Al-Si合金细化变质处理研究进展
- 格式:pdf
- 大小:229.94 KB
- 文档页数:8
过共晶Al-24%Si合金的变质及变质机理研究的开题报告题目:过共晶Al-24%Si合金的变质及变质机理研究一、研究背景过共晶Al-Si合金是一种重要的高性能材料,具有良好的耐磨性、耐腐蚀性和高温稳定性等特点,在汽车、航空、航天等领域得到广泛应用。
其中,Al-24%Si合金因其高硅含量,具有较好的耐高温性和热膨胀性能,在航空航天领域尤为重要。
然而,Al-Si合金制备过程中晶体生长受到外界影响,晶界处形成不稳定位错,导致合金的硬度和强度下降,影响材料性能,因此对于Al-Si合金的变质及其机理的研究具有重要意义。
二、研究目的本课题旨在通过实验考察过共晶Al-24%Si合金在不同条件下的变质现象,深入分析其变质机理,为提高Al-Si合金的性能和研制更高性能的Al-Si合金提供理论依据。
三、研究方法1. 制备Al-24%Si合金试样2. 将试样在不同温度及时间下进行热处理,观察和记录试样的显微结构和性能变化。
3. 通过金相显微镜、扫描电镜、X射线衍射仪等测试手段,对试样进行表征。
4. 分析试样的组织结构和物理性质变化,解释变质机理。
四、研究内容1. Al-24%Si合金的制备2. 不同温度及时间下合金的热处理3. 显微结构和性能变化的观察和记录4. 试样的表征和组织结构分析5. 变质机理的解释和研究五、研究意义1. 可以为提高过共晶Al-Si合金的性能和改进加工工艺提供理论基础和实验支持。
2. 对于Al-Si合金的结构和变质机理有深入的了解,有助于开发出更高性能的Al-Si合金。
3. 对于其他类似金属材料的性能改进有借鉴参考作用。
六、研究进度计划1. 完成Al-24%Si合金的制备:第一个月。
2. 进行Al-24%Si合金试样的加热处理,并观察变质现象:第二个月。
3. 对试样进行金相显微镜、扫描电镜、X射线衍射仪等表征:第三个月。
4. 分析试样的组织结构和物理性质变化,解释变质机理:第四个月。
5. 完成论文的撰写和答辩准备:第五个月。
铝合金细化剂的研究现状及其中共晶硅的变质研究现状目前人们已经对铝合金有了较多的认识甚至是较深入的了解,通常人们为了提高铝合金的力学性能,通常要对铸铝中的初生硅相经行处理,晶粒细化剂是铝合金生产中常用的添加剂之一能显著提高铝合金的力学性能和机械加工性能对铝合金的生产具有十分重要的意义。
根据Hall-Petch公式可知材料的屈服强度和材料的晶粒大小成反比,细小的晶粒尺寸可以有效地提高材料的强度和韧性,同时改善合金的机械加工性能对于铝在各行业的应用均具有重要的意义。
目前,细化铝合金晶粒的方法主要包括以下4种方法:1、控制金属凝固时的冷却速度; 2、机械物理细化法包括机械振动机械搅拌等物理场细化法; 3、如电场磁场超声波处理等; 4、化学细化法,向合金中加入各种晶粒细化剂促进铝及合金的形核或抑制晶核长大。
在工业生产中细化晶粒尺寸最常用的方法是化学细化法即在熔融的铝液中加入晶粒细化剂起到异质形核的作用进而细化晶粒尺寸。
20世纪四五十年代,晶粒细化剂起源于英国的Cibula金属研究协会,这时的细化剂主要是Ti、B盐块剂。
20世纪60年代由于无芯感应炉的应用中间合金的生产及应用取得飞速发展相继出现了Al-Ti-B锭华夫锭等相关产品,20世纪70年代是铝合金晶粒细化剂Al-Ti-B丝有效提高了晶粒细化效果降低了细化剂的加入量,同时改善了TiB2在炉内的团聚现象。
在20世纪七八十年代晶粒细化剂生产工业的研究方向主要是通过改善Ti/B配比优化细化效果。
20世纪90年代细化剂的生产开始采用ISO9002为基准的技术措施大大提高了Al-Ti-B的细化效果,同时由于硼化物仍然存在一定的团聚现象,影响细化剂的使用效果,从而采用一定量的石墨代替细化剂中的B制得的Al-Ti-B中间合金不仅具有较好的细化效果同时避免了硼元素的团聚现象。
现在常用的细化剂有Al-Ti-B中间合金、Al-Ti-B-RE、Al-5Ti-1C中间合金。
目前工业生产中使用的晶粒细化剂主要为Al-Ti-B,这种细化剂制备工艺较为成熟质量日益提高具有较好的细化效果,但存在TiB2团聚等问题仍需要不断改进作为改善Al-Ti-B细化效果,作为改善Al-Ti-B细化效果的Al-Ti-C和Al-Ti-B-RE细化剂也逐渐进入铝合金生产企业的视野,但是Al-Ti-C的制备过程复杂成本较高在现有条件下并不适合大规模工业生产,而Al-Ti-B-RE中由于加入了RE 元素导致其细化机理和工艺复杂化。
航天制造技术 2006年8月第4期 49Al-Si 合金Sr 变质研究现状河南理工大学材料学院 米国发 文 涛 龚海军摘要 共晶硅的变质机理目前最被人们接受的是LU 和Hellawell 提出的杂质诱导孪晶理论。
锶变质对铝硅合金的凝固过程有着重要的影响,使得糊状区的凝固时间明显变长。
锶变质的孕育时间与合金中的磷含量和中间合金释放锶元素并与硅晶胚达到吸附平衡所需要的时间有关。
通过复合变质可使孕育时间变短。
铝液中初始锶含量越高, 保温初期锶的减耗速度越快,保温8~12h 后锶含量趋于一致。
熔体中的杂质是导致气孔的主要因素。
关键词 Sr 变质 Al-Si 合金 1 引言Al-Si 合金具有良好的耐蚀、耐热、耐磨等优点,是汽车制造业中尤其是轿车制造业中常见的合金材料。
在所有铝合金中,铸造Al-Si 合金占了90%以上[1]。
但是由于铝硅系合金硅相以粗大的针状晶结晶,降低了合金的机械性能,这在很大程度上限制了其使用范围。
自从 1921年Pacz 发现Na 对铝硅共晶组织有变质作用,能够明显提高铸件的力学性能以后,多年来,Na 以变质能力强等特点广泛应用于实际生产中。
但是,Na 变质有以下的不足:易衰退、吸收率低、易腐蚀工具和设备;Na 的沸点低(880℃),性质活泼,处理时将引起铝液的沸腾和飞溅;Na 密度低,容易产生比重偏析。
针对Na 的这些缺点,人们采取了各种措施,如:改进Na 的包装,加快Na 基盐类变质剂的反应,延长Na 基变质剂的作用时间等,但是Na 所存在的缺点也只能得到部分解决[2]。
Sr 变质具有长效性且重熔性较好,不腐蚀炉衬、不污染环境[3],因此,20世纪60年代发现了Sr 有变质作用后,Sr 变质处理得到了迅猛的发展,且在铝合金轮毂上也得到了成功的应用。
目前,Sr 变质基本取代了传统的Na 变质。
下面对Sr 变质的有关研究成果作一综述。
2 变质机理关于Sr 的变质机理比较多,主要有下列几种:Shamsuzzoha 提出的TPRE 机制认为,共晶生长中硅片的结晶生长前沿往往是孪晶凹谷。
1.实验目的1)熟悉铸造铝硅合金的熔炼、精炼、细化和变质处理的过程;2)掌握铸造铝硅合金精炼、细化和编制处理的基本原理及方法;3)掌握细化剂和变质剂对铸造铝硅合金的影响。
2.实验内容1)对熔融的Al-7Si合金进行细化处理;2)对熔融的Al-7Si合金进行变质处理;3)在光学显微镜下观察,评价合金的细化和变质处理效果。
3.实验原理3.1 铝硅合金晶粒细化技术及其机理铸造铝合金铸态时通常呈现三种不同的晶粒状态:等轴晶、柱状晶和枝状晶。
有目的地一直柱状晶和枝状晶生长,促进细小等轴晶形成,这种工艺过程就叫做晶粒细化处理。
晶粒细化是通过控制晶体的形核和长大来实现的。
细化处理的最基本原理是促进形核,抑制长大。
而形核质点主要有两种来源:一是包括快速凝固法、动力学方法和成分过冷法等的内生形核质点,二是向熔体中添加晶粒细化剂的外来形核质点。
目前,添加细化剂成为生产过程中最有效、最实用的方法。
对于铝硅合金,通常将细化元素Ti、B以中间合金的形式加入熔体来实现晶粒的细化。
3.2 铝硅合金变质处理技术及其机理铝硅合金中,由于Si相在自然生长条件下会长成块状或片状的脆性相,严重的割裂基体,降低合金的强度和塑性,因而必须采用变质处理工艺,使共晶硅形貌发生变化,提高合金性能。
4.实验步骤1)在两个Al2O3坩埚中分别加入1000g的铝硅合金原料,在电阻炉中升温至720℃,溶化后保温1小时以促进成分的均匀化;2)对精炼处理后的Al-7Si合金教主一组试样;3)向一个坩埚中加入0.03%的B进行晶粒细化处理;4)向另一个坩埚中加入0.03%的Sr进行变质处理;5)1-2人为一组,每个20-30分钟以组为单位浇注试样,为充分观察细化和变质处理的孕育期和衰退期,应至少浇注4组试样;6)对各组试样进行处理,在光学显微镜下观察,评价合金的变质效果,观察晶粒尺寸。
5.实验结果分析5.1 晶粒细化效果分析将实验分成三个实验组,第1组为未加细化剂处理的原料铸型,第2组为加入细化剂处理20min后的原料铸型,第3组为加入细化剂处理40min后的原料铸型。
Al—Si合金变质技术的应用现状与进展
耿浩然;马家骥
【期刊名称】《机械工程材料》
【年(卷),期】1995(019)005
【摘要】综述了目前生产中常用的Al-Si合金变质元素(剂)钠、锶、稀土、钾、钡、磷等的使用特点,介绍了这些变质技术的应用概况和新的研究成果。
认为钠盐、稀土和磷盐复合变质将是今后研究的热点。
【总页数】4页(P6-9)
【作者】耿浩然;马家骥
【作者单位】不详;不详
【正文语种】中文
【中图分类】TG136.1
【相关文献】
1.Al-Si合金变质处理效果炉前快速检测技术研究与应用状况 [J], 李大勇;李峰;石
德全
2.铸造Al-Si合金细化变质处理技术的研究进展 [J], 仲召军;李龙;周德敬
3.Al-P中间合金变质剂在Al-Si活塞合金中的应用 [J], 刘相法;齐广慧;韩延峰;边
秀房;张书民;崔庆龙;陈寿鑫
4.Al-P中间合金变质+半连续铸造技术制备过共晶Al-17Si合金铸锭 [J], 梁博;张志峰;陈春生;徐骏
5.Al-Si合金变质效果热分析技术的研究 [J], 熊艳才;黄志光;吴广忠;谢华;王文清
因版权原因,仅展示原文概要,查看原文内容请购买。
Al-Si研究现状1.4 Al-Si合金的研究现状铝的比重小,塑性好,具有优良的导电性和导热性,表面有致密的氧化膜保护,抗腐蚀性好,而且回收成本低,是一种可持续发展的有色金属。
在纯铝中,加入其它金属或非金属元素,能配制成各种可供压力加工或铸造用的铝合金。
由于铝的密度小,其比强度(拉伸强度/比重)远比灰铸铁、铜合金和球墨铸铁的高,仅次于镁合金、钦合金和高合金钢[80]。
铝及其合金的上述优点决定了它在工业上越来越重要的地位和突飞猛进的发展。
铝的消费己从最初的军工、航空航天、电力、机械等传统领域扩展到交通运输、建筑等领域,其中交通、建筑及包装三个领域的消费比例约占消费总量的70%,而汽车工业的发展也为铝材消费提供了巨大的市场空间。
铝合金最早于1903年试用于内燃机活塞,其成分为Al-10%Zn-3.5%Cu,然而其耐热性不能满足要求,不久就被放弃,但对活塞材料的发展是个突破。
随后欧美研制出Al-8%Cu合金,改进了活塞的耐热性,基本上满足了当时活塞的使用要求,因而该合金曾盛行了一个时期。
1921年“Y合金”(Al-4%cu-1.5%Mg-2.0%Ni)问世,合金中加入Cu和Mg起到弥散强化作用,加Ni 生成NiA13金属间化合物,提高了合金的抗高温蠕变性能。
这样,“Y合金”以其高耐热性、较好的铸造和锻造性能而作为典型的活塞用铝合金而广泛使用。
我国研制成功RR合金(Al-2%cu-l%si-1%Fe-1.5%Mg-1%Ni),通过加入Ni、Fe 等合金元素提高了耐热性81】。
1920年PacZ发现Na对Al-si二元共晶合金具有变质作用[82],能改变合金的显微组织,显著提高合金的力学性能,Al-si共晶合金开始应用于活塞生产。
1924年德国KS公司研制成功膨胀系数低于“Y 合金”的A1-Si系活塞合金—KS245合金(Al-14%Si-4.5%Cu- 1.5%Ni-0.7%Mg)。
1926年KS公司研制成功过共晶Al-Si合金KS280,达到进一步降低合金热膨胀系数的目的。
铝硅合金的晶粒细化与组织变质处理结题报告项目成员:朱荣升,黄泽华,黄文强院(系):材料科学与工程学院【摘要】:晶粒细化是通过控制晶粒的形核和长大来实现的。
细化处理的最基本原理是促进形核,抑制长大。
铝硅合金的变质处理使共晶硅由粗大的片状变成细小纤维状或层片状,从而改善合金性能。
【关键词】:铝硅合金、细化、硬度、金相图、锶、硼、钛。
引言:铝硅合金具有优良的铸造性能,是铸造铝合金中品种最多、用量最大的合金。
一般地,铸造铝硅合金中有α(Al)、共晶硅及初晶硅,其中α(Al)呈树枝状,共晶硅呈片状,初晶硅呈多角形状和板状。
经过细化变质处理后的Al-Si合金具有良好的机械性能和切削加工性能,近年来,世界各国研究者就Al-Si合金基体细化元素,初晶硅和共晶硅的变质元素及其细化、变质机理方面的进行了深入研究,并对双重变质、复合变质进行了探索和研究。
随着金屑型铸造和压铸工艺的发展,铝硅合金得到广泛应用。
近年来,在铸造领域应用的铝合金,除了铝硅系列合金之外,还有铝锅系列、铝镁系列、铝锌系列和其他系列的铝合金。
在这些系列的合金中,除了少数的二元合金外,大多数都是添加多种合金元素的多元合金。
本项目主要内容为铝硅合金的晶粒细化处理。
晶粒细化是通过控制晶粒的形核和长大来实现的。
细化处理的最基本原理是促进形核,抑制长大。
一、实验原理本项目主要内容为铝硅合金的晶粒细化与组织变质处理。
晶粒细化是通过控制晶粒的形核和长大来实现的。
细化处理的最基本原理是促进形核,抑制长大。
铝硅合金的变质处理使共晶硅由粗大的片状变成细小纤维状或层片状,从而改善合金性能。
二、试验方法2.1 试验合金的制备第一步:试验合金在箱式电阻炉内用石墨坩埚进行熔制。
原料为Al-7Si合金,设置一组对照组和三组实验组,实验组分别加入微量元素锶、硼、钛,所加微量元素的质量均为原料的百分之一,用不同的温度对其熔制并保温(见表1)表1 微量元素含量及合金熔制时间、保温时间:微量元素Sr B Ti质量/g 0.1994 0.1769 0.1800温度700℃-720℃700℃-720℃8500℃-900℃保温时间/h 2 2 3第二步:将熔制好的试样用金相实验切割机进行切割处理;第三步:用不同型号的砂纸对切割好的试样进行初步抛光;第四步:用布氏硬度计测量其硬度,为了使实验结果更加准确,因此在每块试样上取两点测量其硬度,最后取平均值,记录数据(见表2)表2 加入不同微量元素测得合金硬度:合金成分Al-Si合金Al-Si合金+Sr Al-Si合金+B Al-Si合金+Ti布氏硬度/HBW 33.8 39.75 33.0 33.7 未加入微量元素时,测得Al-Si合金的布氏硬度为33.8HBW;加入微量元素B后,布氏硬度变为33.0HBW,与对照组相比有少量下降;加入微量元素Sr后,硬度变为39.75HBW,相比对照组硬度有较大的增强;加入微量元素Ti后,布氏硬度变为33.7HBW,与对照组基本相同。
9I ndustry development行业发展铝硅合金变质处理研究现状宁军鹏(太重榆液长治液压有限公司,山西 长治 046000)摘 要:综述了国内外对铝硅合金的变质处理变质及变质机理的研究进展,重金属元素Sr,Sb,Ba,Te,Bi,Ca,As 稀土等得到了很好的加重效果,通过对它们加重机理的比较分析,没有绿色污染,长期经济利益等。
比较了其缺点、单一变质、二元变质和多重变质的变质元素的优缺点,并预测了铝硅合金变质方法的发展趋势。
关键词:铝硅合金变质;研究现状;分析中图分类号:TG146.21 文献标识码:A 文章编号:11-5004(2021)08-0009-2 收稿日期:2021-04作者简介:宁军鹏,男,生于1975年,汉族,山西晋城人,本科,工程师,研究方向:铸铝、铸铁。
铝硅合金具有密度低,膨胀系数低,耐磨性高,耐蚀性高,比强度高,成型和附着力好等优点。
然而在常规的Al-Si 铸造合金中,存在针状共晶硅和具有复杂形状的共晶硅,这改变了合金的性能。
显微组织细化是提高合金强度的有效技术,工业变质被用于变质Si 相的微观结构,从而使其可以均匀地分布在具有有利形状和较小尺寸的基体中,从而进一步改善了合金的整体性能。
1 铝硅合金变质的研究现状铝硅合金变质的主要因素是处理变质的过程。
关于变质机理的讨论可以分为两种类型:一类是核化理论。
就其对硅相核的作用而言,认为变质剂可提供不均匀的晶核。
还有一个是增长理论。
就晶体生长角度而言,据信变质原子对硅晶体的生长有不同的影响,因此硅相的形态发生变化以实现变质过程。
各种变质元素的变质也与特定的工艺条件密切相关。
这需要一定的大量的研究。
1.1 一元变质美国使用的变质剂主要是锶和钠,欧洲和日本有时使用锑,而加拿大则主要使用钙来使增加变质过程。
其他一些元素也有一定作用,但钠和锶是常用的。
1.1.1 钠变质Na 是变质处理中使用的第一种变质剂,也是Al-Si 共晶键使用最广泛的变质剂,其变质效果很强,并且提纯处理不会干扰该变质效果,硅的初晶相和经钠盐变质的硅的共晶相主要遵循机理TPRE,这导致硅相改变了它的生长方向。