当前位置:文档之家› 一种边坡挡土墙位移测量误差分析方法

一种边坡挡土墙位移测量误差分析方法

一种边坡挡土墙位移测量误差分析方法
一种边坡挡土墙位移测量误差分析方法

挡土墙变形监测方法

挡土墙变形监测方法 在挡土监测目的 1变形监测的首要目的是要掌握变形体的实际性能、状况,为判别其安全提供必要的技术支持。 2通过对该挡土墙进行为期两年的坡顶水平位移和垂直位移的监测,对监测的数据进行统计分析,掌握变形体的实际性状,为判断其安全性提供必要的信息。 3 按照《建筑变形测量规程》,对挡土墙的稳定性做出定性和定量的分析,确保其挡墙的安全使用。 4 在挡墙进行监测的过程中发现异常情况及时向业主和设计单位作报告。水平位移的中误差是应小于每次变形量的1/10~1/20 在挡土墙整个施工过程中,为有效监控挡土墙沉降位移,有必要进行工程监控量测,为挡土墙的施工提供参考依据,其监控量测方法如下:1. 变形监测网,由部分基准点、工作基点和变形观测点构成。监测周期,应根据监测体的变形特征、变形速率、观测精度和工程地质条件等因素综合确定。监测期间,根据变形量的变化情况适当调整。 2. 挡土墙变形监测等级 2.1本标段最高挡土墙类型为扶壁式Ⅱ,墙高为m,此挡土墙工程为一般性的结构物,拟采用监测等级为四等。

3. 变形监测网的设置 变形监测网的网点,宜分为基准点、工作基点和变形观测点。其布设应符合下列要求: 3.1 基准点,应选在变形影响区域外稳固可靠地位置不少3个基准点,选用挡土墙附近一级控制点作为基准点。监测控制点埋设,一般地方埋设青石浇灌混凝土或现场挖坑放入不锈钢测量标志浇灌混凝土,水泥路面凿洞放入不锈钢测量标志,点位必须做到坚固、稳定、通视情况良好、宜于长期保存、便于对监测点的观测。 3.2 工作基点,点位选在比较稳定且方便使用的位置,基准点埋石制作,水平位移基准点采用φ12钢筋,在钢筋顶用钢锯锯出十字线,垂直位移基准点采用φ12钢筋,并将钢筋头打磨成圆弧形,造好标石到现场选点埋设 3.3 变形观测点,设置在每段挡土墙地面以上0.5m处,每段挡土墙设置一个观测点,观测点采用φ12钢筋,并将钢筋头打磨成圆弧形,在圆弧位置上锯十字线,此观测点作为水平位移观测点和垂直位移观测点。在第一段挡土墙浇注拆模后,用电锤在挡墙外侧钻孔10cm深,将制作好的观测点插入钻孔内,并将其固定。顶部监测点埋设在距离挡土墙顶部0.2米左右处,底部监测点埋设在距离挡土墙根部2米左右处,新增监测点采用强力胶贴薄片固定在墙上。监测点用不锈钢测量标志埋设在竣工后的挡土墙上,埋设时要用钢筋插入挡土墙里,浇

位移实验

综合实验二位移实验 (一)电容式传感器的位移实验 一、实验目的 了解电容式传感器结构及其特点。 二、基本原理 利用电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测位移(d变)和测量液位(A变)等多种电容式传感器。本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图2-9所示:它是有二个圆筒和一个圆柱组成的。设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2πx/ln(R/r)。图中C1、C2是差动连接,当图中的圆柱产生?X位移时,电容量的变化量为?C=C1-C2=ε2π2?X/ ln(R/r),式中ε2π、ln(R/r)为常数,说明?C与位移?X成正比,配上配套测量电路就能测量位移。 图2-9 圆筒式变面积差动结构电容式位移传感器三、需用器件与单元 主机箱、电容传感器、电容传感器实验模板、测微头。 四、实验步骤 1.测微头的使用和安装参阅实验九。按图2-10将电容传感器装于电容传感 接主机箱电压表的Vi器实验模板上,并按图示意接线(实验模板的输出V O1 n)。 2.将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时针转3圈)。 3.将主机箱上的电压表量程(显示选择)开关打到2v挡,合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0v,再转动测微头(同一个方向)5圈,记录此时的测微头读数和电压表显示值为实验起点值。以后,反方向每转动测微头1圈,即△X=0.5mm位移,读取电压表读数(这样转10圈读取相应的电压表读数),将数据填入表6,出X—V实验曲线(这样单行程位移方向做实验可以消除测微头的回差)。 迟滞误差4.根据表6据计算电容传感器的系统灵敏度S、非线性误差δ L 、

水准测量误差分析(精)

水准测量误差分析 3.5.1水准测量的误差分析 水准测量误差包括仪器误差,观测误差和外界条件的影响三个方面。 (一) 仪器误差 ① 仪器校正后的残余误差 例如水准管轴与视准轴不平行,虽经校正仍然残存少量误差等。这种误差的影响与距离成正比,只要观测时注意使前、后视距离相等,便可消除或减弱此项误差的影响。 ② 水准尺误差 由于水准尺刻划不正确,尺长变化、弯曲等影响,会影响水准测量的精度,因此,水准尺须经过检验才能使用。至于尺的零点差,可在一水准测段中使测站为偶数的方法予以消除。 (二) 观测误差 ①水准管气泡居中误差 设水准管分划道为τ″,居中误差一般为±0.15τ″,采用符合式水准器时,气泡居中精度可提高一倍,故居中误差为 m =ρτ' '?'''±215.0·D 3-35 式中 D —水准仪到水准尺的距离。 ② 读数误差 在水准尺上估读数毫米数的误差,与人眼的分辨力、望远镜的放大倍率以及视线长度有关,通常按下式计算 m v =ρ' '?''D V 06 3-36 式中 V —望远镜的放大倍率; 60″—人眼的极限分辨能力。 ③ 视差影响 当存在视差时,十字丝平面与水准尺影像不重合,若眼睛观察的位置不同,便读出不同的读数,因而也会产生读数误差。 ④ 水准尺倾斜影响 水准尺倾斜将尺上读数增大,如水准尺倾斜033'?,在水准尺上1m 处读数时,将会产生2mm 的误差;若读数大于1m ,误差将超过2mm 。 (三)外界条件的影响 ① 仪器下沉 由于仪器下沉,使视线降低,从而引起高差误差。若采用“后、前、前、后”观测程序,可减弱其影响。 ② 尺垫下沉 如果在转点发生尺垫下沉,使下一站后视读数增大,这将引起高差误差。采用往返观测的方法,取成果的中数,可以减弱其影响。 ③ 地球曲率及大气折光影响 如式3-25所示 地球曲率与大气折光影响之和为 R D f 2 43.0?= 3-37

挡土墙和护坡的区别

挡土墙和护坡的区别 挡土墙和护坡区别在于:挡土墙能够承受其墙背后面那块契形的土压力;而护坡本身基本上不承担土压,只是能够防止雨水冲刷及水土流失而已。 挡土墙: 1.为稳定泥土自然坡面而设置的墙。 2.一种为抵抗除风压以外的侧向压力而建造的墙;尤指一道防止滑坡的墙。 护坡: 河岸或路旁用石块、水泥等筑成的斜坡,用来防止河流或雨水冲刷。 放坡 为了防止土壁塌方,确保施工安全,当挖方超过一定深度或填方超过一定高度时,其边沿应放出的足够的边坡。这就是放坡。 土方边坡用边坡坡度和坡度系数表示。 工程中常用1:K表示放坡坡度。K称坡度系数。

护坡 指的是为防止边坡受冲刷,在坡面上所做的各种铺砌和栽植的统称。 桥址所在河段,河岸的凹岸逐年迎受水流冲刷,会使河岸不断地坍塌。为保护桥梁和路堤安全,须在凹岸修筑防护建筑物。此外,因设桥引起河水流向变化,冲刷河岸而危及农田和村镇时,也须在河岸修建防护建筑物。这种建筑物通常又称为护岸。护岸的形式有直接防护和间接防护。直接防护是对河岸边坡直接进行加固,以抵抗水流的冲刷和淘刷。常用抛石、干砌片石、浆砌片石、石笼及梢捆等修筑。间接防护适用于河床较宽或防护长度较大的河段,可修筑丁坝、顺坝和格坝等,将水流挑离河岸。 依护坡的功能可将其概分为两种:(A)仅为抗风化及抗冲刷的坡面保护工,该保护工并不承受侧向土压力,如喷凝土护坡,格框植生护坡,植生护坡等均属此类,仅适用于平缓且稳定无滑动之虞的边坡上。(B)提供抗滑力之挡土护坡,大致可区分为:(a)刚性自重式挡土墙(如:砌石挡土墙,重力式挡土墙,倚壁式挡土墙,悬壁式挡土墙,扶壁式挡土墙),(b)柔性自重式挡土墙(如:蛇笼挡土墙,框条式挡土墙,加劲式挡土墙),(c)锚拉式挡土墙(如:锚拉式格梁挡土墙,锚拉式排桩挡土墙)。

实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验报告:实验07 (光纤传感器的位移测量及数值误差分析实验) 实验一:光纤传感器位移特性实验 一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。学会 对实验测量数据进行误差分析。 二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园 分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。 三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。 四、实验数据: 实验数据记录如下所示: 表1光纤位移传感器输出电压与位移数据 实验二:随机误差的概率分布与数据处理 1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式) clc; clear; l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据 v0=l-mean(l)%残差列 M1=mean(l)%算术平均值 M2=std(l)%标准差 计算结果

数据分布 2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性 系统误差 %残余误差校核法校核线性系统误差 N=length(l)%原数组长度 if(mod(N,2))%求数组半长 K=(N+1)/2 else K=(N)/2 end A1=0; delta=0;%delta=A1-A2 for i=1:K;%计算前半部分残差和 A1=A1+v0(i); end A2=0; for j=K+1:N;%计算后半部分残差和 A2=A2+v0(j); end A1; A2; fprintf('Delta校核结果\n'); delta=A1-A2%校核结果 %阿贝-赫梅特准则校核周期性系统误差 u=0 for i=1:N-1; u=u+v0(i)*v0(i+1); end u=abs(u) if((u-sqrt(N-1)*M30)>0)

挡墙沉降观测方案

挡墙沉降观测方案

目录 1、工程概况------------------------------------------------------------------------------------------------------- 2 2、观测方法和精度 ---------------------------------------------------------------------------------------------- 4 3、水准点的设立 ------------------------------------------------------------------------------------------------- 4 4、沉降观测点 ---------------------------------------------------------------------------------------------------- 5 7、其他要求------------------------------------------------------------------------------------------------------- 12 远洋挡土墙沉降观测方案 1、工程概况 工程名称:远洋·原香项目环境边坡治理工程

工程地点:重庆市巴南区大山村轻轨站旁边 建设单位:重庆远腾房地产开发有限公司 监理单位:重庆康盛建设监理咨询有限公司 施工单位:重庆巴洲建设(集团)有限公司远洋项目部 该工程于2014年12月开工,根据所在区域不同分为四标段和五标段两部分。场地内部已建有条石重力式挡墙,该部分挡土墙需要加固处理。2016年6月我单位中标为四标段,第四标段已建有T17-T18-T19-T20段、T1-T2段、T3-T4段、T5-T10段、T11-T12段、 D19-D21段、D22-D24段重力式挡墙及新建的毛石混凝土挡墙,排洪沟,小区道路等。重力式挡墙形式主要有俯斜式挡墙及衡重式挡墙两种。已建挡墙分段、鉴定报告的主要结论及已建挡墙处理的设计范围详表。

挡墙说明(挡土墙施工方法及注意事项)

1 -1- S Ⅲ-01 为防止路基边坡或基底滑动,确保路基稳定,同时收缩坡脚,减少填方数量和占地面积,设计路肩墙。挡土墙设计要求如下: (1)材料及要求: 砌筑挡土墙所用石料分为片石、块石等,浇筑墙身材料有片石混凝土、水泥混凝土等。一般原则: 1)石料比较充足的地区,当挡土墙高度≤4米时,可采用M水泥砂浆砌筑片块石,其比例为片石占70%,块石占30%计;2)4米<挡土墙高度≤12米时,采用C20片石混凝土。3)挡土墙高度>12米时,原则上应采用C20水泥混凝土。4)有影响景观的全段应采用同一墙身结构。5)为方便施工,同一分段挡土墙宜采用同一种材料施工。 石料应是结构密实、石质均匀、不易风化、无裂缝的硬质石料,石料强度等级一般不小于MU40。强度等级以5cm ×5cm ×5cm 含水饱和试件的极限抗压强度为准。 砂浆所用的水泥、砂、水的质量应符合有关规范的要求,按规定的配合比施工。反滤层可选用砂砾石等具有反滤作用的粗颗粒透水性材料。 水泥应采用强度高、收缩性小、耐磨性强、标号大于号普通硅酸盐或旋窑硅酸盐水泥,水泥的化学成分、物理性能等路用品质要求应符合有关规定。 为了防止挡土墙因地基不均匀沉降或温度变化引起挡土墙裂缝而破坏,需设置变形缝(沉降缝和伸缩缝一般宽度为2~3cm ),并在缝内填塞填缝料。为保证变形缝的作用,两种接缝均须整齐垂直、上下贯通,并且 缝两侧砌体表面需要平整,不能搭接,必要时缝两侧的石料须修凿。接缝中需要填塞防水材料(如沥青麻絮),可贴置在接缝处已砌墙段的端面,也可在砌筑后再填塞,但均需沿墙壁内、外、顶三边塞满、挤紧,填塞深度均不得小于15cm ,以满足防水要求。 片石混凝土片石含量不得多于挡墙体积的20%,片石的强度不得低于MU50,片石混凝土施工时,应用质地坚硬、密实、耐久、无裂纹和无风化的石料,片石的厚度应为150~300mm 。在混凝土中埋放片石时应符合下列规定: 1)片石应清洗干净并完全饱水,应在浇注时的混凝土中埋入一半左右。 2)当气温小于0摄氏度时,不得埋放片石。 3)片石应分布均匀,净距应不小于150mm ,片石边缘距结构物侧面和顶面的净距应不小于150mm ,片石不得触及构造钢筋和预埋件。 4)混凝土应采用分层浇(砌)筑的方式,每层混凝土的厚度不应超过300mm ,大致水平,分层振捣,边振捣边加片石。 片石混凝土的施工应符合《公路桥涵施工技术规范》(JTG/T F50-2011)的相关规定。 有抗震要求的混凝土挡土墙施工缝和衡重式挡土墙的变截面处,应采用短钢筋加强、设置不少于占截面面积20%的榫头等措施提高抗剪强度。 (2)施工准备及放样: 挡土墙施工前应做好地表排水和安全生产的准备工作,施工前先将墙

挡土墙变形监测方法

挡土墙变形监测方法 在挡土墙整个施工过程中,为有效监控挡土墙沉降位移,有必要进行工程监控量测,为挡土墙的施工提供参考依据,其监控量测方法如下: 1.变形监测网,由部分基准点、工作基点和变形观测点构成。监测周期,应根据监测体的变形特征、变形速率、观测精度和工程地质条件等因素综合确定。监测期间,根据变形量的变化情况适当调整。 2.挡土墙变形监测等级 2.1本标段最高挡土墙类型为扶壁式墙高为7.464m,此挡土墙工程为一般性的结构物,拟采用监测等级为四等。 3.变形监测网的设置变形监测网的网点,宜分为基准点、工作基点和变形观测点。其布设应符合下列要求: 3.1基准点,应选在变形影响区域外稳固可靠地位置不少 3 个基准点,选用挡土墙附近一级控制点作为基准点。 3.2工作基点,点位选在比较稳定且方便使用的位置,基准点埋石 制作,水平位移基准点采用? 12钢筋,在钢筋顶用钢锯锯出十字线, 垂直位移基准点采用? 12钢筋,并将钢筋头打磨成圆弧形,造好标石到现场选点埋设 3.3变形观测点,设置在每段挡土墙地面以上0.5m 处,每段挡土墙设置一个观测点,观测点采用? 12 钢筋,并将钢筋头打磨成圆弧形,在圆弧位置上锯十字线, 此观测点作为水平位移观测点和垂直位移观测点。在第一段挡土墙浇注拆模后, 用电锤在挡墙外侧钻孔10cm

深,将制作好的观测点插入钻孔内,并将其固定 4?每期观测前,对所使用的仪器和设备进行检查、 校正,并做好记录 5?各期的变形监测,应满足下列要求: 1在较短的时间内完成。 2采用相同的观测路线和观测方法。 3使用同一台仪器设备。 4使用同一把观测尺 5观测人员相对固定。 6采用统一基准处理数据 6.为满足监控量测需要,确保监控量测的质量,我部配备测量仪器和设备如下: 序号 器具名称 型号 精度 单位 数量 1 全站仪 拓普康GTS-332N 测角精度为2",测距精度 为 2mm+2ppmD 台 1 2 水准仪 苏州一光DSZ1 每公里往返测量标准偏差土 1mm 台 1 3 双面尺 木板尺3m 1 mm 把 2 7?每期观测结束后,应及时处理观测数据。当数据处理结果出现下列 情况之一时,必须即可通知项目部技术负责人以及相关人员采取相应 措施: 1 变形量达到预警值或接近允许值 观测点埋设示意图 观测点示意图

实验数据误差分析和数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为 1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

角度测量的误差分析及注意事项

角度测量的误差分析及注意事项 一、角度测量的误差 角度测量的误差主要来源于仪器误差、人为操作误差以及外界条件的影响等几个方面。认真分析这些误差,找出消除或减小误差的方法,从而提高观测精度。 由于竖直角主要用于三角高程测量和视距测量,在测量竖直角时,只要严格按照操作规程作业,采用测回法消除竖盘指标差对竖角的影响,测得的竖直角值即能满足对高程和水平距离的求算。因此,下面只分析水平角的测量误差。 (一)仪器误差 1.仪器制造加工不完善所引起的误差 如照准部偏心误差、度盘分划误差等。经纬仪照准部旋转中心应与水平度盘中心重合,如果两者不重合,即存在照准部偏心差,在水平角测量中,此项误差影响也可通过盘左、盘右观测取平均值的方法加以消除。水平度盘分划误差的影响一般较小,当测量精度要求较高时,可采用各测回间变换水平度盘位置的方法进行观测,以减弱这一项误差影响。 2.仪器校正不完善所引起的误差 如望远镜视准轴不严格垂直于横轴、横轴不严格垂直于竖轴所引起的误差,可以采用盘左、盘右观测取平均的方法来消除,而竖轴不垂直于水准管轴所引起的误差则不能通过盘左、盘右观测取平均或其他观测方法来消除,因此,必须认真做好仪器此项检验、校正。 (二)观测误差 1.对中误差 仪器对中不准确,使仪器中心偏离测站中心的位移叫偏心距,偏心距将使所观测的水平角值不是大就是小。经研究已经知道,对中引起的水平角观测误差与偏心距成正比,并与测站到观测点的距离成反比。因此,在进行水平角观测时,仪器的对中误差不应超出相应规范规定的范围,特别对于短边的角度进行观测时,更应该精确对中。 2.整平误差 若仪器未能精确整平或在观测过程中气泡不再居中,竖轴就会偏离铅直位置。整平误差不能用观测方法来消除,此项误差的影响与观测目标时视线竖直角的大小有关,当观测目标与仪器视线大致同高时,影响较小;当观测目标时,视线竖直角较大,则整平误差的影响明显增大,此时,应特别注意认真整平仪器。当发现水准管气泡偏离零点超过一格以上时,应重新整平仪器,重新观测。 3.目标偏心误差 由于测点上的标杆倾斜而使照准目标偏离测点中心所产生的偏心差称为目标偏心误差。目标偏心是由于目标点的标志倾斜引起的。观测点上一般都是竖立标杆,当标杆倾斜而又瞄准其顶部时,标杆越长,瞄准点越高,则产生的方向值误差越大;边长短时误差的影响更大。为了减少目标偏心对水平角观测的影响,观测时,标杆要准确而竖直地立在测点上,且尽量瞄准标杆的底部。 4.瞄准误差

挡土墙施工方案

挡土墙施工方案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

挡土墙施工方案 一、工程概况 德胜路立交桥起于德胜大桥北引桥与主桥交界处,终于碧桂路高架工程衔接处,桥梁工程范围:K50+~K51+,全长1.243km。两处挡土墙分别位于J匝道与南辅道路基交接处,里程编号为:NHDK0+000至 NHDK0+070,全长70米;辅道北线K0+至K0+,全长80米,主体为片石混凝土重力式挡土墙。 二、编制依据 1、佛山市顺德区快速干线首期工程SJ4合同段碧桂路、德胜路立交工程两阶段施工图设计。 2、《公路桥涵施工技术规范》JTJ041-2000。 3、《公路工程质量检验评定标准》JTGF80/1-2004。 三、施工准备 1、组织有关人员学习《公路桥涵施工技术规范》(JTJ 041-2000)和《公路工程质量检验评定标准》(JTG F80/1-2004),对特殊工种操作人员进行培训和技能考核,必须坚持持证上岗。 2、工程部负责编制碧桂路德胜路立交桥挡土墙施工方案,并对施工班组进行技术交底,班组长负责对操作工人进行技术交底。 3、所用材料必须符合有关技术标准规定,使用前必须严格审核所选用材料的出厂合格证和试验报告,并送往试验室进行验证,合格材料才可使用,不合格的材料一律清除出场。

4、场地及水电的准备:整理施工所需场地;清查安装主要的施工机具,保证其工作状态良好;安装好施工现场所需水电供应设施;准备施工所需用的材料,并作好维护工作,避免受到污染;合理组织施工,做到责任明确,分工合理。 5、劳动力计划安排:配备技术员2人,负责质量管理(轮班作业,必须做到有人施工就有人做技术指导);配备管理人员2人,全面负责现场施工管理工作(轮班作业,必须做到有人施工就有人管理);技工5人,普工10人,共计15人。 6、施工工期计划安排:施工班组务必抓紧时间安排施工,本着优质、快速、高效的施工目标,按期完成本挡土墙施工。 四、施工方法 挡土墙施工主要工作内容为:?施工放样、基坑开挖与支护、地基处理、碎石垫层施工、C25砼垫层施工、混凝土墙体施工、伸缩缝、沉降缝及泄水孔处理、养护、墙后填土。挡土墙设计为C20片石砼挡土墙,在施工中由于受220KV高压线影响,70米挡土墙吊车施工浇筑砼无法保证施工安全距离、抛填片石难度大改用泵车施工为素砼挡土墙。两处挡墙外侧均为原有水沟,常年流水沟底淤泥较厚、地质情况差、挡墙处开挖深度达5米,经验算基坑开挖需要打入9米长钢板桩进行支护(具体验算数据见附件:挡土墙基坑支护验算书)。 1、施工放样 (1)首先根据挡土墙底面尺寸及埋置深度、地址水文条件、机具布置等确定基坑开挖的尺寸。

路基边坡防护挡土墙及排水

路基边坡防护挡土墙及排水施工 (一)、浆砌片石排水沟、截水沟、急流槽等排水工程 施工放样采用全站仪,将水沟的中心桩每隔10m测放一个。基坑采用人工开挖,整修坡面、沟底,并将基槽底面及两侧土坡进行夯实加固。然后用人工挂线,坐浆法砌筑,砌体每隔10-15m及在基底土质变化处设置沉降缝,并用沥青麻絮填塞。所有砌筑用的砂浆均采用小型搅拌机在现场拌和,并采有重量法配比。 砌体内做到填塞饱满、砌缝均匀。边沟内壁和底面用7.5#水泥砂浆抹平。 (二)、防护工程 防护工程采用平行流水作业法施工,基坑采用人工开挖,基础埋置深度和分段长度应按图纸规定或工程师的指示进行。 1、护坡、护面墙施工 (1)坡面修整后,重新放样开挖基坑,基坑经监理工程师验收合格后,立即进行砌筑。护坡坡脚采用挖槽方法进行施工,使基础嵌入槽内,基础埋置深度符合图纸要求。 (2)砌筑前将片石用干净水洗净并使其饱和。 (3)砂浆采用重量法控制计量,并用强制拌和机拌和,每次拌和的砂浆根据砌筑速度随时拌和,保证砌筑用砂浆新鲜。 (4)砌筑采用坐浆法分层砌筑,砌筑时所有石块均按一丁一顺座在新拌砂浆上,片石与片石相互嵌挤,咬口紧密,所有片石之间间隔均用砂浆填满,并用钢钎插捣密实。每砌筑一层之前先洒水,充分湿润下一层砌体表面。 (5)护坡的沉降缝和伸缩缝按设计图纸要求设置,砌筑沉降缝采用角石加工整齐划一,以保证沉降缝砌筑后垂直于水平面并且宽度上下一致。 (6)严格按图纸施工,使片石砌体尺寸不小于设计尺寸,标高及平整度符合规范要求。 (7)砌筑过程中,随时对已砌筑砌体养生,保持其表面湿润,在砌筑完以后,视天气情况养生7-14天或监理工程师要求的时间内。 2、挡土墙的施工 (1)基坑开挖完经监理工程师验收合格后,立即进行砌筑。砌筑前按设计图纸规定的边坡坡率内外两面立标杆挂线,并经常复核验证,以保持整个挡土墙线形顺畅,砌体平整。

实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理 第一节实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实

验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 2222 21 均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -=--=对 (2-4) 应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。 当1x /2x =2,对x =, =x , (对x -x )/对x =%, 即1x /2x ≤2,引起的误差不超过%。

GPS变形监测的位移显著性检验方法研究

第33卷第2期 2008年3月 测绘科学 Science of Surveying and M app ing Vol 133No 12 Mar 1 作者简介:陈刚(19712),男,湖北咸 宁人,副教授,博士生,现从事“3S ”技术在资源与环境监测中的应用研究。E 2mail:whcg@vi p 1sina 1com 收稿日期:2006211216 基金项目:中国地质大学出国留学人员科研基金项目资助(C UG LX0505082) GPS 变形监测的位移显著性检验方法研究 陈 刚① ,胡友健① ,赵 斌① ,Kefei Zhang ② ,梁新美 ① (①中国地质大学测绘工程系,武汉 430074; ②School of Mathe matical and Geos patial Sciences,R M I T University,Melbourne 3001,V ict oria,Australia ) 【摘 要】目前普遍采用的位移显著性检验方法,是人为地将客观上的空间位移问题转化为地方(局部)坐标系中的1维或2维位移问题来进行检验,既使位移检验在理论上的严密性受到损害,又使GPS 能够在协议地球坐标系(I TRF 或W GS 284)中同时精确测定空间3维位移的优越性得不到充分利用。由于在位移转换过程中会引入误差,可能导致位移显著性检验结果不可靠,尤其是当位移量小而坐标转换误差大时可靠性更低。为了避免由于位移转换存在误差而影响位移显著性检验结果的可靠性,本文提出了用GPS 进行变形监测时,直接在I TRF 或W GS 284空间坐标参考框架下进行位移显著性检验的新方法—“变形误差椭球检验法”,严密地推导了有关理论公式,给出了具体的检验方法,并进行了实例计算和分析。【关键词】GPS;变形监测;位移显著性检验;变形误差椭球【中图分类号】P258 【文献标识码】A 【文章编号】100922307(2008)022*******DO I:1013771/j 1issn 1100922307120081021032 1 位移显著性检验方法概述 变形监测点的两期监测数据经过处理后求得的坐标差,究竟是位移量还是观测误差的反映,需要经过严密的检验分析才能判定。目前广泛采用的位移显著性检验方法,可归纳为单点位移显著性检验、整体位移显著性检验和变形误差椭圆检验3种方法[1]。 单点位移显著性检验,目前广泛采用t 检验法。该法是作统计量t =Δx /m ∧Δx (Δx 为两期监测的坐标差;m ∧ Δx 为其中误差),选定显著性水平α,如果|t |>t α/2,认为位移显著,否则,认为点位稳定。用于整体位移显著性检验的平均间隙法,是首先利用两期平差的全部坐标差Δx 及其权 阵P Δx ,计算单位权中误差〗^m Δx 2=Δx T P Δx Δx /f Δx (f Δx 为Δx 中独立量的个数),作统计量F =^m Δx 2/^m 20(m ∧ 0为母体单位权中误差)。然后,选定显著性水平α,通过F 检验作出总体上位移是否显著的判断。如果总体位移显著,然后再逐个找出位移显著的点。变形误差椭圆法,是首先利用变形监测网两期平差后的坐标协因素和单位权中误差,作出每一个监测点的误差椭圆,取k 倍中误差作出极限误差椭圆。然后,根据点的位移向量是否落在极限误差椭圆之内来判断位移是否显著。 上述各种位移显著性检验方法用于GPS 变形监测分析,都存在不足之处:①t 检验法和平均间隙法的检验过程和结果都不直观,且不能用于两期监测精度不同的情况下,而实际上,严格说来,任意两期监测都不可能是完全等精度的;②需要将监测点在I T RF 或W GS 284中的3维坐标转换到地方平面直角坐标系和高程系统中,由于坐标转换过程中会引入 误差,这可能导致位移检验分析结果不可靠,尤其是当位移量小而坐标转换误差大时可靠性更低;③人为地将客观上的空间位移问题转化为1维或2维位移问题来进行检验,这就使位移检验的严密性受到损害,也使GPS 可以在I T RF 或W GS 284坐标框架下同时精确测定3维位移的优越性得不到充分利用。因此,在GPS 变形监测中,采用“变形误差椭球检验法”,直接在I T RF 或W GS 284空间坐标参考框架下进行位移显著性检验,有其合理性和必要性。 2 “变形误差椭球检验法” 211 变形误差椭球 设GPS 变形监测网的两期监测数据处理后,求得某监测点在I TRF 或W GS 284坐标系中的坐标分别为 X 1=X 1Y 1Z 1T X 2=X 2Y 2Z 2 T 坐标协方差阵分别为 D 1= D X 1X 1 D X 1Y 1D X 1Z 1 D X 1Y 1D Y 1Y 1D Y 1Z 1D X 1Z 1D Y 1Z 1 D Z 1Z D 2=D X 2X 2D X 2Y 2D X 2Z 2D X 2Y 2D Y 2Y 2D Y 2Z 2D X 2Z 2D Y 2Z 2 D Z 2Z 两期监测的坐标差及其协方差阵分别为 ΔX = x 2-x 1 y 2-y 1z 2-z 1  D ΔX ΔX =D Δx Δx D Δx Δy D Δx Δz D Δx Δy D Δy Δy D Δy Δz D Δx Δz D Δy Δz D Δz Δz =D 1+D 2 作协方差阵D ΔX ΔX 的特征方程: D ΔX ΔX -λI = D Δx Δx -λD Δx Δy D Δx Δz D Δx Δy D Δy Δy -λD Δy Δz D Δx Δz D Δy Δz D Δz Δz -λ =0(1) 由式(1)得: λ3-I 1λ2+I 2λ-I 3=0 (2) 式中 I 1=D Δx Δx +D Δy Δy +D Δz Δz ; I 2=D Δx Δx D Δx Δy D Δx Δy D Δy Δy +D Δx Δx D Δx Δz D Δx Δz D Δz Δz + D Δy Δy D Δy Δz D Δy Δz D Δz Δz ; I 3= D Δx Δx D Δx Δy D Δx Δz D Δx Δy D Δy Δy D Δy Δz D Δx Δz D Δy Δz D Δz Δz

边坡在线监测方案

边坡在线监测方案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

边坡在线健康监测解决方案监测背景: 长期以来,我国路基边坡的安全监测技术一直是公路修筑中的一个薄弱环节,进由于缺乏对安全监测技术的系统研究,没有成熟的经验供设计部门应用,因此只能用低等级公路的防护技术或借鉴其他部门的经验来实施局部防护,缺乏综合考虑,造成了巨大的经济损失和不良的社会影响,有的甚至中断交通。国家及地方对边坡的健康监测做了具体的规范,如《露天煤矿边坡管理暂行规定》第三条第一、二款规定:边坡管理工作纳入安全监察的议事工程,并负有业务保安责任。根据年度计划与设计以及边坡稳定的决定与措施,在安全检查工作中,做出安排,进行监督检查。 系统概述: 飞尚科技作为中国结构安全监测领导者,率先将结构健康监测与物联网结构体系、云计算、局域网/通讯网等多网无缝连接等技术结合,建立一套智能边坡健康监测系统,为边坡日常养护、管理和突发事件应急处置发挥重大作用。基于云计算服务中心的监测系统可容纳上万个桥梁、隧道、边坡等结构物的监测数据,形成区域性结构健康监测平台,实现区域内的所有结构统一监控管理。 主要监测内容: (1)环境监测,主要为温湿度和雨量的监测; (2)边坡的变形观测,包括边坡关键点的沉降、不均匀沉降,土体深部变形等;(3)挡土墙受力监测,包括挡土墙的应变、挡土墙锚杆的受力等; (4)挡土墙的变形,主要为挡土墙的倾斜监测; (5)土压力和孔隙水压力监测; (6)水位监测。

监测示意图: 监测项目一览表: (施工期监测) (运营期监测) 实现功能: (1)24小时实时监测:对边坡变形受力、坡体倾斜下滑、环境等全自动化在线监测,实时掌握边坡整体施工/运行的安全状态。 (2)多重分级预警:数据异常时,系统会触发相应三级报警机制,第一时间以短信、传真、广播等形式通知用户。 (3)应急预案处理:从专家库直接提取相应处理办法,及时采取人员介入、封锁道路等办法,将安全隐患消除在萌芽状态。 (4)结构损伤机理研究:对结构损伤机理的宏观分析、结构变形及破坏趋势研究、归纳演绎。 (5)提供参考依据:监测数据的存储,为今后同类工程设计、施工提供类比依据。 (6)行业规范标准形成:制定出适合结构健康监测的安全评价标准体系,形成 行业标准规范

小区挡土墙监测方案总结

娄底市房地产管理局洪源经济适用房小区 南侧挡土墙监测方案 编写: 审核: 审定:: 湖南省工程勘察院 二0一五年六月

目录 1前言 (1) 1.1任务由来 (1) 1.2工程概况 (1) 1.3监测目的和任务 (1) 1.4编制依据 (2) 2场地工程地质条件 (3) 2.1地形地貌 (3) 2.2地层岩性 (3) 3监测项目及内容 (3) 3.1监测项目 (3) 3.2监测内容 (4) 4监测精度要求及方法 (4) 4.1监测精度要求 (4) 4.2监测方法及成果计算 (7) 5监测基准点和监测点的布设及保护 (8) 5.1监测基准点的布设 (8) 5.2监测点的布设 (8) 5.3基准点和监测点的保护 (9) 5.4基准点及监测点的埋设 (9) 6监测周期及频率 (10) 7监测项目报警值 (11) 8监测数据处理及信息反馈 (12) 9监测人员的配备 (13) 10监测仪器设备及检定要求 (14) 11作业安全及其他管理制度 (15) 11.1作业安全 (15) 11.2质量保证措施 (15) 11.3注意事项及应急制度 (16) 12监测预计工作量及预算费用 (16) 附图 娄底市房地产管理局洪源经济适用房小区南侧挡土墙监测点平面布置图

娄底市房地产管理局洪源经济适用房小区 南侧挡土墙监测方案 1 前言 1.1任务由来 娄底市房地产管理局洪源经济适用房小区位于长宁街以北,挡土墙位于小区南门东侧,场地整平开挖至设计地坪标高后,地形上呈台阶状,以桩板墙进行支挡。现桩板墙外侧土体因城市道路修建需要开挖土体,为了保证小区居民的生命和财产安全,娄底市房产局(以下简称业主)拟对小区内该挡土墙在外侧土体开挖施工期间和竣工后进行变形监测,我院为此制定了洪源经济适用房小区南侧挡土墙变形监测方案。 1.2 工程概况 娄底市房地产管理局洪源经济适用房小区竣工于2013年,31#楼和32#楼为桩基础。南侧挡土墙位于小区31#楼和32#楼南侧,采用双排桩进行支护,监测段桩板墙长度约145m,墙外侧土体开挖至道路设计标高后墙高7~8.8m,现桩板墙悬臂段约3.0~4.0m,支挡结构物距离31#楼和32#楼南侧外墙约7m,挡土墙的稳定影响该两栋建筑物的使用。 根据设计资料显示,桩板墙采用双排桩,纵向桩间距为 3.1~4.0m,横向桩间距为3m,桩径为1m,嵌固深度大于10m,其中硬塑粉质粘土大于8m,石灰岩不小于2m。纵向桩通过冠梁和3道腰梁连接,横向桩通过连梁连接,根据土体开挖进度,现支护桩、冠梁及一道腰梁施工完毕,外侧土体还需开挖约5m,开挖边界紧邻桩板墙。 1.3 监测目的和任务 1.3.1 监测目的 利用巡视和仪器观测等方法,对拟监测挡土墙位移、倾斜和墙顶建筑物沉降进行观测,通过对监测数据的研究和分析,预测和预报挡土墙的变

挡土墙边坡设计

挡土墙边坡设计 第一章工程概况 第二章 2场地周边环境 围墙位于用地红线上,红线内顺丰产业园场地区域已进行强夯处理,施工场地区域内无管线,无建筑。 第三章 3场地工程及水文地质条件 第一节 3.1场区地形地貌特征 场地所处地貌单元为剥蚀低山丘陵,原始地貌起伏较大,后经过人工开挖和回填平整,勘察期间场地较平坦。 据区域地质资料,本勘察场地及附近无全新活动断裂通过,无其它不良地质作用,场地稳定性较好。 第二节 3.2岩土层结构及工程地质特征 边坡支护深度范围内岩土层主要包括:素填土、含粘性土粗砂和基岩花岗岩、脉岩煌斑岩。 1、素填土:灰褐~土黄色,松散、稍湿,主要由砂质土组成,含大

量的花岗岩碎屑和碎块,局部夹少量建筑垃圾,回填时间1~2年。场区普遍分布,厚度:6.50~10.50m,平均8.23m;层底标高:67.94~72.06m,平均70.23m;层底埋深:6.50~10.50m,平均8.23m。 该层进行标准贯入试验33次,实测击数最大值11击,最小值5击,平均值7.8击,标准差1.6,变异系数0.21,标准值7.4击。 该层填土性质不均匀,工程特性差异性较大,不提供承载力。 2、含粘性土粗砂:灰黄色,中密、稍湿,主要矿物成份为长石、石英和云母;颗粒级配良好,磨圆度较差,含大量粘性土,下部含大量花岗岩碎屑。该层局部分布,仅ZK7、8、18、19、20揭示,厚度:2.10~4.50m,平均3.08m;层底标高:65.66~67.92m,平均67.20m;层底埋深:10.60~12.70m,平均11.28m。 根据室内土工试验,结合原位测试及地区经验,建议地基承载力特征值fak取200kPa,压缩模量E s1-2取12.8MPa。 3、全风化花岗岩:褐黄色,中粗粒花岗结构,主要矿物成分为石英、长石、黑云母等,岩石结构组织基本破坏,岩芯手搓即碎呈砂土状。场区大部分分布,厚度:0.90~4.10m,平均 2.50m;层底标高:64.66~68.42m,平均67.06m;层底埋深:10.10~13.90m,平均11.41m。 该层进行标准贯入试验11次,实测击数最大值40击,最小值31击,平均值36.0击,标准差2.6,变异系数0.07,标准值34.7击。

相关主题
文本预览
相关文档 最新文档