当前位置:文档之家› 异步电动机的几种调速方法

异步电动机的几种调速方法

异步电动机的几种调速方法
异步电动机的几种调速方法

异步电机工作原理易懂介绍

当向三相定子绕组中通入对称的三相交流电时,就产生了一个以转速1n 沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。转子导体开始时是静止的,由于旋转磁场以1n 转速旋转,故转子导体将切割定子旋转磁场而产生感应电动势(感应电动势的方向用右手定则判定)。由于转子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向一致的感生电流。转子的载流导体在定子磁场中受到电磁力的作用(力的方向用左手定则判定)。电磁力对转子轴产生电磁转矩,驱动转子沿着旋转磁场方向旋转,转速为n 。 异步电机所谓异步,是指定子旋转磁场转速1n 和转子转速n 的不同。定子旋转磁场 的转速和电网频率严格对应,我们把定子旋转磁场转速与转子转速之差除以定子旋转磁 场转速定义为转差率s。 对于异步电机来说,电机学里没有像直流电机那样利用理想空载转速和转速降来对 转速进行描述,而是借助于定子旋转磁场转速1n 和转差率s 来完成对转速的刻化 。 电动机的转子转速不会与旋转磁场同步,更不会超过旋转磁场的速度。因为三相异步电动机转子线圈中的感应电流是由于转子导体与磁场有相对运动而产生的。如果三相异步电动机转子的转速与旋转磁场的转速成大小相等,那么,磁场与转子之间就没有相对运动,导体不能切割磁力线,因之转子线圈中也就不会产生感应电势和电流,三相异步电动机转子导体在磁场中也就不会受到电磁力的作用而使转子转动。因而三相异步电动机的转子旋转速度不可能与旋转磁场相同,总是小于旋转磁场的同步转速。但在特殊运行方式下(如发电制动),三相异步电动机转子转速可以大于同步转速。 由于三相异步电动机的转子与定子旋转磁场以相同的方向、不同的转速成旋转,所以叫三相异步电动机而不叫三相同步电动机。 三相异步电动机与三相同步电动机之间区别是三相异步电动机存在转差率,而三相同步电动机没有。 同步电动机的转子是固定磁场,转速与旋转磁场同步; 三相异步电动机的转子是鼠笼形短路环(或线圈),靠切割旋转磁场的磁力线产生旋转力矩 三相异步电动机定子磁场旋转,导致转子切割磁场产生电流,为了减小电流(想像这样),转子跟着旋转,但是速度总是比定子磁场慢些,这样才保持转动

三相异步电动机的交流调速方式

1.三相异步电动机的交流调速方式: 变极调速,串电阻调速,降压调速,串级调速,变频调速。 2.常用的三种负载类型及典型(如恒转矩负载:车床主轴电机) 恒转矩负载的特点有:转矩与转速(),功率与转速() 3.变频器的分类: 按结构分为:间接变频器,直接变频器。 按滤波方式分为:电压型变频器,电流型变频器。 按电压的调制分为:交--直--交变频器(脉幅调制PAM)(脉宽调制PWM) 按控制方式分为:U/F控制,矢量控制,直接转矩控制。 按用途分为:通用变频器,专用变频器。 4. 什么是U/F控制?为什么要采用U/F控制方式?(变频器的同时为何变压) 5.矢量控制方式? 6.基频以下采用()调速,基频以上采用()调速。 例题:电动机从基本频率向下的变频调速属于()。 A:恒转矩B:恒功率C:恒磁通D:恒转差率 7.脉宽调制和正弦波脉宽调制的定义及英文缩写:SPWM控制的原理是什么?为什么采用SPWM控制? 8.SPWM的控制方式分为单极性和双极性两种,了解这两种方式的区别? 9.什么是转矩提升?为什么要采用转矩提升? 例题:在U/F控制方式下,当输出频率比较低时,会出现转矩不足的情况,要求变频器具有()功能。变频器利用增加输出电压来提高电动机转矩的方法,称为() 10.常用的电力电子器件有哪些?各自的图形符号。属于电流控制型号的有哪些?属于电压控制型的是那些?晶闸管导通和关断的条件?在中小型变频器电路中,()应用比较广泛。 11.交--直--交变频器主要有那两部分组成?其中主电路由什么组成?说明各部分的作用以及逆变电路中电力电子器件旁并联的二极管的作用? 例题:变频器主电路由整流及滤波电路()和制动单元组成。

转速开环恒压频比控制的交流异步电动机调速系统典型例子

课题:转速开环恒压频比控制的交速 姓名:谢海波 学号:P091812925 专业班级:电气工程及其自动化(3)班 西北民族大学电气工程学院 转速开环恒压频比控制的交流异步电动机调速系统

摘要:转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都有这项功能,恒压频比的转速开环工作方式能满足大多数场合交流电动机调速控制的要求,并且使用方便,是通用变频器的基本模式。采用恒压频比控制,在基频以下的调速过程中的转差率基本不变,所以电动机的机械特性较硬,电动机有较好的调速性能。异步电动机的变压变频调速系统一般简称为变频调速系统。由于在调速时转差功率不随转速而变化,调速范围宽,无论高速还是低速时效率都较高,在采取一定的技术措施后能实现高动态性能,可与直流调速系统媲美。因此现在它的应用面很广,目前交流异步电动机的调速系统已经广泛应用于数控机床、风机、泵类、传送带、给料系统、空调器等设备的电力源和动力源,并起到了节省电能,提高设备自动化,提高产品质量的良好效果.下文在详细分析交流异步电动机变频调速的原理基础上,应用MATLAB/SIMULINK仿真软件,实现了转速开环恒压频比控制的交流异步电动机调速系统的仿真,并且详细分析了仿真结果。 关键词:异步电动机;变频调速;MATLAB 仿真 1.仿真系统说明 本文对交流系统进行建模仿真,可以更加熟悉交流调速系统的结构,掌握各种调速系统的优缺点,选择合理的方案,解决实际中的问题。在进行电动机调速时,常须考虑的一个重 要因素,就是希望保持电动机中每极磁通量为额定值不变。如果磁通太弱,没有充分利用 电机的铁芯,是一种浪费;如果过分增大磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机。对于直流电机,励磁系统是独立的,只要对电枢反应有恰 当的补偿,保持不变是很容易做到的。在交流异步电机中,磁通由定子和转子磁动势合成产生,要保持磁通恒定就要费一些周折。 2.变频调速控制方式和原理 转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都带有这项功能,在异步电动机调速时,总希望保持主磁通为额定值。由异步电机定子每相电动势有效值可知,如果略去定子阻抗下降,有 (1) 由(1)式知,若定子端电压不变,随着升高,将减小。又由转矩公式 知,在相同的情况下,减小会导致电动机输出转矩下降,严重时会使电动机堵转。因此, 在变频调速过程中应该同时改变定子电压和频率,以保持主磁通不变。而如何按比例改变电压和频率,要分基频以下和基频以上两种情况。 2.1基频以下调速 恒定压频比调速要求;当相对较高时,可忽略定子电阻那么最大实用转

三相异步电动机几种调速方式详细版

文件编号:GD/FS-4627 (安全管理范本系列) 三相异步电动机几种调速 方式详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

三相异步电动机几种调速方式详细 版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量

就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

单相异步电动机的工作原理

单相鼠笼式异步电动机的工作原理 单相鼠笼式异步动机由单相电源供电,它直接接到220伏单相交流电源上就能工作,但要采取一定的措施,否则启动不起来。我们日常生活用的一些家用电器,如空调器、电冰箱、洗衣机、电扇等广泛应用着单相异步电动机。 单相异步电动机的工作原理 当给三相异步电动机的定子三相绕组通入三相交流电时,会形成一个旋转磁场,在旋转磁场的作用下,转子将获得启动转矩而自行启动。当三相异步电动机通入单相交流电时就不能产生旋转磁场。 下面来分析单相异步电动机定子绕组通入单相交流电时产生的磁场情况。如下图所示为一台简单的单相异步电动机原理图,定子铁心上布置有单相定子绕组,转子为鼠笼结构。 交流电流波形

电流正半周产生的磁场 电流负半周产生的磁场 当向单相异步电动机的定子绕组入单相交流电后,由上图可见,当电流在正半周及负半周不断交变时,其产生的磁场大小及方向也在不断变化(按正弦规律变化),但磁场的轴线则沿纵轴方向固定不动,这样的磁场称为脉动磁场。 当转子静止不动时转子导体的合成感应电动势和电流为0,合成转矩为0,因此转子没有启动转矩。故单相异步电动机如果不采取一定的措施,单相异步电动机不能自行启动,如果用一个外力使转子转动一下,则转子能沿该方向继续转动下去。 单相异步电动机根据其启动方法或运行方法的不同,可分为单相电容运行电动机;单相电容启动电动机;单相罩极式电动机等。下面分别介绍。单相异步电动机容量一般较小,运行性能较差。 t 45 90 135 180 225 270 360 315

图1 单相电容运行异步电动机原理图 (a)接线图 (b)电流相量图 图1是单相电容运行异步电动机工作原理图。单相电容式异步电动机的定子铁芯上嵌放两套绕组:主绕组U1—U2(主绕组又称工作绕组)和副绕组Z1—Z2(副绕组又称启动绕组)。两套绕组在空间的位置上互差90度电角度。在启动绕Z1—Z2中串入一个电容器C后再与工作绕组并联,然后接到单相电源上。设流过启动绕组Z1-Z2的电流为iz,流过工作绕组U1—U2的电流以为iu,当接上电源后,由于电容的充放电作用,iz落后于iu90度,流过两套绕组的电流iz与iu在相位上相差90度,如图2所示。 设电动机两个绕组接上交流电源后,电流为正值时,电流从绕组的头端进去尾端出来;电流为负值时,电流从绕组的尾端进去头端出来。 从图2可看到:在t=0瞬间,iz=0,绕组Z1—Z2中无电流流过;而这瞬时iu为负的最大值,绕组U1—U2中电流由U2进Ul出。用右手定则可判断,此时电动机中会产生如图2所示磁场,其合成磁场方向向下。 从图2可看到:在ωt=π/2瞬间,iu=0,绕组U1—U2中无电流流过;这瞬间iz为正的最大值,绕组Z1-Z2中电流从Z1进Z2出。此时电动机磁场分布如图2所示,其合成磁场方向较t=0时刻顺时针方向旋转了90角度。

三相异步电动机的7种转速方式

三相异步电动机的7种转速方式 三相异步电动机转速公式为: n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: 具有较硬的机械特性,稳定性良好;

无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分

三相异步电动机的几种调速方式

三相异步电动机的几种调速方式 本文介绍了三相异步电动机的七种调速方式及其特点,指明其适用的场合、情况。 三相异步电动机转速公式为:n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可达到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:①高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。 ②有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中; ③电磁离合器的调速方法,能量损耗在离合器线圈中; ④液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: 1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高; 3、接线简单、控制方便、价格低; 4、有级调速,级差较大,不能获得平滑调速; 5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 1、效率高,调速过程中没有附加损耗; 2、应用范围广,可用于笼型异步电动机; 3、调速范围大,特性硬,精度高; 4、技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。

三相异步电动机的七种调速方法及特点

三相异步电动机分类特点以及调速方法 三相异步电动机分类: 1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。不改变同步转速的调速方法在生产机械中广泛使用。 2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 我们清楚三相异步电动机转速公式为: n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。 一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 特点如下:1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。本方法适用于要求精度高、调速性能较好场合。其特点:1、效率高,调速过程中没有附加损耗;2、应用范围广,可用于笼型异步电动机;3、 调速范围大,特性硬,精度高;4、 技术复杂,造价高,维护检修困难。 三、串级调速方法 :串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为

异步电动机的结构和工作原理

第五章异步电动机 前言:①定义:异步电机(也叫感应电机)是一种交流旋转电机,它的转速除与电网频率有关外,还随负载而变。 ②应用:主要作电动机使用,如:机床;水泵;家用电器; ③它的功率因数永远是滞后的。 5.1异步电动机的结构和工作原理 一、异步电动机的主要用途和分类1、异步电机主要用作电动机,去拖动各种生产机械。 异步电动机的优点:结构简单、容易制造、价格低廉、运行可靠、坚固耐用、运行效率较高和具有适用的工作特征。 异步电动机的缺点:功率因数较差。异步电动机运行时,必须从电网里吸收落后性的无功功率,它的功率因数总是小于1。 2、异步电动机的种类很多,从不同角度看,有不同的分类法: (1)按定子相数分有 ①单相异步电动机; ②两相异步电动机; ③三相异步电动机。 (2)按转子结构分有 ①绕线式异步电动机; ②鼠笼式异步电动机。 又包括单鼠笼异步电动机、双鼠笼异步电动机和深槽式异步电动机。 此外,根据电机定子绕组上所加电压的大小,又有高压异步电动机、低压异步电动机之分。从其它角度看,还有高起动转矩异步电机、高转差率异步电机、高转速异步电机等等。 二、异步电动机的结构

1. 定子:定子铁心:0.5mm厚硅钢片叠压而成,磁路的一部分 定子绕组:电磁线制而成,电路一部分 机座:铸铁或钢板焊接而成 (1)定子铁心是电动机磁路的一部分,装在机座里。为了降低定子铁心里的铁损耗,定子铁心用用0.5mm厚的硅钢片叠压而成的,在硅钢片的两面还应途上绝缘漆。下图所示为定子槽,其中(a)是开口槽,用于大、中型容量的高压异步电动机中;(b)是半开口槽,用于中型500V以下的异步电动机中;(c)是半闭口槽,用于低压小型异步电动机中。 (2)定子绕组:高压大、中型容量的异步电动机定子绕组常采用Y 接,只有三根引出线,如图(a)所示。对中、小容量低压异步电动机,通常把定子三相绕组的六根出线头都引出来,根据需要可接成Y形或△形,如图(b)所示。定子绕组用绝缘的铜(或铝)导线绕成,嵌在定子槽内。

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

三相异步电动机的七大调速方法

三相异步电动机的七大调速方法 下面成都贝尔菲特科技发展有限公司小编为您介绍三相异步电动机的七大调速方式: 首先来看三相异步电动机转速公式:n=60f/p(1-s) 从公式中可以看出,改变供电频率f、电动机极对数p及转差率s均可太到改变转速目。 从调速本质来看,不同调速方式无非是改变交流电动机同步转速或不改变同步转两种。 生产机械中广泛使用不改变同步转速调速方法有绕线式电动机转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速有改变定子极对数多速电动机,改变定子电压、频率变频调速有能无换向电动机调速等。 从调速时能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,无转差损耗,如多速电动机、变频调速以及能将转差损耗回收调速方法(如串级调速等)。有转差损耗调速方法属低效调速,如转子串电阻调速方法,能量就损耗转子回路中;电磁离合器调速方法,能量损耗离合器线圈中;液力偶合器调速,能量损耗液力偶合器油中。一般来说转差损耗随调速范围扩大而增加,调速范围不大,能量损耗是很小。 一、变极对数调速方法 这种调速方法是用改变定子绕组接红方式来改变笼型电动机定子极对数达到调速目,特点如下: 具有较硬机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获平滑调速; 可以与调压调速、电磁转差离合器配合使用,获较高效率平滑调速特性。

本方法适用于不需要无级调速生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源频率,改变其同步转速调速方法。变频调速系统主要设备是提供变频电源变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节附加电势来改变电动机转差,达到调速目。大部分转差功率被串入附加电势所吸收,再利用产生附加装置,把吸收转差功率返回电网或转换能量加以利用。转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 可将调速过程中转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,投资省,适用于调速范围额定转速70%-90%生产机械上; 调速装置故障时可以切换至全速运行,避免停产; 晶闸管串级调速功率因数偏低,谐波影响较大。

交流异步电动机变频调速原理

在异步电动机调速系统中,调速性能最好、应用最广的系统是变压变频调速系统。在这种系统中,要调节电动机的转速,须同时调节定子供电电源的电压和频率,可以使机械特性平滑地上下移动,并获得很高的运行效率。但是,这种系统需要一台专用的变压变频电源,增加了系统的成本。近来,由于交流调速日益普及,对变压变频器的需求量不断增长,加上市场竞争的因素,其售价逐渐走低,使得变压变频调速系统的应用与日俱增。下面首先叙述异步电动机的变压变频调速原理。 交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。(二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护 霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。

三相异步电动机的几种调速方式

三相异步电动机的几种调速方式 三相异步电动机转速公式为: n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可达到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: ?具有较硬的机械特性,稳定性良好; ?无转差损耗,效率高; ?接线简单、控制方便、价格低; ?有级调速,级差较大,不能获得平滑调速; ?可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: ?效率高,调速过程中没有附加损耗; ?应用范围广,可用于笼型异步电动机; ?调速范围大,特性硬,精度高; ?技术复杂,造价高,维护检修困难。

直流电动机和异步电动机的调速原理及特性分析

[直流电动机和异步电动机 的调速原理及特性分析] 姓名: 学号:26 院系:11级机械系三班 通讯: 导师:

一.直流电动机的调速原理及特性分析 直流电动机具有良好的起动制动性能,宜于在较大范围内平滑调速"长期以来,在电动机调速领域中,直流调速方法一直占主要地位"与交流电动机相比,直流电动机有良好的调速性能,它的调速范围较广;调速连续平滑;经济性好,设备投资较少,调速损耗较小,经济指标高;调速方法简便,工作可靠. 流伺服电动机是满足伺服系统要求的直流电动机,分为有刷DC伺服和无刷DC伺服。在传统有刷DC伺服中,整流子和电刷一起起着回转开关的作用,随着功率半导体器件技术的发展,霍尔元件和大功率晶体管代替了整流子和碳刷的作用,就产生了无刷DC伺服。与普通电动机相比,DC伺服具有工作精度高,调速性能好,带负载能力强,响应速度快,稳定可靠等特点。虽然其工作原理与普通直流电动机基本相同,但为了减小体积和提高散热,DC伺服电动机通常采用永久磁铁励磁。 直流伺服电动机主要有如下基本特点: U保持不变时,电动机的转速n随电磁转矩M变1、机械特性:在输入的电枢电压α 化而线形变化的规律,称直流电动机的机械特性。机械特性的关系可用下式表示; U——电枢电压 式中:α R——电枢电阻 α φ——磁通 M—电动机输出的电磁转矩 机械特性曲线如图1-1所示。 M称为堵转转矩。斜率K表示电磁转矩变化引起图中,0n为理想空载转速,d 转速变化的程度。K越大,电磁转矩变化引起转速变化越大,电动机的机械特性越软;K越小,电磁转矩变化引起转速变化越小,电动机的机械特性越硬。

图1-1直流伺服电机机械特性曲线 在直流伺服系统中,希望电动机的机械特性硬一些。当负载发生变化时引起的转速变化小,有利于提高直流电机的速度稳定性和运动精度。且由式(1.1)可知,K 与电枢电阻αR 成正比,电枢回路中串入的电阻或功率放大器的输出电阻增大,会使直流电机特性变软,功耗增大。 2、调节特性:直流电机在一定的电磁转矩M (或负载转矩)下,电机的稳定转速n 随电枢的控制电压 α U 变化而线性变化的规律为直流电机的调节特性。调节特性 的关系可用下式表示: )()(102ααα αααφ φφφU U K C MR U C M C C R C U n m e m e e -=-=-= (1.2) 式中:αU ——电枢电压 αR ——电枢电阻 e C ——电势系数, α 60NP C e = ( 电枢绕组支路数磁极对数 电枢绕组系数??= 60e C ) φ——磁通 m C ——力矩系数, πα 2NP C e = M —电动机输出的电磁转矩 调节特性曲线如图1-2所示。 图中,0αU 为启动电压,为电动机处于待转动而没转动的临界状态的控制电压。 0αU 与电磁转矩(负载转矩)成正比。M 越大,0αU 越大。电动机启动时,在0~0 αU 范围内,电动机不转,该区域称为电动机的死区。斜率K 表示转速n 随电枢的控制电压 α U 变化而变化的快慢程度。其值与负载无关,仅决定于电动机本身的结构

第一节 交流异步电动机变频调速原理

第一节 交流异步电动机变频调速原理 根据电机学原理,交流异步电动机的转速可表示为: )1(**60s p f n -= (2-1-1) 式中: n 一 电动机转速/分钟,单位:r/min ; p 一 电动机磁极对数; f 一 电源频率,单位:Hz ; s 一 转差率,10<

I 一 定子绕组的相电流; r 一 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和。 交流异步电动机的定子绕组的感应电动势是定于绕组切割旋转磁场磁力线的结果, 其 有效值计算如下: E = K * f * Φ (2-1-3) 式中:K 一 与电动机结构有关的常数; f 一 电源频率; Φ 一 磁通量 。 由式(2-1-2)知,加在电机绕组端的电源电压U,一部分产生感应电动势E,另一部 分消耗在电阻 r ( 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和 )上 。其中定 子绕组的相电流 I 由两部分构成: 21I I I += (2-1-4) 电机的定子电流有一小部分1I 用于建立磁场的主磁通,其余大部分2I 用于产生拖动负 载的电磁力。 由式 (2-1-1)知,调整电源频率f 时,可以调节速度n 。 当电源频率f 下降时,由 式 (2-1-3)知,感应电动势随之比例减小;在相电压U 保持不变的情况下,由式(2-1-2) 知,定子绕组的相电流I 相应增大。在很多情况下,电机的负载是基本恒定的,因此用于产 生电磁力的电流2I 是基本不变的,于是1I 将增大;1I 的增大将直接导致主磁通的增大。由 式 (2-1-3),主磁通的增大,将引起感应电动势E比例增大;由式(2-1-2),感应电动势 E的增大将使定子电流I 减小。不难理解,通过这样的负反馈,电机将最终稳定在一个新的 工作点。 这样的控制方法看起来似乎没有问题。但实际情况是主磁通容量上限与电机的铁芯有 关。电机的铁芯受制于重量、体积、成本等因素的考虑,不可能做的很大。对于电机设计来 说,设计目标之一就是:当电机处于额定工作状态下时,主磁通接近容量上限。上述的变频 调速方法工作在额定频率以下时,将会导致铁心磁饱和,引起电流波形畸变,有效力矩下降; 严重时,将导致电机发热过快,振动和噪音加大;工作在额定频率以上时,铁心处于弱磁状 态,电磁力矩不足,电机的机械特性变软(转差率s 变大),带载能力下降。 结论:通过只调节电源频率来调节速度的方法不可取。

电动机无极调速的方法及原理

电动机无极调速的方法及原理 随着电力电子学、微电子技术、计算机技术以及电机理论和自动控制理论的发展,影响三相交流电动机发展的问题逐渐得到了解决,目前三相异步交流电动机的调速性能已达到直流调速的水平。在不久的将来交流调速必将取代直流调速。在实际生产过程中,根据加工工艺的要求,生产机械传动机构的运行速度需要进行调节。这种负载不变,人为调节转速的过程称为调速。通常有机械调速和电气调速两种方法,通过改变传动机构转速比的调速方法称为机械调速;通过改变电动机参数而改变系统运行转速的调速方法称为电气调速。不同的生产机械,对调速的目的和具体要求各不相同,对于鼓风机和泵类负载,通过调节转速来调节流量,这与通过调节阀门调节的方法相比,节能效果更加显著。 调速控制是交流电动机的重要控制内容,实际应用中的交流调速方法有多种,常见的有变极调速、转子串电阻调速、串级调速、电磁调速、异步电动机调速、变频调速等。 目前广泛使用的调速方法仍然是传统的改变极对数和改变转子电阻的有级调速控制系统,近年来,随着电力电子、计算机控制以及矢量控制等技术的进步,变频调速技术发展迅速,已应用于很多生产领域,这是将来调速发展的方向。 1、变级调速的实现 变极调速和转子串电阻调速都属于有极调速的范畴,本章主要介绍变极调速控制电路. 当电网频率固定以后,三相异步电动机的同步转速与它的磁极对数成反比.因此,只要改变电动机定子绕组的磁极对数,就能改变它的同步转速,从而改变转子转速.通过绕组的不同组合连接方式,可得到两极、三极速度,最多可获得四极速度,但常见的是两极速度变级调速,即双速电动机的变速. 变极调速有两种方法:第一种,改变定子绕组的连接方法;第二种,在定子上设置具有不同极对数的两套互相独立的绕组. 三相异步电动机的同步转速n 与电动机的极对数p成反比,改变鼠笼式三相异步电动机 1 定子绕组的极对数,就改变了同步转速.因此称之为变极调速.在改变磁极对数时,转子磁极对数也必须同时改变,因此变极调速常用于鼠笼转子三相异步电动机,这是因为鼠笼式转子三相异步电动机本身没有固定的级数,它的极对数能自动地与定子极对数相对应. 1.1变极调速的原理

三相异步电动机几种调速方式(正式版)

文件编号:TP-AR-L6457 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 三相异步电动机几种调速方式(正式版)

三相异步电动机几种调速方式(正式 版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 在生产机械中广泛使用不改变同步转速的调速方 法有绕线式电动机的转子串电阻调速、斩波调速、串 级调速以及应用电磁转差离合器、液力偶合器、油膜 离合器等调速。改变同步转速的有改变定子极对数的 多速电动机,改变定子电压、频率的变频调速有能无 换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低 效调速方法两种:高效调速指时转差率不变,因此无 转差损耗,如多速电动机、变频调速以及能将转差损 耗回收的调速方法(如串级调速等)。有转差损耗的

调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金

三相异步电动机的七种调速方式通用版

安全管理编号:YTO-FS-PD406 三相异步电动机的七种调速方式通用 版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

三相异步电动机的七种调速方式通 用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 机的同步转速或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、 斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

相关主题
文本预览
相关文档 最新文档