叫做镜体; 透过率τ-1 的物体叫做绝对透明体,简称透明体。这些都是假想的物体。对于红外辐射,绝 大多数固体和液体实际上都是不透明体,但玻璃和石英等对可见光则是透明体。 注意,所谓黑体或白体,是指物体表面能全部吸收或全部反射所投射的辐射能而言,所以黑体并不一定是黑色,白体并不一定是白色。看起来是白色的表面,也可能具有黑体的性质,这是因为 : 大部分热辐射的波长在 0.1~100μ m之间,而可见光辐射能的波长约有 0.38~0.76 μm之间。 这样,如果一个表面除可见光辐射范围外对其余所有的热辐射具有很高的吸收率,则它将几乎吸收全部的投射辐射,而反射的部分只有很小的份额,从这个意 义上说,该表面近似黑体,可是,它所反射的那很小的份额都处在可见光的波长范围内,因而该表面呈现白色。例如,冰雪对人眼来说是白色的,它对可见光 是极好的反射体,但它却能几乎全部吸收红外长波辐射( α=0.96) ,接近于黑体。 对红外辐射的吸收和反射具有重要影响的,不是物体表面的颜色,而是表面的粗糙度。不管什么颜色,平整磨光面的反射率要比粗糙面高很多倍,即其吸收率要比粗糙面小得很多。 气体无反射性,ρ=0;单原子气体,对称性双原子气体等不吸收热辐射线,透过率τ=1,可称为“透明体”,或“透明介质”。空气中有蒸汽、 CO2时,就变成有吸收性的介质。 实际固体的吸收率除了与表面性质有关外,还与投人辐射的波长有关,即物体的 . 单色吸收率αλ、随投射辐射的彼长而变。

热辐射基本定律

热辐射的基本定律 ? ?smyt_1983 ?2位粉丝 ? 1楼 在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。太阳对大地的照射是最常见的辐射现象。高炉中灼热的火焰会烘烤得人们难以忍受…太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。 本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。 第一节基本概念 1-1 热辐射的本质和特征 由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。人们根据电磁波不同效应把电磁波分成若干波段。波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0. 76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。 一、热辐射的本质和特点

第8章 热辐射基本定律和辐射特性(杨世铭,陶文栓,传热学,第四版,答案)

第8章 热辐射基本定律和辐射特性 课堂讲解 课后作业 【8-10】一等温空腔的内表面为漫射体,并维持在均匀的温度。其上有一个面积为0.022 m 的小孔,小孔面积相对于空腔内表面积可以忽略。今测得小孔向外界辐射的能量为70W ,试确定空腔内表面的温度。如果把空腔内表面全部抛光,而温度保持不变,问这一小孔向外的辐射有何影响? 【解】小孔可以当做黑体来处理,4T A Φσ= 498.4496K 02 .01067.570 484 b =??==-A E T σ 小孔的黑体特性与空腔的内表面的性质无关,故不影响小孔向外的辐射。 【8-18】暖房的升温作用可以从玻璃的光谱穿透比变化特性解释。有一块厚为3mm 的玻璃,经测定,其对波长为0.3~2.5μm 的辐射能的穿透比为0.9,而对其他波长的辐射能可以认为完全不穿透。试据此计算温度为5800K 的黑体辐射及温度为300K 的黑体辐射投射到该玻璃上时各自的总穿透比。 【解】 ()()()()()()()() [] 12212 1 2 1 2 1 2 2 1 1 ~0b ~0b ~b b b b b b b b b b b b b b 0 b 9.09.0d 9 .0d 9.0d d d d d λλλλλλ λλλλλλ λλ λλλλλλλλ λ λλτλ λτλ λτλλτλλττF F F E E E E E E E E E E E E E E -==== = + + ==???????∞ ∞ T 1=5800K ,K m 174058003.011?=?=μλT ,K m 1450058005.212?=?=μλT ()0.032854 1~0b =λF ,()0.9660652~0b =λF ()()[][]0.8398899032854 .0966065.09.09.01 2 ~0b ~0b =-=-=λλτF F T 2=300K ,K m 903003.011?=?=μλT ,K m 0573005.212?=?=μλT ()0.0000288 1~0b =λF ,()0.000242~0b =λF ()()[][]0.000190080.0000288 0.000249.09.01 2 ~0b ~0b =-=-=λλτF F 【8-21】温度为310K 的4个表面置于太阳光的照射下,设此时各表面的光谱吸收比随波 长的变化如附图所示。试分析,在计算与太阳能的交换时,哪些表面可以作为灰体处理?为什么? 【解】太阳辐射能的绝大部分集中在2μm 以下的区域,温度为310K 的物体辐射能则绝大部分在6μm 以上的红外辐射,由图可见,第一种情形与第三种情形,上述波段范围内单色吸收率相同,因而可以作为灰色处理。

补充3-ANSYS热辐射分析

第六章 热辐射分析 6.1热辐射的定义 热辐射是一种通过电磁波传递热能的方式。电磁波以光的速度进行传递,而能量传递与辐射物体之间的介质无关。热辐射只在电磁波的频谱中占小部分的带宽。由于辐射产生的热流与物体表面的绝对温度的四次方成正比,因此热辐射有限元分析是高度非线性的。物体表面的辐射遵循Stefan-Boltzmann定律: 式中:—物体表面的绝对温度; —Stefan-Boltzmann常数,英制为0.119×10-10 BTU/hr-in-R,公制为 5.67×10-8 6.2基本概念 下面是对辐射分析中用到的一些术语的定义: 黑体 黑体被定义为在任意温度下,吸收并发射最大的辐射能的物体; 通常的物体为“灰体”,即ε< 1; 在某些情况下,辐射率(黑度)随温度变化; 辐射率(黑度) 物体表面的辐射率(黑度)定义为物体表面辐射的热量与黑体在同一表面辐射热量之比。 式中:-辐射率(黑度) -物体表面辐射热量 -黑体在同一表面辐射热量 形状系数 形状系数用于计算两个面之间的辐射热交换,在ANSYS中,可以用隐藏/非隐藏的方法计算2维和三维问题,或者用半立方的方法来计算3维问题。 表面I与表面J之间的形状系数为: 形状系数是关于表面面积、面的取向及面间距离的函数; 由于能量守恒,所以:

根据相互原理: 由辐射矩阵计算的形状系数为: 式中:-单元法向与单元I,J连线的角度 -单元I,J重心的距离 有限单元模型的表面被处理为单元面积dA I 及dA J ,然后进行数字积分。 辐射对 在辐射问题中,辐射对由一些相互之间存在辐射的面组成,可以是开放的或是闭合的。在ANSYS中,可以定义多个辐射对,它们相互之间也可以存在辐射ANSYS使用辐射对来计算一个辐射对中各面间的形状系数;每一个开放的辐射对都可以定义自己的环境温度,或是向周围环境辐射的空间节点。 Radiosity 求解器 当所有面上的温度已知时,Radiosity 求解器方法通过计算每一个面上的辐射热流来得到辐射体之间的热交换。而面上的热流为接下来的热传导分析提供了有限元模型的边界条件。重复上面的过程,就会由于新的时间步或者新的迭代循环会得到新的热流边界条件,从而计算出新的温度分布。在计算中使用的每个表面的温度必须是均匀的,这样才能满足辐射模型的条件。 6.3分析热辐射问题 针对不同的情况ANSYS为热辐射分析提供了四种方法。 热辐射线单元(LINK31),模拟两节点间(或多对节点)间辐射; 表面效应单元(SURF151及SURF152),模拟点对面(线)的辐射; 利用AUX12生成辐射矩阵,模拟更一般的面与面(或线与线)的辐射(只有ANSYS/Multiphysics ANSYS/Mechanical和ANSYS/Professional这些产品提供辐射矩阵生成器); Radiosity求解器方法,求解二维、三维面与面之间的热辐射,该方法对所有含温度自由度的 二维和三维单元都适用。(只有ANSYS/Multiphysics,ANSYS/Mechanical 和ANSYS/Professio- nal这些产品提供Radiosity求解器)

热辐射

热辐射

热辐射在生活与工厂中的应用冶金12-A1 马凯李景玉汪鹏飞 一、热辐射﹙thermal radiation ﹚ 物体由于具有温度而辐射电磁波的现象。热量传递的3种方式之一。一切温度高于绝对零度的物体都能产生热辐射,温度愈高,辐射出的总能量就愈大,短波成分也愈多。热辐射的光谱是连续谱,波长覆盖范围理论上可从0直至∞,一般的热辐射主要靠波长较长的可见光和红外线。由于电磁波的传播无需任何介质,所以热辐射是在真空中唯一的传热方式。由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。 比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。 二、热辐射 - 特点 热辐射的本质决定了热辐射过程有如下三个特点: ⑴辐射换热与导热、对流换热不同、它不依赖物体的接触而进行热量传递,而导热和对流换热都必须由冷、热物体直接接触或通过中间介质相接触才能进行。

⑵辐射换热过程伴随着能量形式的两次转化,即物体的部分内能转化为电磁波能发射出去,当此波能射及另一物体表面而被吸收时,电磁波能又转化为内能。 ⑶一切物体只要其温度T>0K,都会不断地发射热射线。当物体间有温差时,高温物体辐射给低温物体的能量大于低温物体辐射给高温物体的能量,因此总的结果是高温物体把能量传给低温物体。即使各个物体的温度相同,辐射换热仍在不断进行,只是每一物体辐射出去的能量,等于吸收的能量,从而处于动平衡的状态。 关于热辐射,其重要规律有4个:基尔霍夫辐射定律、普朗克辐射分布定律、斯蒂藩·玻耳兹曼定律、维恩位移定律,这 4 个定律。有时统称为热辐射定律。 三、发展历史 1889年O.lummer等测定了黑体辐射光谱能量分布的实验数据。 1879年J.Stefan根据实验数据确立了黑体辐射力正比绝对温度的四次方规律。 1884年L.Boltzmann从理论上证实了上述定律。

2.1.2 热辐射的基本定律

2.1.2 热辐射的基本定律 第七章 光的量子性 本章主要介绍历史上在研究黑体辐射,光电效应和康普顿效应时,怎样打破经典理论成见,逐渐认识到光的波粒二象性,并阐述波粒二象性的含义。 §7—1 热辐射、基尔霍夫定律 一、几种不同形式的辐射 物体向外辐射将消耗本射的能量。要长期维持这种辐射,就必须不断从外面补偿能量,否则辐射就会引起物质内部的变化。在辐射过程中物质内部发生化学变化的,叫做化学发光。用外来的光或任何其它辐射不断地或预先地照射物质而使之发光的过程叫做光致发光。由场的作用引起的辐射叫场致发光。另一种辐射叫做热辐射,这种辐射在量值方面和按波长分布方面都取决全辐射体的温度。 任何温度的物体都发出一定的热辐射。 一物体 500℃左右,暗红色。随温度不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越多。1500℃变成明亮的白炽光。同一物体在一定温度下所辐射的能量,在不同光谱区域的分布是不均匀的,而且温度越高,光谱中与能量最大的辐射相对应的频率也越高。在一定温度下,不同物体所辐射的光谱成份有显著的不同。 二、辐射出射度和吸收比 从上面知道:在单位时间内从物体单位面积向各个方向所发射的,频率在νννd +→范围内的辐射能量Φd 与ν和T 有关,而且νd 足够小时,可认为与νd 成正比 ν ννd E d T T =Φ, T E ,ν是ν和T 的函数,叫做该物体在温度T 时发射频率为ν的单色辐射出射度(单色 辐出度)。它的物理意义是从物体表面单位面积发出的,频率在ν附近的单位频率间隔内的辐射功率。它反映了在不同温度下,辐射能量按频率分布的情况。单位为 s m J m W ?=22// 从特体表面单位面积上所发出的各种频率的总辐射功率,称为物体的辐射出射度。用 )(0T Φ表示: νννd E d T T T ,0 ,0 0)(??∞ ∞ =Φ=Φ )(0T Φ只是温度的函数。T E ,ν和)(0T Φ同表面情况有关。 另一方面,当辐射照射到某一不透明物体表面时,其中一部分能量将被物体散射或反射,另一部分能量则被物体所吸收。用T d ,νΦ表示频率在ν和ννd +范围内照射到温度为 T 的物体的单位面积上的辐射能量;T d ,ν Φ'表示物体单位面积上所吸收的辐射能量,则

第7章-热辐射的基本定律

第七章热辐射的基本定律 在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。太阳对大地的照射是最常见的辐射现象。高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。 本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。 第一节基本概念 1-1 热辐射的本质和特征 由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。人们根据电磁波不同效应把电磁波分成若干波段。波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。 一、热辐射的本质和特点 1、发射辐射能是各类物质的固有特性。当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。由于自身温度或热运动的原因面激发产生的电磁波传播,就称热辐射。显然,热辐射是电磁波,电磁波的波长范围可从几万分之一微米到数千米,它们的名称和分类如图所示。通常把λ=0.1—100μm范围的电磁波称热射线,其中包括可见光线、部分紫外线和红外线具有波动和量子特性。 2、特点 热辐射的本质决定了热辐射过程有如下三个特点:

温度场分析理论总结

传热学基本理论: 传热学是研究由温差引起的热能传递规律的科学,遵循热力学三大定律,热力学第一定律是在一个热力学系统内,能量可转换,即可从一种形式转变成另一种形式,但不能自行产生,也不能毁灭;热力学第二定律是凡是温差存在的地方就有热能自发地从高温物体向低温物体传递;热力学第三定律是一般当封闭系统达到稳定平衡时,熵应该为最大值,在任何过程中,熵总是增加,但理想气体如果是等温可逆过程熵的变化为零,可是理想气体实际并不存在,所以现实物质中,即使是等温可逆过程,系统的熵也在增加,不过增加的少。 在绝对零度,任何完美晶体的熵为零。 热能传递有三种基本方式,分别是热传导、热对流和热辐射。兹分别简述如下: 热传导: 物体各部分之间不发生相对位移时,依靠分子、原子及自有电子等微观粒子的热运动而产生的热能传递称为热传导,简称导热。通过对实际导热问题的经验提炼,导热现象的规律遵循傅里叶定律。根据傅里叶定律,单位时间内通过物体截面的导热热量与当地的温度变化率及截面面积成正比,即 dt A dx λψ=- 式中,λ是比例系数,称为导热率,又称导热系数,负号表示热量传递的方向与温度升高的方向相反。由上式可知当 0dt dx <时,0ψ>,热量沿着x 轴增大的方向传递;当0dt dx >时,0ψ<,热量沿着x 轴减小的方向传递。 热传导的微分方程: 热传导微分方程是基于傅里叶定律和传热学守恒定律得到的,兹将传热学微分方程作如

下详细描述。

导体内任一微元平行六面体及其坐标如图所示,根据傅里叶定律, 导入x x =、y y =、 z z =微元平面的热量分别是: ()x x x t A dydz x λ??? ψ=- ???? ()y y y t A dzdx x λ??? ψ=- ???? ()z z z t A dxdy x λ??? ψ=- ???? 导出x x dx =+、y y dy =+、z z dz =+微元平面的热量亦可根据傅里叶定律写出如下: ()()()()x x x dx x x x x x x t dx A dydz dx x x x λ+?ψ?????? ψ=ψ+=ψ+ - ?????????? ()() ()()y y y dy y y y y y y t dy A dzdx dy y y y λ+?ψ? ?????ψ=ψ+ =ψ+-?? ?????????? ()()()()z z z dz z z z z z z t dz A dxdy dz z z z λ+?ψ?????? ψ=ψ+ =ψ+ - ?????????? 对于微元体,按照能量守恒定律,在任一时间间隔内有以下热平衡关系: 导入微元体的总热流量+微元体内热源生成热=导出微元体的总热流量+微元体热力学能增量 其他两项的表达式为 微元体热力学能增量=t c dxdydz ρτ ?? 微元体内热源生成热=dxdydz ψ 由以上公式得: t t t t c x x y y z z ρλλλτ????????????? =+++ψ ? ? ???????????? ?? 热辐射: 物体通过电磁波传递能量的方式称为辐射。物体会因各种原因发出辐射能,其中因热的原因而发出辐射能的现象称为热辐射。 物体的辐射能力与温度有关,同一温度条件下不同物体的辐射和吸收本领不同。假想一理想物体黑体,它能吸收投入到其表面上的所有热辐射能量。 黑体在单位时间内发出的热辐射热量由斯忒藩—玻耳兹曼定律揭示: 4 A T σψ=

ANSYS热辐射解析

第六章热辐射分析 6.1热辐射的定义 热辐射是一种通过电磁波传递热能的方式。电磁波以光的速度进行传递,而能量传递与辐射物体之间的介质无关。热辐射只在电磁波的频谱中占小部分的带宽。由于辐射产生的热流与物体表面的绝对温度的四次方成正比,因此热辐射有限元分析是高度非线性的。物体表面的辐射遵循Stefan-Boltzmann定律: 式中:—物体表面的绝对温度; —Stefan-Boltzmann常数,英制为0.119×10-10 BTU/hr-in-R,公制为5.67×10-8 6.2基本概念 下面是对辐射分析中用到的一些术语的定义: 黑体 黑体被定义为在任意温度下,吸收并发射最大的辐射能的物体; 通常的物体为―灰体‖,即ε< 1; 在某些情况下,辐射率(黑度)随温度变化; 辐射率(黑度) 物体表面的辐射率(黑度)定义为物体表面辐射的热量与黑体在同一表面辐射热量之比。 式中:-辐射率(黑度) -物体表面辐射热量 -黑体在同一表面辐射热量 形状系数 形状系数用于计算两个面之间的辐射热交换,在ANSYS中,可以用隐藏/非隐藏的方法计算2维和三维问题,或者用半立方的方法来计算3维问题。 表面I与表面J之间的形状系数为: 形状系数是关于表面面积、面的取向及面间距离的函数; 由于能量守恒,所以: 根据相互原理: 由辐射矩阵计算的形状系数为:

式中:-单元法向与单元I,J连线的角度 -单元I,J重心的距离 有限单元模型的表面被处理为单元面积dA I及dA J,然后进行数字积分。 辐射对 在辐射问题中,辐射对由一些相互之间存在辐射的面组成,可以是开放的或是闭合的。在ANSYS中,可以定义多个辐射对,它们相互之间也可以存在辐射ANSYS使用辐射对来计算一个辐射对中各面间的形状系数;每一个开放的辐射对都可以定义自己的环境温度,或是向周围环境辐射的空间节点。 Radiosity 求解器 当所有面上的温度已知时,Radiosity 求解器方法通过计算每一个面上的辐射热流来得到辐射体之间的热交换。而面上的热流为接下来的热传导分析提供了有限元模型的边界条件。重复上面的过程,就会由于新的时间步或者新的迭代循环会得到新的热流边界条件,从而计算出新的温度分布。在计算中使用的每个表面的温度必须是均匀的,这样才能满足辐射模型的条件。 6.3分析热辐射问题 针对不同的情况ANSYS为热辐射分析提供了四种方法。 热辐射线单元(LINK31),模拟两节点间(或多对节点)间辐射; 表面效应单元(SURF151及SURF152),模拟点对面(线)的辐射; 利用AUX12生成辐射矩阵,模拟更一般的面与面(或线与线)的辐射(只有ANSYS/Multiphysics ANSYS/Mechanical和ANSYS/Professional这些产品提供辐射矩阵生成器); Radiosity求解器方法,求解二维、三维面与面之间的热辐射,该方法对所有含温度自由度的二维和三维单元都适用。(只有ANSYS/Multiphysics, ANSYS/Mechanical和ANSYS/Professional这些产品提供Radiosity求解器) 可以将上面四种辐射方法中的任何一种用于稳态或瞬态热分析中。辐射是一种非线性现象,因此需要进行平衡迭代来得到收敛解。 6.4节点间的热辐射 非线性线单元LINK31用于计算两节点间或多对节点间的简单辐射热传递,节点的位置是任意的,可作为其它单元的节点。LINK31需要定义如下数据:材料属性:EMIS辐射率(可以随温度变化) 实常数:AREA(Ai)(有效辐射面积) FORMF(Fij)(形状系数) SBCONST(Stefan-Boltzman常数) 有关LINK31的使用实例,请参考《ANSYS 校验手册》: VM106Radiant energy emission VM107Thermocouple radiation

热辐射分析教程

热辐射分析 6.1热辐射的定义 热辐射是一种通过电磁波传递热能的方式。电磁波以光的速度进行传递,而能量传递与辐射物体之间的介质无关。热辐射只在电磁波的频谱中占小部分的带宽。由于辐射产生的热流与物体表面的绝对温度的四次方成正比,因此热辐射有限元分析是高度非线性的。物体表面的辐射遵循Stefan-Boltzmann定律: 式中:—物体表面的绝对温度; —Stefan-Boltzmann常数,英制为0.119×10-10 BTU/hr-in-R,公制为5.67×10-8 6.2基本概念 下面是对辐射分析中用到的一些术语的定义: 黑体 黑体被定义为在任意温度下,吸收并发射最大的辐射能的物体; 通常的物体为―灰体‖,即ε< 1; 在某些情况下,辐射率(黑度)随温度变化; 辐射率(黑度) 物体表面的辐射率(黑度)定义为物体表面辐射的热量与黑体在同一表面辐射热量之比。 式中:-辐射率(黑度) -物体表面辐射热量 -黑体在同一表面辐射热量 形状系数 形状系数用于计算两个面之间的辐射热交换,在ANSYS中,可以用隐藏/非隐藏的方法计算2维和三维问题,或者用半立方的方法来计算3维问题。 表面I与表面J之间的形状系数为: 形状系数是关于表面面积、面的取向及面间距离的函数; 由于能量守恒,所以: 根据相互原理:

由辐射矩阵计算的形状系数为: 式中:-单元法向与单元I,J连线的角度 -单元I,J重心的距离 有限单元模型的表面被处理为单元面积dA I及dA J,然后进行数字积分。 辐射对 在辐射问题中,辐射对由一些相互之间存在辐射的面组成,可以是开放的或是闭合的。在ANSYS中,可以定义多个辐射对,它们相互之间也可以存在辐射ANSYS使用辐射对来计算一个辐射对中各面间的形状系数;每一个开放的辐射对都可以定义自己的环境温度,或是向周围环境辐射的空间节点。 Radiosity求解器 当所有面上的温度已知时,Radiosity求解器方法通过计算每一个面上的辐射热流来得到辐射体之间的热交换。而面上的热流为接下来的热传导分析提供了有限元模型的边界条件。重复上面的过程,就会由于新的时间步或者新的迭代循环会得到新的热流边界条件,从而计算出新的温度分布。在计算中使用的每个表面的温度必须是均匀的,这样才能满足辐射模型的条件。 6.3分析热辐射问题 针对不同的情况ANSYS为热辐射分析提供了四种方法。 热辐射线单元(LINK31),模拟两节点间(或多对节点)间辐射; 表面效应单元(SURF151及SURF152),模拟点对面(线)的辐射; 利用AUX12生成辐射矩阵,模拟更一般的面与面(或线与线)的辐射(只有ANSYS/Multiphysics ANSYS/Mechanical和ANSYS/Professional这些产品提供辐射矩阵生成器); Radiosity求解器方法,求解二维、三维面与面之间的热辐射,该方法对所有含温度自由度的二维和三维单元都适用。(只有ANSYS/Multiphysics,ANSYS/Mechanical和 ANSYS/Professional这些产品提供Radiosity求解器) 可以将上面四种辐射方法中的任何一种用于稳态或瞬态热分析中。辐射是一种非线性现象,因此需要进行平衡迭代来得到收敛解。 6.4节点间的热辐射 非线性线单元LINK31用于计算两节点间或多对节点间的简单辐射热传递,节点的位置是任意的,可作为其它单元的节点。LINK31需要定义如下数据: 材料属性:EMIS辐射率(可以随温度变化) 实常数:AREA(Ai)(有效辐射面积) FORMF(Fij)(形状系数) SBCONST(Stefan-Boltzman常数) 有关LINK31的使用实例,请参考《ANSYS 校验手册》: VM106Radiant energy emission

例6 热辐射的有限元分析

例6 热辐射的有限元分析 6.1问题描述 两个圆筒,之间相隔一定的距离,外圆筒的内壁和内圆筒的外壁相互间产生温度辐射,模拟两圆筒最终的温度分布。注意本例题辐射过程的设置。 6.2 建立网格模型 mesh generate 网格的生成 coordinate system :cylindrical(on) 坐标系:柱坐标 curves type 曲线的表示方式 center/point/point 弧的中心点、起始点、表示圆弧的角度return 返回上一级菜单 curves add 添加曲线 (0 0 0) (8 0 0) (8 180 0) 三点分别表示圆弧中心点、起始点、结束点 (0.0.0)(10 0 0) (10 180 0) (0 0 0) (12 0 0) (12 180 0) (0 00) (140 0) (14 180 0) 生成曲线 surface type 表面的类型

ruled 直纹面return 返回surface add 添加表面2 1 4 3

convert 转换 division 分割 12 2 surface to elements 表面单元 all: existing 所有存在单元return SWEEEP ALL RETURN CHECK ELEMENTS UPSIDE DOWN (检查反向单元) FLIP ELEMENTS (修正) ALL SELECTED UPSIDE DOWN (再检查一次,可以看到已经没有了)RETURN RENUMBER ALL

生成网格 6.3 定义边界条件 定义内腔表面的给定温度边界、施加腔内表面的辐射边界、给定无穷远处环境温度。定义问题维数、光线条数,单击Start,自动计算视角系数,并将结果记在一个.vfs文件中,击OK,退出。 boundary conditions 定义边界条件 thermal 热量 fixed temperature 固定温度 OK nodes add 添加节点 捡取内腔的内表面节点

热辐射的基本定理

第八章热辐射的基本定理 本章从分析热辐射的本质和特点开始,结合表面的辐射性质引出有关热辐射的一系列术语和概念,然后针对辐射规律提出了热辐射的基本定律。学习的基本要求是:理解热辐射本质和特点。有关黑体、灰体、漫射体,发射率(黑率)、吸收率的概念。理解和熟悉热辐射的基本定律,重点是斯蒂芬—玻尔兹曼定律和基尔霍夫定律。了解影响实际物体表面辐射特性的因素。主要内容有: 一、作为表面的热辐射性质,主要有:对外来投射辐射所表现的吸收率、反射率、透射率和自由温度所表现出的发射率。对实际表面,这些性质既有方向性又具有光谱性,即它们既和辐射的方向有关,又和辐射的波长有关。所以实际表面的辐射性质是十分复杂的。工程上为简化计算而提出了“漫”“灰”模型:前者指各向同性的表面,即辐射与反辐射性质与方向无关;后者指表面的辐射光谱与同温度黑体的辐射光谱相似,或表面的单色吸收率不随波长而变化是一个常数。如某表面的辐射特性,除了与方向无关外,还与波长无关,则称为“漫—灰”表面,本教材主要针对这类表面作分析计算。 二、有关黑体的概念。黑体既是一个理想的吸收体又是理想的发射体,在热辐射中可把它作为标准物体以衡量实际物体的吸收率和发射率。基于黑体是理想吸收体,如把他置于温度为T的黑空腔中,利用热平衡的原理可推论出黑体尚具有如下特性: 1、在同温度条件下,黑体具有最大的辐射力Eb,既(T)> (T)。 2、黑体的辐射力是温度的单调递增函数。 3、黑体辐射各向同性,即黑体具有漫射性质,辐射强度与方向无关,≠。 三、发射率 发射率 单色发射率 与的关系 对灰表面≠,可有= 。 四、辐射力E和辐射强度I均表示物体表面辐射本领。只要表面温度T>0 K,就会有辐射能量。前者是每单位表面积朝半球方向(0 K环境)在单位时间内所发射全波长的能量,而后者是某方向上每单位投影面积在单位时间、单位立体角内所发射的全波长能量。它们之间的关系是,对黑体。 如果是单色辐射能量,相对有单色辐射力和单色辐射强度,并有,对黑体。 五、热辐射的基本定律有: 1、普朗克定律: 2、斯蒂芬—玻尔兹曼定律: W/(m2·K4) 对灰表面 3、兰贝特定律: 或 对漫表面才有此关系。 4、基尔霍夫定律: 在热平衡条件下得出 温度不平衡条件下几种不同层次: (1)、无条件成立; (2)、漫表面成立;

热辐射的基本概念·辐射、热辐射和辐射波谱

辐射、热辐射和辐射波谱 无锡凤谷工业炉 (1)辐射、热辐射和辐射波谙 辐射是物质固有的属性。热辐射则是许多辐射现象中的一种。 辐射具有横波(电磁波)和粒子(光子)的二象性。物体的原子内部电子的振动或激发,会产生交替变化的电磁场,实现电磁波的发射和传播,或者说,会释放光子,光子以射线方式传播,直到被所遇到的其他原子吸收为止。 辐射的过程就是物体的内能转变为辐射能,以发射电磁波、或者说,以发射光子的形式对外放射,当辐射能落在另一些物体上而被吸收时,可以转化为该物体的内能增量而产生热效应、化学效应、或光电效应等。各种不同效应的产生取决于投射的电磁波的波长和受投射物体的性质。 2)热辐射及其波长 任何温度大于绝对零度的物体.都会将它的热能不断地转换为辐射能向外发射,这种由于温度的原因而发生的电磁波(光子)辐射称为热辐射。从理论上说,物体热辐射的电磁波波长可以包括电磁波的整个波谱范围,即波长从零到无穷大。然而在工业上所遇到的温度范围

内(T≤1400K),有实际意义的热辐射波长位于波谱的0.38~1000μm之间,即在可见光与红外线范围,见表3-1。而且,热辐射的大部分能量位于0.76~20μm范围内,故红外线有时俗称热射线当热辐射线投射到受射物体而被其吸收时,就产生了加热效应。显然,当热辐射的波长大于0.76脚时,人们的眼睛将看不见它们。 3)辐射波的速率和光子的能量 各种电磁辐射波,包括热辐射线都以光速在空间进行传播。电磁波的速率等于辐射波长同其频率的乘积。 由此可见,不同的电磁波可由波长或频率来确定其性质。当辐射线从一种介质进人另一种介质而出现折射的情况下,其频率不变,而速率及波长将发生变化。 电磁波或者光子所携带的能量,即辐射能。1900年普朗克(planck)把辐射的关于波和粒子的二象性联系了起来,创立了量子学说,把光子看作一种具有能量和质量的粒子,提出了一个光子的能量为: 由此可见,光子的能量随其频率而不同。

相关主题
文本预览
相关文档 最新文档