现代密码学
- 格式:docx
- 大小:141.51 KB
- 文档页数:15
现代密码学概述现代密码学是研究保护信息安全的科学,它使用密码算法来加密和解密数据,以防止未经授权的访问和篡改。
密码学在现代社会中扮演着至关重要的角色,它保证了电子通信、互联网交易和数据存储的安全性。
一、密码学的基本概念和原理1.1 加密和解密在密码学中,加密是将明文转换为密文的过程,而解密则是将密文还原为明文的过程。
加密和解密的过程需要使用特定的密钥和密码算法。
1.2 对称密码和非对称密码对称密码算法使用相同的密钥进行加密和解密,加密和解密的速度较快,但密钥的分发和管理比较困难。
非对称密码算法使用一对密钥,分别用于加密和解密,密钥的管理更为灵活,但加密和解密的速度较慢。
1.3 数字签名和数字证书数字签名是在数字信息中添加的一种类似于手写签名的标识,用于验证数据的完整性和真实性。
数字证书则是由可信的第三方机构颁发的用于验证签名者身份的证书。
二、现代密码学的应用领域2.1 网络安全现代密码学在网络安全中扮演着重要的角色。
它通过对通信数据进行加密,保护用户的隐私和数据的安全,防止信息被窃听、篡改和伪造。
2.2 数据存储密码学被广泛应用于数据存储领域,如数据库加密、文件加密和磁盘加密等。
通过对数据进行加密,即使数据泄露也不会造成重大的损失。
2.3 电子支付现代密码学在电子支付领域也有广泛的应用。
它通过使用数字签名和加密技术,确保支付过程的安全性和可信度,防止支付信息被篡改和伪造。
三、常见的密码学算法3.1 对称密码算法常见的对称密码算法有DES(Data Encryption Standard)、AES (Advanced Encryption Standard)和RC4等。
这些算法在加密和解密的速度上都较快,但密钥的管理较为困难。
3.2 非对称密码算法常见的非对称密码算法有RSA、DSA和ECC等。
这些算法在密钥的管理上更为灵活,但加密和解密的速度较慢。
3.3 哈希函数算法哈希函数算法用于将任意长度的数据转换为固定长度的摘要值。
现代密码学的基础知识与应用现代密码学是信息安全领域中的重要分支,旨在保护数据的机密性、完整性和可用性。
它通过使用密钥和算法来加密、解密和签名数据,以确保数据在传输和存储过程中的安全。
本文将介绍现代密码学的基础知识和应用,包括加密算法、密钥管理和攻击方法。
加密算法加密算法是现代密码学中最基本的概念之一,它用于将数据转换为不可读的形式,以保护数据的机密性。
加密算法可分为两种类型:对称加密算法和非对称加密算法。
对称加密算法是加密和解密使用相同密钥的算法。
数据在发送和接收方之间传输时,使用相同的密钥对数据进行加密和解密。
常见的对称加密算法包括DES、3DES、AES等。
这些算法在整个过程中的安全性取决于密钥的安全性。
如果密钥被攻击者窃取或暴力破解,对称加密的安全性就会被破坏。
非对称加密算法,又称为公钥加密算法,使用一对密钥进行加密和解密,其中一个密钥称为公钥,另一个密钥称为私钥。
公钥可以公开发布并共享给发送方,而私钥通常只有接收方持有。
常见的非对称加密算法包括RSA、Elgamal等。
由于使用了不同的密钥进行加密和解密,非对称加密算法的安全性比对称加密算法更高,但也需要保护好私钥的安全性。
密钥管理密钥是加密和解密过程中的关键元素,好的密钥管理对加密算法的效果至关重要。
密钥管理的主要目的是确保密钥的安全、可靠和有效使用。
密钥的生成是密钥管理的首要任务。
生成密钥的方法包括随机生成、使用密码短语生成和使用密钥派生算法等。
在使用密钥之前,需要对密钥进行保密处理,并将其存储在安全的位置。
密钥的分配应该限制在需要访问加密数据的人员中,并且在不再需要使用时应该立即取消分配。
当使用对称加密算法时,密钥的分发和交换也是一个关键问题。
因为对称加密算法使用相同的密钥加密和解密数据,发送方需要将密钥发送给接收方。
这个过程暴露出密钥的风险,因此需要采取一些预防措施,如使用密钥协商算法、使用加密密钥交换协议和使用数字签名等。
攻击方法密码学中的攻击方法可以分为两种类型:袭击和侵入。
课程名称:现代密码学课程编码:学分:2适用学科:理工科硕士研究生现代密码学Modern Cryptography教学大纲一、课程性质《现代密码学》是应用数学硕士研究生的一门专业方向选修课程。
随着计算机和通信网络的应用,信息的安全性受到人们的普遍重视,现代的信息安全除了涉及国家安全外,也涉及个人权益、企业生存和金融防范等。
密码学是信息安全的重要领域,它的理论和技术随着计算机技术的发展也得到了迅速发展和广泛应用。
本课程主要就是学习密码学的基本内容。
二、课程教学目的通过学习密码学理论,信息与计算科学和应用数学专业的学生应能正确理解其基本概念和理论,掌握常用的密码算法。
本课程将培养学生基础理论与应用结合的能力,并为后续课程的学习和本课程的进一步运用打下良好的基础。
三、教学基本内容与要求第一章引言1、了解密码学的发展概况2、熟练掌握密码学的基本概念第二章古典密码1、熟练掌握古典密码中的基本加密运算2、理解几种典型的古典密码体制3、了解古典密码的统计分析第三章香农理论1、熟练掌握密码体制的数学模型2、掌握熵及其性质3、了解伪密钥和唯一解距离4、了解密码体制的完善保密性5、理解乘积密码体制第四章分组密码1、熟练掌握分组密码的基本原理2、理解数据加密标准DES3、了解多重DES及DES的工作模式4、理解高级加密标准AES第五章公钥密码1、熟练掌握公钥密码的理论基础2、掌握RSA公钥密码3、掌握大素数的生成方法4、了解椭圆曲线上的Menezes- Vanstone公钥密码第六章序列密码与移位寄存器1、熟练掌握序列密码的基本原理2、理解移位寄存器与移位寄存器序列3、掌握移位寄存器的表示方法4、了解线性移位寄存器序列的周期性、序列空间和极小多项式5、知道m-序列的伪随机性几点说明本课程教学时数为48学时,根据不同章节难易程度安排上机练习。
课程内容要求的高低用不同词汇加以区分:对于概念、理论,从高到低以“理解”、“了解”、“知道”三级区分;对于运算、方法,以“熟练掌握”、“掌握”、“会”或“能”三级区分。
现代密码学第四版答案第一章简介1.1 密码学概述1.1.1 什么是密码学?密码学是研究通信安全和数据保护的科学和艺术。
它涉及使用各种技术和方法来保护信息的机密性、完整性和可用性。
1.1.2 密码学的分类密码学可以分为两个主要方向:对称密码学和非对称密码学。
•对称密码学:在对称密码学中,发送者和接收者使用相同的密钥来进行加密和解密。
•非对称密码学:在非对称密码学中,发送者和接收者使用不同的密钥来进行加密和解密。
1.2 密码系统的要素1.2.1 明文和密文•明文(plaintext):未经加密的原始消息。
•密文(ciphertext):经过加密后的消息。
1.2.2 密钥密钥是密码系统的核心组成部分,它用于加密明文以生成密文,或者用于解密密文以恢复明文。
密钥应该是保密的,只有合法的用户才能知道密钥。
1.2.3 加密算法加密算法是用来将明文转换为密文的算法。
加密算法必须是可逆的,这意味着可以使用相同的密钥进行解密。
1.2.4 加密模式加密模式是规定了加密算法如何应用于消息的规则。
常见的加密模式包括电子密码本(ECB)、密码块链路(CBC)和计数器模式(CTR)等。
1.3 密码的安全性密码的安全性取决于密钥的长度、加密算法的复杂度以及密码系统的安全性设计。
第二章对称密码学2.1 凯撒密码凯撒密码是一种最早的加密方式,它将字母按照给定的偏移量进行位移。
例如,偏移量为1时,字母A加密后变为B,字母B变为C,以此类推。
2.2 DES加密算法DES(Data Encryption Standard)是一种对称密码算法,它使用56位密钥对64位的明文进行加密。
DES算法包括初始置换、16轮迭代和最终置换三个阶段。
2.3 AES加密算法AES(Advanced Encryption Standard)是一种对称密码算法,它使用128位、192位或256位的密钥对128位的明文进行加密。
AES算法使用了替代、置换和混淆等操作来保证对抗各种密码攻击。
现代密码学中的名词解释密码学是研究如何保护信息安全的学科领域。
随着信息技术的快速发展,保护数据的安全成为了当代社会的重要需求之一。
为了加强密码学的理论和应用,现代密码学涌现了许多重要的概念和名词。
本文将重点解释现代密码学中的一些常见名词,以帮助读者更好地理解和运用密码学的基本原理。
一、对称密钥密码体制(Symmetric Key Cryptography)对称密钥密码体制是最早也是最简单的密码学方法之一。
其基本原理是发送方和接收方使用相同的密钥进行加密和解密操作。
这意味着密钥需要在通信双方之间事先共享,因此也被称为共享密钥密码体制。
对称密钥密码体制具有高效、快速的特点,但存在密钥管理困难和密钥安全问题。
二、公钥密码体制(Public Key Cryptography)与对称密钥密码体制相比,公钥密码体制采用了一对密钥:公钥和私钥。
发送方使用接收方的公钥进行加密操作,而接收方则使用自己的私钥进行解密。
在公钥密码体制中,公钥可以公开,私钥必须保密。
公钥密码体制解决了对称密钥密码体制中的密钥管理和密钥安全问题,但加解密过程相对较慢。
三、数字签名(Digital Signature)数字签名是公钥密码体制的一个重要应用,用于验证电子文档的真实性和完整性。
发送方使用自己的私钥对文档进行加密,生成数字签名,并将文档和数字签名发送给接收方。
接收方使用发送方的公钥解密数字签名,再与原始文档进行比较,如果一致,则可以确定文档的来源和完整性。
四、哈希函数(Hash Function)哈希函数是一种将任意长度的输入数据转换为固定长度的输出数据的算法。
哈希函数具有以下特性:(1)输入和输出具有固定的长度;(2)对于相同的输入,输出总是相同;(3)对于不同的输入,输出应该尽量不同;(4)给定输出,很难推导出对应的输入。
五、数字证书(Digital Certificate)数字证书是用于证明公钥的有效性和所有者身份的一种数字文件。
现代密码学范畴
现代密码学是一门研究和应用于保护信息安全的学科,其范畴包括以下几个方面:
1. 对称密码学:研究加密算法中的密钥管理,包括数据加密和解密。
2. 非对称密码学:研究使用公钥和私钥进行加密和解密的算法,也称为公钥密码学。
3. 消息认证码(MAC):用于验证消息的完整性和真实性,
防止数据被篡改。
4. 数字签名:用于验证消息或文档的发信人身份,并确保消息的完整性和真实性。
5. 密码协议:研究通过密码控制通信过程中的安全性。
6. 认证和访问控制:研究证实用户身份,并控制其对系统或资源的访问权限。
7. 安全协议和协议分析:研究设计安全协议以及对现有协议进行分析和改进。
8. 密码算法设计与分析:研究设计新的密码算法并评估其安全性,以及分析现有算法的强弱点。
9. 密码学理论:研究密码学的数学基础,如复杂性理论、概率论和代数等。
现代密码学的范畴不仅仅局限于上述几个方面,随着信息技术的不断发展,还涉及到密码学与计算机科学、网络安全、量子密码学、生物密码学等多个交叉学科的应用和研究。
现代密码学基本思想及其展望摘要:由密码学的基本概念出发,介绍密码学及其应用的最新发展状况,包括公钥密码体制及其安全理论、各种密码协议及其面临的攻击,并对安全协议的分析方法进行概述。
根据当今的发展状况指出密码学的发展趋势和未来的研究方向。
关键词:信息安全;密码学;数字签名;公钥密码体制;私钥密码体制引言1引言密码学是一门非常古老的学科,早期的密码技术是把人们能够读懂的消息变换成不易读懂的信息用来隐藏信息内容,使得窃听者无法理解消息的内容,同时又能够让合法用户把变换的结果还原成能够读懂的消息。
密码学的发展大致可以分为4个阶段。
手工阶段的密码技术可以追溯到几千年以前,这个时期的密码技术相对来说是非常简单的。
可以说密码技术是伴随着人类战争的出现而出现的。
早期的简单密码主要体现在实现方式上,即通过替换或者换位进行密码变换,其中比较著名的包括法国Vigenere 密码,古罗马Caeser密码等。
尽管密码学技术与其它学科一样在不断向前发展,但在第一次世界大战之前,很少有公开的密码学文献出现。
一个密码算法的安全性往往是就一定的时间阶段而言的,与人类当时的科技水平息息相关。
随着人类计算水平的提高,针对密码的破译水平也突飞猛进,因此密码技术也必须与时俱进,不断发展。
人类对于密码算法的安全性有着越来越高的要求,这往往导致所设计的密码算法的复杂度急剧增大。
在实际应用中,一个密码算法效率越高越好,因此人们就采用了机械方法以实现更加复杂的密码算法,改进加解密手段。
20世纪初就出现了不少专用密码机,比如Colossus,该密码机是由英国人Turin所设计的。
随着通信、电子和计算机等技术的发展,密码学得到前所未有的系统发展。
1949年,Shannon发表了“保密系统的通信理论”,给出了密码学的数学基础,证明了一次一密密码系统的完善保密性。
由于各种原因,从1949年到1967年,全世界的密码学文献几乎为零,尽管密码技术一直在发展。
直到20世纪70年代初期,IBM提出Feistel网络并发表了在分组密码方而的研究报告,密码学才开始呈现出民间研究的前兆。
随着社会的发展,不管是政府还是普通老百姓都对信息的安全有了更多的认识,信息安全需求也不断增长。
在这一背景下,20世纪70年代末,数据加密标准(Data Encryption Standard, DES)算法由美国政府确定,其具体的加密细节也被公开,从而使得基于DES 加密的安全性只依赖于对密钥的保密。
在1976年,Diffie和Hellman提出了“密码学新方向”,开辟了公钥密码技术理论,使得密钥协商、数字签名等密码问题有了新的解决方法,也为密码学的广泛应用奠定了基础。
手工阶段和机械阶段使用的密码技术可以称为古典密码技术,主要采用简单的替换或置换技术。
DES的公布与公钥密码技术问世标志密码学进入高速发展的现代密码学时代。
密码技术不但可以用于对网上所传送的数据进行加解密,而且也可以用于认证,进行数字签名}},以及关于完整性、安全套接层(SecuritySocket Layer, SSL)安全电子交易(Secure Elegytronic Transaction, SET)等的安全通信标准和网络协议安全性标准中。
对于密码而言,其最基本的功能在于通过变换将明文消息变换成只有合法者才可以恢复的密文。
信息的加密保护涉及到传输信息和存储信息两个方而,其中存储而临的安全问题更大。
所谓数字证书可以看作是“电子身份证”,可用于保证网络的正常运行。
在网络通讯中,数字证书通过一系列数据来标志通讯各方的身份信息。
现在交互式询问回答的应用很广泛,在询问和回答的过程中利用密码技术对消息进行加密,特别是基于密码的带中央处理器( Central Processing Unit,CPU)的智能卡,其安全性特别好。
在电子商务系统中,所有参与活动的实体都要依赖于数字证书来证明自己的身份。
作为生成报文“数字指纹”的一个重要方法,“报文摘要”算法有着非常重要的作用。
近年来,数字指纹受到了极大关注,己经成为现代密码学的一个重要研究方向。
为了防比消息在传输过程中被有意或无意的篡改,可以通过密码技术对消息进行处理,以得到消息的验证码并附在消息之后一起发送,实现对发送信息的验证,这在票据防伪中有重要作用。
信息时代的到来加速了电子数据对我们过去所依赖的个人特征的替代,数字签名有两方而的作用,一是基于自己的签名具有不可否认性,从而可以确定文件己经签署的事实;二是由于签名难以伪造,从而确定了文件的真实性。
2密码学基本概念与分类2.1密码学的基本概念2.1.1 密码编码学把来自信息源的可理解的原始消息变换成不可理解的消息,同时又可恢复到原消息的方法和原理的一门科学。
2.1.2 密码分析学在不知道关于密钥的任何信息这一情况下,利用各种技术手段,试图通过密文来得到明文或密钥的全部信息或部分信息。
密码分析也称为对密码体制的攻击。
按照攻击者是否对通信作干扰,密码分析可分为被动攻击和主动攻击2类。
所谓被动攻击是指,攻击者仅是利用截获的密文及公开的算法,分析明文或密钥,不对通信作干扰。
所谓主动攻击是指,攻击者通过对通信线路进行干扰,如引入新的密文,重复传播旧的密文,替换合法密文等,再对截获的密文进行分析。
按照攻击者掌握的知识条件,密码分析可分为唯密文攻击、己知明文攻击、选择明文攻击和选择密文攻击4类。
所谓唯密文攻击是指,攻击者只知道一个要攻击的密文(通常包含消息的上下文)。
所谓己知明文攻击是指,攻击者知道一些明文/密文对,若一个密码系统能够抵抗这种攻击,合法的接收者就不需要销毁己解密的明文。
所谓选择明文攻击是指,攻击者可以选择一些明文及对应的密文(公钥密码体制必需能够抵抗这种攻击)。
所谓选择密文攻击指,攻击者可以选择一些密文并得到相应的明文。
2.2密码体制的分类通常,密码体制分为对称密码体制与非对称密码体制,而非对称密码体制往往又称为公钥密码体制。
图1给出了密码体制的基本模型。
发送者加密算法解密算法接收者密钥源密文图1密码体制的基木模型在图1中,消息发送者从密钥源得到密钥,通过加密算法对消息进行加密得到密文,接收者收到密文后,利用从密钥源得到的密钥,通过解密算法对密文进行解密,得到原始消息。
2.2.1对称密码体制就对称密码体制而言,除了算法公开外,还有一个特点就是加密密钥和解密密钥可以比较容易的互相推导出来。
对称密码体制按其对明文的处理方式,可分为序列密码算法和分组密码算法。
自20世纪70年代中期,美国首次公布了分组密码加密标准DES之后,分组密码开始迅速发展,使得世界各国的密码技术差距缩小,也使得密码技术进入了突飞猛进的阶段,典型的分组密码体制有DES,3DES 、国际数据加密算法(International Data En-cryption Algorithm, IDEA)、高级数据加密标准(Advanced Encryption Standard, AES)等。
对称加密的流程如图2所示。
消息源加密算法密钥源解密算法目的地破译者安全通道M MCKK图2对称加密的流程2.2.2公钥密码体制公钥密码体制问世不久,Merkle也于1978独立提出这一体制。
该密码体制的诞生可以说是密码学的一次“革命”,公钥密码体制解决了对称密码算法在应用中的致命缺陷,即密钥分配问题。
就公钥密码体制而言,除了加密算法公开外,其具有不同的加密密钥和解密密钥,加密密钥是公开的(称作公钥),解密密钥是保密的(称作私钥),且不能够从公钥推出私钥,或者说从公钥推出私钥在计算上是“困难”的。
这里“困难”是计算复杂性理论中的概念。
公钥密码技术的出现使得密码学得到了空前发展。
在公钥密码出现之前,密码主要应用于政府、外交、军事等部门,如今密码在民用领域也得到了广泛应用。
1977年,为了解决基于公开信道来传输DES 算法的对称密钥这一公开难题,Rivest}Shamir 和Adleman 提出了著名的公钥密码算法RSA ,该算法的命名就是采用了三位发明者姓氏的首字母。
RSA 公钥密码技术的提出,不但很好的解决了基于公开信道的密钥分发问题,而且还可以实现对电文信息的数字签名,防比针对电文的抵赖以及否认。
特别地,利用数字签名技术,我们也可以很容易发现潜在的攻击者对电文进行的非法篡改,进而实现了信息的完整性保护。
公钥密码体制中的典型算法除了RSA 外,还有椭圆曲线密码(Ellip-tic Curve Cryptography ,ECC)、Rabin } ElUamal 和数论研究单位算法(Number Theory Research Unit ,NTRU)等。
公开密钥特别适用于Web 商务这样的业务需求。
公开密钥有一个非常吸引人的优点:即使一个用户不认识另一个实体,但是只要其服务器确信这个实体的认证中心(Certification Authority, CA)是可信的,就可以实现安全通信。
例如,在利用信用卡消费时,根据客户CA 的发行机构的可信度,服务方对自己的资源进行授权。
在任何一个国家,由其他国家的公司充当CA 都是非常危险的,目前国内外尚没有可以完全信任的CA 机构。
然而,在效率方而,公钥密码体制远远不如对称密码体制,其处理速度比较慢。
因此在实际应用中,往往是把公钥技术和私钥技术结合起来使用,即利用公开密钥实现通信双方间的对称密钥传递,而用对称密钥来加解密实际传输的数据。
A 加密算法解密算法目的地破译者PK B SK BM M C M SK B图3公钥加密的流程2.3密码分析学所谓密码分析学主要研究在己知密码算法的条件下,不需要密钥,如何由加密得到的密文推导出明文或密钥的相关信息。
随着密码算法设计技术的发展,密码分析技术也得到了深入的研究。
迄今为比,己经有很多攻击密码技术的方法:强力攻击、插值攻击、能量分析、线性密码分析、差分密码分析等,同时还有一些对哈希(Hash)函数的分析技术、对伪随机序列的分析技术等。
2.3.1强力攻击强力攻击包括查表攻击,时间-存储权衡攻击,字典攻击以及穷举搜索攻击。
对于任何一种分组密码来说,强力攻击都是适用的。
特别地,这种攻击方法的复杂度仅仅取决于密钥和分组的长度。
更严格地讲,这种攻击技术的时间复杂度只取决于分组密码算法的效率,如存储大小,密钥扩展速度,加密和解密的速度等。
2.3.2线性密码分析作为一种己知明文攻击方法,线性密码分析方法的本质思想在于,通过将一个给定的密码算法有效且线性近似地表示出来以实现破译。
现有密码分析技术也得到了一定的推广。
目前,利用己知明文,16轮DES系统己可以通过线性密码分析进行破译,在某些情况下甚至可以实现唯密文攻击。
针对数据加密标准DES系统的主要攻击包括强力攻击手段,差分密码分析等。