基于主动轮廓模型的图像分割算法
- 格式:pdf
- 大小:349.57 KB
- 文档页数:6
主动轮廓算法 python主动轮廓算法是一种常用于图像分割的算法,它能够自动地将图像中的目标对象轮廓提取出来。
这一算法能够在医疗影像、自动驾驶等领域有着很广泛的应用。
本文将介绍如何在 Python 中使用主动轮廓算法实现图像分割。
第一步:导入相应的库在 Python 中,要使用主动轮廓算法,我们需要导入 numpy 和skimage 中的相应模块。
具体代码如下:```pythonimport numpy as npimport matplotlib.pyplot as pltfrom skimage import data, img_as_floatfrom skimage.segmentation import active_contour```第二步:读取图像要对图像进行分割,我们首先需要读取图像。
这里我们使用skimage 库自带的一张图像,具体代码如下:```pythonimage = img_as_float(data.camera())```第三步:生成初始轮廓接下来,我们需要生成初始的轮廓。
我们可以使用一些预定义的方法生成初始轮廓,如圆形、矩形等。
下面是生成圆形轮廓的代码。
```pythons = np.linspace(0, 2*np.pi, 400)x = 220 + 100*np.cos(s)y = 100 + 100*np.sin(s)init = np.array([x, y]).T```第四步:运行主动轮廓算法有了初始轮廓,我们就可以运行主动轮廓算法了。
在这里,我们可以设置循环的次数、阿尔法值以及 beta 值等参数。
代码如下:```pythonsnake = active_contour(gaussian(image, 3),init, alpha=0.015, beta=10,gamma=0.001)```这里的 gaussian 用于对图像进行高斯滤波以平滑图像。
价值工程0引言在各种图像处理包括细胞图像处理过程中,常常会使用高斯算子对对图像进行滤波处理。
其主要的原因是真实图像由于设备的限制,一般都带有噪声,需要使用一定的算法对图像进行平滑处理。
处理噪声的方法很多,从处理方法上来说,主要分为空域滤波和频域滤波。
空域滤波技术主要有均值滤波、中值滤波、高斯滤波[1]、拉普拉斯变换等各种方法。
频域滤波是先将时域信息转换到频域,在频域中对图像信息进行处理,处理完毕后再转换成时域的一种方法。
在进行图像分割过程中,选择合适的去噪增强算子对图像进行处理直接影响到分割处理的效果。
双边滤波自从被提出以来,因为其具有保留边界的同时又能起到平滑的应用效果,被广泛应用于各种图像增强之中。
本文将双边滤波算子引入主动轮廓分割模型,并将构造出来的区域主动轮廓模型应用于图像分割过程中,推导出水平集函数的演化过程。
并将该水平集分割函数应用于具体的细胞图像分割过程之中。
1基于双边滤波的图像分割能量传导模型1.1双边滤波介绍二维图像可以定义为一个二维矩阵,其中每个元素对应相应位置的像素,元素值即为该像素的灰度值。
记Ip 为图像位于位置p=(pi,pj)处的像素值,记F[I]为应用滤波器F 到图像I 的结果。
高斯滤波计算公式为:GF[I]p =q ∈SΣG σ(‖p-q ‖)I q(1)其中‖p-q ‖为像素p 和像素q 之间的距离,而为G σ———————————————————————作者简介:本文受下列项目资助:中央高校基本科研业务费专项资金,项目编号:12CX04076A ;山东省自然科学基金面上项目,项目编号:ZR2012HM060。
作者简介:马竟锋(1974-),男,安徽安庆人,中国石油大学(华东)计算机与通信工程学院,讲师,博士,研究方向为医学图像处理。
基于双边滤波的主动轮廓模型细胞图像分割方法研究Research on Cell Image Segmentation Method of Initiative Contour Model Based on Bilateral Filtering马竟锋MA Jing-feng ;李晓旭LI Xiao-xu ;罗琳LUO Lin ;祁鑫QI Xin(中国石油大学(华东)计算机与通信工程学院,青岛266580)(China University of Petroleum (East China )School of Computer and Communication Engineering ,Qingdao 266580,China )摘要:区域主动轮廓模型采用先验知识指导建立分割模型,并在分割的过程中采用水平集演化的方式使得零水平集自动收敛于目标物体的边界。
RESEARCH WORK引言图像处理过程中图像分割具有重要作用,通过将图像中感兴趣部分提取,有助于后续图像数据分析。
医学图像分割在患者精确量化诊断中发挥着关键性作用,因此对感兴趣部位做到快速、准确提取,对患者来说具有重要意义。
但大部分医学图像结构相对复杂,并且其灰度差异较小,采取传统的分割方法提取图像的效果不理想[1]。
无边缘主动轮廓(Chan-Vese,CV)模型是一种较为经典的模型,主要是根据图像全局信息,在目标、背景两个不同均值区域对比度图像分割过程中发挥着重要作用,通过探测图像模糊、离散边缘,在噪声干扰应用中具有较强的适应性[2-3]。
CV模型以定位边界的方式选择图像全局信息,其缺点体现在复杂场景中计算效率相对较低,造成能量函数加权因子调节困难,具有局限性。
李淑玲[4]研究指出,CV模型在灰度不均匀、边界不明显、噪声多等医学图像分割中效果不理想。
肝脏图像变化较复杂,不同肝脏MR图像灰度特征存在不同的表现,因为组织、器官等灰度特征不具有单一性,成为腹部医学图像肝脏分割研究的难点[5]。
CV模型改进引入轮廓线图像局部信息,在图像目标边缘处控制曲线演化,减少迭代次数,促进轮廓收敛效能提高[6]。
本文旨在研究基于CV模型的肝脏核磁共振序列图像自动分割方法,为临床医学图像分割选择理想的方法提供理论依据。
1 基本原理1.1 传统CV模型CV模型属于一种经典的活动轮廓模型,以曲线演化和基于CV模型的肝脏核磁共振序列图像自动分割方法高倩倩,孙世春北部战区总医院放射及核医学科,辽宁沈阳 110055[摘 要] 目的研究基于无边缘主动轮廓(Chan-Vese,CV)模型的肝脏磁共振成像(Magnetic Resonance Imaging,MRI)序列图像自动分割方法。
方法 在传统CV模型的基础上,通过对CV模型能量泛函进行改进,使用新的边缘指示函数来替换Dirac函数,优化CV模型参数优化,促进CV模型分割精度、分割速度提升。