第五章插值法与曲线拟合插值法
- 格式:ppt
- 大小:640.00 KB
- 文档页数:58
第5章插值方法5.1 插值问题概述假设f(x)是某个表达式很复杂,甚至根本写不出来的实函数,且已知f(x)在某个区间[a,b]上的n+1个互异的点x0,x1,…,x n处的函数值f(x0),f(x1),…,f(x n),我们希望找到一个简单的函数y=P(x),使得P(x k)=f(x k),k=0,1,…,n.这就是插值问题。
如果我们找到了这样的函数y=P(x),我们就可以在一定范围内利用P(x)近似表示f(x),从而解决了相应的计算问题。
1.利用函数值列表来表示插值问题对于一个插值问题来说,我们的已知条件就是n+1个互异的点处的函数值.回顾高等数学中学习过的函数的表示方法,我们可用下面表1的形式列出已知的函数值,并简称为由表1给出的插值问题。
表1:插值问题的函数值列表2.重要术语对于n+1个基点的插值问题,我们称:f(x) 为被插值函数;P(x)为插值函数;x0,x1,…,x n为插值基点或插值节点;P(x k)=f(x k),k=0,1,…,n为插值条件;[a,b]为插值区间。
注释:对于早期的插值问题来说,f(x)通常是已知的,比如对数函数,指数函数,三角函数等这些问题现在已经不用插值法来计算了;对于现在的许多实际问题来说,我们并不知道f(x)的具体形式,所对应的函数值可能是由测量仪器或其他物理设备中直接读出来的,f(x)只是一个概念中的函数。
3.多项式插值对于n+1个基点的插值问题,如果要求插值函数是次数不超过n 的多项式,记为P n(x),则相应的问题就是多项式插值,并且把P n(x)称为插值多项式。
实际上,我们所考虑的插值函数通常都是多项式函数或分段多项式函数。
由于次数不超过n的多项式的一般形式为P n((x)=a 0+a 1x+a 2x 2+…+a n x n (1)所以只要确定了n+1个系数a 0,a 1,a 2,a n ,我们便确定了一个插值多项式。
4.多项式插值的一般方法对于n+1个基点的多项式插值问题,我们完全可以用上一章中的办法来求插值多项式P n (x)的系数,a 0,a 1,a 2,a n ,它们可表为下面的线性方程组的解,所以多项式插值相对说来是很简单的。
插值法和曲线拟合的主要差异
插值法和曲线拟合是数据处理和分析中常用的方法,它们的主要差异如下:
1. 目标不同:
- 插值法的主要目标是通过已知数据点的函数值推断未知数据点的函数值,以填充数据的空缺部分或者进行数据的重构。
- 曲线拟合的主要目标是通过已知数据点拟合出一条函数曲线,以描述数据点之间的趋势或模式。
2. 数据使用方式不同:
- 插值法使用已知数据点的函数值作为输入,通过构造插值函数来推断未知数据点的函数值。
- 曲线拟合使用已知数据点的函数值作为输入,并通过选择合适的拟合函数参数,使得拟合函数与数据点尽可能接近。
3. 数据点要求不同:
- 插值法要求已知数据点间的函数值比较准确,以保证插值函数的质量,并要求数据点间的间距不会过大,避免出现过度插值或者不稳定的现象。
- 曲线拟合对于数据点的要求相对较松,可以容忍噪声、异常值等因素,因为它不需要将函数曲线完全通过所有数据点。
4. 应用场景不同:
- 插值法常见应用于信号处理、图像处理等领域,可以用于填充缺失数据、图像重构等任务。
- 曲线拟合常见应用于数据分析、模型建立等领域,可以用
于描述数据间的趋势、拟合科学模型等。
综上所述,插值法和曲线拟合在目标、数据使用方式、数据点要求和应用场景等方面存在明显的差异。
Tel:86613747E-mail:*************授课: 68学分:45.1 问题的提出– 函数解析式未知,通过实验观测得到的一组数据, 即在某个区间[a, b]上给出一系列点的函数值y i = f(x i )– 或者给出函数表x x 0x 1x 2……x n yy 0y 1y 2……y n第五章插值与曲线拟合5.2 插值法的基本原理设函数y=f (x )定义在区间[a, b ]上,是[a, b ]上取定的n+1个互异节点,且在这些点处的函数值 为已知 ,即若存在一个f(x)的近似函数 ,满足则称为f (x )的一个插值函数, f (x )为被插函数, 点x i 为插值节点, 称(5.1)式为插值条件, 而误差函数R(x)= 称为插值余项, 区间[a, b ]称为插值区间, 插值点在插值区间内的称为内插, 否则称外插n x x x ,,,10 )(,),(),(10n x f x f x f )(i i x f y =)(x ϕ),,2,1()()(n i x f x i i ==ϕ)(x ϕ(5.1))()(x x f ϕ-插值函数 在n+1个互异插值节点(i=0,1,…,n )处与 相等,在其它点x 就用的值作为f (x )的近似值。
这一过程称为插值,点x 称为插值点。
换句话说, 插值就是根据被插函数给出的函数表“插出”所 要点的函数值。
用的值作为f (x )的近似值,不仅希望能较好地逼近f (x ),而且还希望它计算简单。
由于代数多项式具有数值计算和理论分析方便的优点。
所 以本章主要介绍代数插值。
即求一个次数不超过n 次的多项式。
)(x ϕi x )(i x f )(x ϕ)(x ϕ)(x ϕ0111)(a x a xa x a x P n n n n ++++=--111)(a x a xa x a x P n n n n ++++=-- 满足),,2,1,0()()(n i x f x P i i ==则称P(x)为f(x)的n次插值多项式。
插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。
它们在数据分析、模型构建和预测等领域发挥着重要作用。
本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。
插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。
它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。
原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。
常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。
应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。
主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。
•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。
•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。
曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。
它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。
原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。
然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。
应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。
主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。
•曲线拟合可以选择不同的函数形式和参数,灵活性较高。
•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。
插值和拟合都是函数逼近或者数值逼近的重要组成部分他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过"窥几斑"来达到"知全豹"。
简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。
如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。
表达式也可以是分段函数,这种情况下叫作样条拟合。
而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。
插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。
如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。
从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。
一、概念的引入1. 插值与拟合在现实生活中的应用l 机械制造:汽车外观设计l 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT)2.概念的定义l 插值:基于[a,b]区间上的n个互异点,给定函数f(x),寻找某个函数去逼近f(x)。
若要求φ(x)在xi处与f(xi)相等,这类的函数逼近问题称为插值问题,xi即是插值点l 逼近:当取值点过多时,构造通过所有点的难度非常大。
此时选择一个次数较低的函数最佳逼近这些点,一般采用最小二乘法l 光顾:曲线的拐点不能太多,条件:①二阶几何连续②不存在多余拐点③曲率变化较小l 拟合:曲线设计过程中用插值或通过逼近方法是生成的曲线光滑(切变量连续)光顾二、插值理论设函数y=f(x)在区间[a,b]上连续,在[a,b]上有互异点x0,x1,…,xn处取值y 0,y1,…,yn。