非参数统计__秩相关分析和秩回归
- 格式:ppt
- 大小:1.73 MB
- 文档页数:63
非参数统计学讲义主讲:统计系 袁靖第五章 相关和回归§1 引言所谓相关,是指两组或两组以上观察结果之间的连带性或联系。
换句话说,也就是各组观察结果所反映的特性之间有关系。
如几个亲生兄弟间的智商与出生顺序有关系,受教育程度与性别有关系,出生率X 和文盲率Y 之间的关系等等。
在实际问题的研究中,人们常常想知道两组或两组以上的观察结果是否有联系,同时也想知道联系的程度如何。
前面的统计检验能够在一定的显著性水平上,确定各组观察值的关系是否存在。
相关方法被用来度量两个或更多变量之间的线性关系的强度,是回归分析的基础。
在数理统计学中,我们使用相关系数定义变量X 和变量Y 之间的相关性。
)var()var(),cov(),(Y X Y X Y X corr ==ρ1(0.1)对于样本),(11Y X ,),(22Y X ,……,),(n n Y X 来说,Pearson 相关系数为∑∑∑∑∑∑----=----=222211)()())(()()())((Y Y X X Y Y X X Y Y X X Y Y X X r i i i i i i ni i n (0.2)如果在这个样本中的n 个观察值独立,则r 是ρ的渐近无偏估计;如果它又是二元正态分布,则r 是ρ的ML 估计。
为了检验0:0=ρH ,0:1≠ρH ,可以选取统计量)2(~122---=n t r n rt结论:Pearson 相关系数度量的是一种线性关系,而我们所要介绍的非参数的Spearman 秩相关系数s r 和Kendall τ相关系数实际上度量的是一种形式的相依联系,或是更广义的单调关系。
因此相关的概念被推广,不仅指线性相关,而泛指相依或联系。
§2 两个样本的相关分析一、等级相关等级相关(Rank Correlation)也称作级序相关,用于两个至少是定序尺度测量的样本问相关程度的测定研究背景1ρ度量了总体样本点在标准差线周围的聚集程度,详见笔记P38。
在统计学中,秩和检验是一种非参数检验方法,它不需要对总体的分布做出假设,因此在样本容量较小或者总体分布未知的情况下非常有用。
本文将对秩和检验方法进行详细的介绍和解释,帮助读者更好地理解和应用这一统计方法。
一、秩和检验的基本概念秩和检验是基于样本数据的秩次来进行假设检验的方法。
首先,对样本数据进行排序,然后用秩次代替原始观测值,接下来根据秩次之和的大小来进行假设检验。
秩和检验方法通常用于两个独立样本的比较,例如检验两个群体的中位数是否相等。
二、秩和检验的原理秩和检验的原理基于总体中位数的假设。
在进行秩和检验时,首先要建立一个原假设和备择假设,通常原假设是总体中位数相等,备择假设是总体中位数不相等。
然后计算样本数据的秩和,根据秩和的大小和样本容量的大小来查找临界值,从而判断原假设的接受或拒绝。
三、秩和检验的步骤进行秩和检验时,首先要对样本数据进行排序,然后计算秩次,接着将秩次之和代入秩和分布表中查找临界值,最后比较计算得到的P值与显著性水平来进行假设检验的判断。
在进行秩和检验时,需要注意样本容量的大小和秩和分布表的选择,不同的样本容量和显著性水平对应着不同的临界值和P值的判断标准。
四、秩和检验的优缺点秩和检验方法的优点是不需要对总体分布做出假设,因此适用于各种类型的数据,特别是对于非正态分布的数据和小样本数据。
另外,秩和检验方法对异常值的影响较小,相对稳健。
但是秩和检验方法也有一些缺点,例如在样本容量较大时计算量较大,另外对于多样本比较和重复测量数据的处理相对复杂。
五、秩和检验的应用秩和检验方法在实际应用中有着广泛的用途,特别是在医学、生物学和社会科学领域。
例如在医学研究中,秩和检验方法常常用于比较不同治疗方法的疗效,或者比较不同群体的生存期分布。
在社会科学领域,秩和检验方法常常用于比较不同群体的得分分布,或者比较不同时间点的调查结果。
六、秩和检验的进一步发展随着统计学的不断发展,秩和检验方法也在不断完善和发展。
非参数统计中的秩和检验方法详解统计学是一门研究数据收集、分析、解释和呈现的学科。
在统计学中,参数统计和非参数统计是两种不同的方法。
参数统计依赖于总体参数的假设,而非参数统计则不依赖于总体参数的假设。
在本文中,我们将详细介绍非参数统计中的秩和检验方法。
一、秩和检验的概念秩和检验是一种常用的非参数统计方法,用于比较两个或多个总体的位置参数。
在进行秩和检验时,首先要对样本数据进行排序,然后用秩次替换原始观测值,最后对秩和进行比较,以得出结论。
二、秩和检验的原理秩和检验的原理基于总体分布的位置参数。
当我们无法对总体分布做出具体的假设时,可以使用秩和检验方法来比较两个或多个总体的位置参数。
在进行秩和检验时,我们需要计算每个样本的秩次和,然后根据秩和的大小来进行假设检验。
三、Wilcoxon秩和检验Wilcoxon秩和检验是一种常用的秩和检验方法,用于比较两个相关样本或者两个独立样本的位置参数。
在进行Wilcoxon秩和检验时,首先要对样本数据进行排序,然后用秩次替换原始观测值,最后对秩和进行比较,以得出结论。
Wilcoxon秩和检验是一种非参数检验方法,不依赖于总体分布的假设,因此在实际应用中具有较广泛的适用性。
四、Mann-Whitney U检验Mann-Whitney U检验是一种常用的秩和检验方法,用于比较两个独立样本的位置参数。
在进行Mann-Whitney U检验时,首先要对两个样本数据进行合并并进行排序,然后用秩次替换原始观测值,最后根据秩和的大小来进行假设检验。
Mann-Whitney U检验也是一种非参数检验方法,适用于总体分布未知或不满足正态分布假设的情况。
五、Kruskal-Wallis H检验Kruskal-Wallis H检验是一种常用的秩和检验方法,用于比较多个独立样本的位置参数。
在进行Kruskal-Wallis H检验时,首先要对多个样本数据进行合并并进行排序,然后用秩次替换原始观测值,最后根据秩和的大小来进行假设检验。
非参数统计中的秩和检验方法详解统计学是一门研究数据收集、分析、解释和展示的学科,它在各个领域都有着广泛的应用。
而在统计学中,参数统计和非参数统计是两种常见的方法。
参数统计是根据总体的参数进行推断,而非参数统计则是不对总体参数做出假设的一种统计方法。
在非参数统计中,秩和检验方法是一种常用且重要的方法。
本文将详细介绍非参数统计中的秩和检验方法。
一、秩和检验简介秩和检验是一种基于秩次的非参数检验方法,它主要用于对两个独立样本或多个相关样本的总体分布进行比较。
这种方法的优势在于对数据的分布形状没有要求,适用于各种类型的数据。
在进行秩和检验时,首先需要将样本数据进行排序,然后根据排序后的秩次进行计算。
接下来,通过比较秩和的大小来进行假设检验,从而得出结论。
二、秩和检验的应用场景秩和检验方法可以应用于诸多实际场景中。
比如,在医学研究中,可以用秩和检验方法来比较两种不同治疗方法的疗效;在工程领域,可以用秩和检验方法来比较不同生产工艺的产品质量;在市场营销中,可以用秩和检验方法来比较不同促销策略的效果等等。
总之,秩和检验方法在实际问题的解决中有着广泛的应用。
三、秩和检验的类型秩和检验包括了许多不同类型,其中最常见的包括Mann-Whitney U检验、Wilcoxon秩和检验和Kruskal-Wallis H检验。
下面将分别对这些检验进行详细介绍。
1. Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。
它基于两组数据的秩次进行比较,通过计算秩和来判断两组数据是否来自同一总体分布。
Mann-Whitney U检验的原假设是两组样本来自同一总体分布,备择假设是两组样本来自不同总体分布。
通过计算U统计量和p值来进行假设检验,从而得出结论。
2. Wilcoxon秩和检验Wilcoxon秩和检验是一种用于比较两个相关样本的非参数检验方法。
它与Mann-Whitney U检验类似,同样是基于秩次进行比较。
非参数统计结课论文姓名:姚文锋班级:2011157学号:201115726专业:统计学非参数统计检验方法的总结引言:非参数统计作为数理统计学的分支,是解决很多不知道数据分布的问题的主要方法,通过运用非参数方法可以对事物起建立统计模型和数学描述。
摘要:本文主论述了非参数估计的符号检验、秩检验和ridit检验法等多种检验方法。
关键字:符号检验、秩检验、ridit检验1、非参数估计的理解对计量资料进行统计分析,常对计量资料进行统计分析,常用用方法有两类——参数统计和非参数统计。
t检验、方差分析和直线相关回归分析都属于参数统计方法。
参数统计方法要求的前提条件是,资料应服从或近似服从正态分布,t检验、方差分析还要求方差具有齐性。
当前提条件不满足时,就不应选用参数统计方法。
符号检验、秩和检验属于非参数统计方法。
非参数统计方法对资料不要求必须是正态分布,也不要求方差必须具有齐性。
当对资料的分布情况及方差情况不清楚或没把握,或者经过检验不满足正态分布或方差齐性的要求时,就应当选用非参数统计方法对资料进行统计分析。
2非参数检验的方法非参数检验不仅对资料分布没有特殊要求,除了用连续数量表示的的资料外,它还可以对样本数据的符号、等级程度、大小顺序等进行比较,加上方法简便,易于掌握,不要求复杂的计算工具,还可查表判断,能处理一些参数法处理不了的问题,因而应用更广泛,值得学习和推广。
常用的非参数统计方法有:符号检验、秩和检验、秩检验、等级相关检验以及Ridit分析等。
符号检验是指通过符号“ +”和“-”的个数来进行统计推断的,它所关心的信息只与两类观测值有关。
Wilcox on 符号秩检验、wile on-mann-whit ney 秩和检验、spearma n 秩相关检验、方差检验。
秩检验统计量定义:设样本X1, X2, X3,…,Xn是取自总体X的简单随机样本,该组数据中不超过Xi的数据个数Ri,称Ri为Xi的秩,Xi是第Ri个顺序统计量,R是由样本产生的统计量,称为秩统计量。
非参数统计中的秩和检验方法详解在统计学中,非参数统计是一种不依赖于总体分布的统计方法。
与参数统计相比,非参数统计更加灵活,适用范围更广。
秩和检验方法是非参数统计中的一种重要方法,本文将对秩和检验方法进行详细的介绍。
一、秩和检验的基本原理秩和检验的基本原理是将样本数据转化为秩次,然后通过比较样本秩和的大小来进行假设检验。
秩和检验方法不要求总体分布的形式,适用于不满足正态分布假设的情况。
秩和检验方法主要应用于两组样本比较或者相关性分析。
二、秩和检验的应用场景秩和检验方法适用于样本数据不满足正态分布假设的情况,例如小样本数据、偏态数据或者离群值较多的情况。
此外,秩和检验方法还适用于等级数据或者序数数据的分析。
三、秩和检验的常用方法1. Wilcoxon秩和检验Wilcoxon秩和检验是一种常用的秩和检验方法,用于比较两组独立样本的中位数是否有显著差异。
对于小样本数据,Wilcoxon秩和检验是一个比较有效的非参数检验方法。
2. Mann-Whitney U检验Mann-Whitney U检验是Wilcoxon秩和检验的一种特例,适用于两组独立样本的比较。
与t检验相比,Mann-Whitney U检验不要求数据满足正态分布假设,适用范围更广。
3. Wilcoxon符号秩检验Wilcoxon符号秩检验适用于配对样本的比较,用于检验配对样本中位数是否有显著差异。
对于配对设计的实验研究,Wilcoxon符号秩检验是一种常用的非参数检验方法。
四、秩和检验的步骤进行秩和检验时,通常需要经历以下几个步骤:1. 数据处理:对样本数据进行秩次转换,得到秩和。
2. 假设检验:根据具体情况选择合适的秩和检验方法,进行假设检验。
3. 结果解释:根据检验结果进行统计推断,对研究问题给出合理的结论。
五、秩和检验的优缺点秩和检验方法具有一定的优点和局限性:优点:不依赖于总体分布的形式,适用范围广泛;对偏态数据和离群值不敏感;适用于小样本数据的比较。
非参数统计期末总结非参数统计方法的应用非常广泛,特别是在现实生活中遇到缺乏足够样本和总体分布不明确的情况下。
尤其在医学、环境科学、社会科学等领域,非参数统计更是不可或缺的工具。
下面我将总结一下非参数统计的相关知识和方法,并讨论它们在不同领域中的应用。
首先,非参数统计的最基本的方法是秩和检验(rank sum test)。
这种方法是通过对两个或多个独立样本的观测值进行排序和比较,来推断差异的统计显著性。
秩和检验可以用来检验两组样本的中位数是否有显著差异,例如比较两种不同药物治疗某种疾病的效果。
当然,在样本容量较大、总体分布近似正态时,也可以使用参数检验方法,例如t检验。
但是,当样本容量较小或者总体分布不明确时,秩和检验是一种更可靠的方法。
其次,非参数统计还包括Wilcoxon符号秩检验(Wilcoxon signed-rank test)、Kruskal-Wallis检验和Mann-Whitney U检验等。
这些方法分别用于比较配对样本、多个独立样本和两个独立样本的差异。
Wilcoxon符号秩检验可以用于比较两种不同治疗方法对同一组患者的疗效;Kruskal-Wallis检验可以用于比较多个组别的样本中位数是否有差异;Mann-Whitney U检验可以用于比较两组独立样本中位数是否有差异。
另外,非参数统计还可以用于对数据进行拟合和模型选择。
例如,通过对数据进行分组、拟合和调整,可以用非参数统计方法估计一个连续概率分布的分位数或者密度函数。
这对于描述和预测数据中的异常值、极端观测和长尾分布非常有用。
此外,非参数统计方法还可以用于衡量两个或多个总体之间的相关性和关联性,例如Spearman秩相关系数和Kendall秩相关系数。
非参数统计方法在医学研究中的应用非常广泛。
例如,在药物研发过程中,非参数统计可以用于比较不同剂量的药物对患者疗效的影响。
在临床试验中,非参数统计方法可以用于比较新药物和对照组的差异。
Wilcoxon 秩和检验Wilcoxon 符号秩检验是由威尔科克森(F·Wilcoxon)于1945年提出的.该方法是在成对观测数据的符号检验基础上发展起来的,比传统的单独用正负号的检验更加有效。
1947年,Mann 和Whitney 对Wilcoxon 秩和检验进行补充,得到Wilcoxon —Mann-Whitney 检验,由后续的Mann-Whitney 检验又继而得到Mann —Whitney-U 检验。
一、 两样本的Wilcoxon 秩和检验由Mann ,Whitney 和Wilcoxon 三人共同设计的一种检验,有时也称为Wilcoxon 秩和检验,用来决定两个独立样本是否来自相同的或相等的总体.如果这两个独立样本来自正态分布和具有相同方差时,我们可以采用t 检验比较均值。
但当这两个条件都不能确定时,我们常替换t 检验法为Wilcoxon 秩和检验。
Wilcoxon 秩和检验是基于样本数据秩和。
先将两样本看成是单一样本(混合样本)然后由小到大排列观察值统一编秩.如果原假设两个独立样本来自相同的总体为真,那么秩将大约均匀分布在两个样本中,即小的、中等的、大的秩值应该大约均匀被分在两个样本中。
如果备选假设两个独立样本来自不相同的总体为真,那么其中一个样本将会有更多的小秩值,这样就会得到一个较小的秩和;另一个样本将会有更多的大秩值,因此就会得到一个较大的秩和。
设两个独立样本为:第一个x 的样本容量为1n ,第二个y 样本容量为2n ,在容量为21n n n +=的混合样本(第一个和第二个)中,x 样本的秩和为x W ,y 样本的秩和为y W ,且有2)1(21+=+++=+n n n W W y x (1)我们定义 2)1(111+-=n n W W x (2) 2)1(222+-=n n W W y (3)以x 样本为例,若它们在混合样本中享有最小的1n 个秩,于是2)1(11+=n n W x ,也是x W 可能取的最小值;同样y W 可能取的最小值为2)1(22+n n 。
非参数统计秩相关分析和秩回归非参数统计方法是一类不依赖于总体分布形式的统计方法,它们通常基于样本数据的秩次(rank)或者置换(permutation)来进行统计推断。
秩相关分析和秩回归是非参数统计中常见的两种方法,本文将对它们进行详细介绍。
一、秩相关分析秩相关分析是用于测量两个变量间相关性的方法,它适用于总体分布不满足正态分布假设或无法假设总体分布形式的情况。
秩相关系数可以反映两个变量之间的关系的强度和方向。
常见的秩相关系数包括Spearman相关系数、Kendall相关系数等。
Spearman相关系数是一种非参数的秩相关系数,它将原始数据转换为秩次,然后计算秩次之间的皮尔逊相关系数。
Spearman相关系数的取值范围在-1到1之间,当Spearman相关系数为0时,表示两个变量之间不存在线性关系;当Spearman相关系数为正值时,表示两个变量呈正相关关系;当Spearman相关系数为负值时,表示两个变量呈负相关关系。
Kendall相关系数也是一种非参数的秩相关系数,它与Spearman相关系数类似,但是不考虑秩次之间的距离。
Kendall相关系数的取值范围在-1到1之间,具有与Spearman相关系数类似的解释。
秩相关分析的步骤如下:1.对原始数据进行秩次转换,将每个变量的观测值按照从小到大的顺序进行排列,并用相应的秩次替代原始观测值。
2.计算秩次之间的秩相关系数。
3.使用适当的统计检验方法对秩相关系数进行显著性检验。
秩相关分析的优点是不依赖于总体分布形式,对异常值不敏感,而且可以比较有序变量和无序变量的相关性。
但是它也有一些限制,比如只能检测线性相关性,不能检测非线性相关性。
二、秩回归秩回归是一种非参数的回归分析方法,它用于研究自变量和因变量之间的关系,并不要求总体分布的形式。
秩回归与普通回归的区别在与秩回归是基于秩次转换后的数据进行建模分析的。
秩回归的优点是可以适用于各种类型的数据,不需要对数据进行正态化变换,对异常值不敏感。
遵义师范学院课程教学大纲非参数统计教学大纲(试行)课程编号:280020 适用专业:统计学学时数:64 学分数: 4执笔人:黄建文审核人:系别:数学教研室:统计学教研室编印日期:二〇一五年七月课程名称:非参数统计课程编码:学分:4总学时:64课堂教学学时:64实践学时:适用专业:统计学先修课程:高等数学、线性代数、概率论、数理统计一、课程的性质与目标:(一)该课程的性质本课程属专业方向选修课程。
非参数统计形成于二十世纪四十年代,是与参数统计相比较而存在的统计学一个年轻、活跃而前沿的分支,含有丰富的统计思想并在实践中有着广泛的应用。
非参数统计方法不依赖于总体分布及其参数,适用于多种类型的数据,进行统计推断时仅需要一些非常一般性的假设,因而具有良好的稳健型,在总体分布未知的情况下往往比参数统计方法有效。
(二)该课程的教学目标本课程的教学目的是使学生了解非参数统计在推断统计体系中日益重要的作用,理解非参数统计方法和参数统计方法的区别。
要求学生掌握本课程的基本知识、基本概念、基本原理和基本方法,能应用非参数统计方法解决一些简单的实际问题;注重学生统计思维能力和实践能力的培养,进一步培养学生重视原始资料的完整性与准确性、对数据处理持严肃认真态度的专业素质。
二、教学进程安排课外学习时数原则上按课堂教学时数1:1安排。
三、教学内容与要求第一章引言【教学目标】通过本章学习,使学生清楚非参数统计的研究对象,了解非参数统计的历史,明白非参数统计方法和参数统计方法的区别,认识学习非参数统计方法的必要性,了解非参数统计的一些基本概念与基本工具;通过对初等推断统计的简单回顾,要求学生提炼并把握推断统计思想的实质,为后续章节学习非参数统计的分析技巧和主要思想打下基础。
【教学内容和要求】主要教学内容:非参数统计研究内容;非参数统计小史;初等推断统计回顾;非参数统计基本概念。
教学重点与难点:教学重点是通过与参数统计异同的比较,介绍非参数统计的研究内容与研究方法;教学难点是对检验的相对效率、秩检验统计量、U统计量等非参数统计基本概念的理解。
非参数统计方法概述非参数统计方法是一种在统计学中常用的方法,它不依赖于总体分布的具体形式,而是根据样本数据的秩次或距离来进行推断。
非参数统计方法的应用领域非常广泛,包括但不限于医学、经济学、生态学等各个领域。
本文将对非参数统计方法进行概述,介绍其基本概念、常用方法和应用场景。
一、基本概念非参数统计方法是指在统计推断中,不对总体分布做出任何假设的一类方法。
相对于参数统计方法,非参数统计方法更加灵活,适用于各种类型的数据分布。
在非参数统计方法中,常用的统计量包括秩次统计量、中位数、分位数等,通过这些统计量来进行推断。
二、常用方法1. 秩次检验秩次检验是非参数统计方法中常用的一种方法,它将样本数据按大小排序,用秩次代替原始数据,然后根据秩次的大小来进行推断。
秩次检验包括Wilcoxon秩和检验、Mann-Whitney U检验等,适用于两组或多组样本的比较。
2. 核密度估计核密度估计是一种非参数的概率密度估计方法,它通过在每个数据点周围放置一个核函数,来估计总体的概率密度函数。
核密度估计在密度估计、异常值检测等领域有着广泛的应用。
3. Bootstrap方法Bootstrap方法是一种通过重复抽样来估计统计量的方法,它不依赖于总体分布的假设,可以用于计算统计量的置信区间、标准误差等。
Bootstrap方法在参数估计、假设检验等方面有着重要的应用。
4. 分位数回归分位数回归是一种非参数的回归方法,它通过估计不同分位数下的回归系数,来研究自变量对因变量的影响。
分位数回归在经济学、社会学等领域有着重要的应用。
三、应用场景1. 医学研究在医学研究中,由于数据的复杂性和样本量的限制,非参数统计方法常常被用于分析临床试验数据、生存分析数据等。
例如,Kaplan-Meier曲线的绘制和Log-rank检验就是非参数统计方法在生存分析中的应用。
2. 生态学研究生态学研究中常常涉及到样本数据的非正态性和异方差性,非参数统计方法可以有效地应对这些问题。