七年级数学图形的初步认识
- 格式:doc
- 大小:207.50 KB
- 文档页数:4
七年级上册数学图形初步认识知识点总结图形是指在一个二维空间中可以用轮廓划分出若干的空间形状,图形是空间的一部分不具有空间的延展性,它是局限的可识别的形状。
下面是整理的七年级上册数学图形初步认识知识点,仅供参考希望能够帮助到大家。
七年级上册数学图形初步认识知识点1.我们把实物中抽象的各种图形统称为几何图形。
2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。
3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。
4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5.几何体简称为体。
6.包围着体的是面,面有平的面和曲的面两种。
7.面与面相交的地方形成线,线和线相交的地方是点。
8.点动成面,面动成线,线动成体。
9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。
12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
(公理)13.连接两点间的线段的长度,叫做这两点的距离。
14.角∠也是一种基本的几何图形。
15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1〃。
16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。
18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角19.等角的补角相等,等角的余角相等。
讲义十二图形认识初步三视图:主视图、左视图、俯视图直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。
直线的基本性质:经过两点有一条直线,并且只有一条直线。
简述为,两点确定一条直线。
直线的特征:①直线没有端点,不可量度,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。
射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”;②用一个小写字母表示。
射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短;③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。
线段:直线上两点和它们之间的部分叫做线段。
线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。
线段的表示方法:①用两个端点的大写字母表示;②用一个小写字母表示。
线段的基本性质:两点的所有连线中,线段最短。
简称,两点之间线段最短。
两点的距离:连接两点间的线段的长度叫做这两点的距离。
线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点。
线段大小的比较方法:(1)叠合法;(2)度量法;(3)估测法。
若线段上有n个点(含两个端点),则共有2)1(-nn条线段。
若线段内有n个点(不含端点),则共有2)1(+nn条线段。
例1.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)例2.棱长为1的正方体,横放成如图所示的形状,现请回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,请求出该物体的表面积.(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.例3.如图,平原上有A 、B 、C 、D 四个村庄,为解决当地缺水问题,政府准备投资建一个蓄水池,不考虑其它因素,请画图确定蓄水池H 点的位置,使它与四个村庄的距离之和最小.例4.将线段AB 延长至C ,使BC=31AB ,延长BC 至点D ,使CD =31BC ,延长CD 至点E ,使DE=31CD ,若CE=8㎝,求AB 的长。
第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
图形认识初步知识点汇总1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
5、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
(1)圆柱和圆锥的侧面展开图(2)棱柱和棱锥的展开图(3)根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形-----三棱柱;若展开图中全是三角形(4个)-----三棱锥。
一、单元学习主题本单元是“图形与几何”领域“图形的性质”主题中的“几何图形的初步认识”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题.学生将进一步学习点、线、面、角、三角形、多边形和圆等几何图形,从演绎证明、运动变化、量化分析三个方面研究这些图形的基本性质和相互关系.“图形的性质”是“图形与几何”领域的主要内容,它在义务教育阶段的数学课程中占有重要地位.图形的性质的教学,需要引导学生理解欧几里得平面几何的基本思想,感悟几何体系的基本框架:通过定义确定论证的对象,通过基本事实确定论证的起点,通过证明确定论证的逻辑,通过命题确定论证的结果.要组织学生经历图形分析与比较的过程,引导学生学会关注事物的共性、分辨事物的差异、形成合适的类,会用准确的语言描述研究对象的概念,提升抽象能力,会用数学的眼光观察现实世界;要通过生活中的或者数学中的现实情境,引导学生感悟基本事实的意义,经历几何命题发现和证明的过程,感悟归纳推理过程和演绎推理过程的传递性,增强推理能力,会用数学的思维思考现实世界;要引导学生经历针对图形性质、关系、变化确立几何命题的过程,体会数学命题中条件和结论的表述,感悟数学表达的准确性和严谨性,会借助图形分析问题,形成解决问题的思路,发展模型观念,会用数学的语言表达现实世界.2.本单元教学内容分析冀教版教材七年级上册第二章“几何图形的初步认识”,本章包括八个小节:2.1从生活中认识几何图形;2.2线段、射线、直线;2.3线段长短的比较;2.4线段的和与差;2.5角和角的度量;2.6角大小的比较;2.7角的和与差;2.8平面图形的旋转.“图形的性质”主题通过学习图形的概念,观察图形的特征,经历观察→猜想→验证等过程,以基本图形点、线、面展开研究.认识几何图形,了解线与角、线段与角的有关性质并学会计算,认识平面图形的旋转.本章的基本技能是画一条线段等于已知线段,作一个角等于已知角,作两个角的和与差.能进行角的度数和线段长度的计算.由于是初中几何入门课,要注重对学生良好学习习惯的培养,一般按照“事物或模型→几何图形→文字表示→符号表示”的教学程序,让学生先理解符号或文字所表达的图形及关系,并把它们用图形直观表示出来,化“无形”为“有形”.“图形与几何”教学的一个重要目标是发展学生的空间观念,培养空间想象力,为了达到教学目标,本章教学要重视让学生从事动手操作、观察、想象、交流等活动,为学生提供有意义、有一定挑战性的学习任务,引导学生获得几何图形的知识和有关技能,为后期学习三角形、平行四边形、圆的相关概念、定理的证明以及几何综合问题等内容的教学起到铺垫作用.同时注意,本章中的一些抽象几何概念只要求学生有一些初步直观的认识,一些基本结论、基本事实也仅要求通过观察、思考、探究等活动归纳得出,仅作“说理”和“简单推理”,不要求达到很高的科学严密程度,这为以后教学逐步提高推理要求做了准备.三、单元学情分析本单元内容是冀教版教材数学七年级上册第二章几何图形的初步认识,学生在小学阶段对立体图形和平面图形有了初步的认识,掌握了简单图形的周长、面积、体积的计算方法,初步认识了图形的平移、旋转和轴对称,形成了初步的空间观念和几何直观.这使得本单元的学习之初容易理解,学生的学习兴趣也会很大.但随着学习的深入,对数学的探究意识、数学的抽象能力、推理能力的要求都不断提高.七年级的学生刚从小学过渡到初中,对新知识充满好奇,但还未经历过真正的数学观察、猜想、操作、思考、说理等数学活动,小组合作意识和交流、表达的能力都较弱,所以在教学过程中,要耐心引导,多鼓励学生大胆猜想,勇于表达,初步培养学生积极探索,发现问题,分析问题和解决问题的能力,逐步提高推理能力.本单元难点是对几何问题进行分析并有条理地表达,老师要利用课上多让学生交流,表达,并不断规范,在作业处理中,指出不规范表达的地方,耐心指导学生改正,增强学习信心.四、单元学习目标1.通过对丰富的实物和实例的抽象,进一步认识几何图形,尤其是点、线段、射线、直线和角,并会表示它们,发展学生抽象能力.2.经历观察、测量、画图、折纸等活动,了解点、线段、射线、直线和角的有关性质,初步形成空间观念.3.会比较线段的长短和角的大小,掌握判定线段长短和角大小的方法,发展空间观念和几何直观.4.认识角的度量单位,会进行角的换算.5.会计算线段的和与差、角的和与差,并学会用数学知识解决简单几何问题,培养学生的模型观念、应用意识.6.能使用直尺(无刻度)和圆规作线段和角,培养学生的动手能力.7.通过和角的认识相结合认识平面图形的旋转,提高学生的探究力和想象力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
初一数学初步图形的认识在初一数学的学习中,初步图形的认识是一个重要的板块。
它为我们打开了几何世界的大门,让我们开始用全新的视角去观察和理解周围的事物。
首先,让我们来谈谈点、线、面、体这些基本元素。
点,是构成图形最基本的单位,它没有大小和形状,就像宇宙中的一粒微小尘埃。
线,则是由无数个点组成的,有直线和曲线之分。
直线笔直地延伸,没有尽头;曲线则优美地弯曲,充满了变化。
面是由线围成的,有平面和曲面。
平面像一张平整的纸,而曲面则如同一个弯曲的镜面。
体是由面围成的,比如正方体、圆柱体、球体等,它们在我们的生活中随处可见。
线段是我们常见的一种图形。
它有两个端点,可以测量长度。
在实际生活中,像铅笔、筷子等物体的形状都可以近似地看作线段。
线段的长度是固定的,我们可以用尺子来测量。
而射线则只有一个端点,另一端无限延伸。
比如手电筒发出的光,就可以看作是射线。
直线没有端点,可以向两端无限延伸。
角也是初一数学中重要的图形概念。
角是由两条有公共端点的射线组成的图形。
这个公共端点叫做角的顶点,这两条射线叫做角的边。
角的度量单位是度,我们可以用量角器来测量角的大小。
锐角是小于90 度的角,直角是等于 90 度的角,钝角是大于 90 度小于 180 度的角,平角是等于 180 度的角,周角是等于 360 度的角。
在认识图形的过程中,我们还要学会如何区分相交线和平行线。
相交线是两条直线在同一平面内有一个公共点的情况。
而平行线则是在同一平面内,不相交的两条直线。
平行线的性质非常重要,比如两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
三角形是一种常见的多边形。
它由三条线段首尾顺次相接组成。
三角形按角可以分为锐角三角形、直角三角形和钝角三角形;按边可以分为等边三角形、等腰三角形和不等边三角形。
三角形具有稳定性,这一特性在建筑和生活中有着广泛的应用。
比如,自行车的车架、塔吊的支架等都利用了三角形的稳定性。
四边形也是我们经常接触到的图形。
华东师大版七年级数学上册
第四章《图形的初步认识》知识点汇总
复习内容:立体图形的三视图、展开图,最基本的图形——点和线,角,相交线,平行线.
(一)立体图形的三视图:正视图、左视图、俯视图
(二)立体图形的展开图
(三)最基本的图形——点和线
1、两点之间,线段最短.
2、连结两点的线段的长度,叫做这两点的距离.
3、经过两点有一条直线,并且只有一条直线.(两点确定一条直线)
4、把一条线段分成两条相等线段的点叫做线段的中点.(四)角
1、一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.
2、⑴如果两个角的和是90º,这两个角叫做互为余角.
⑵如果两个角的和是180º,这两个角叫做互为补角.
说明:①若∠1与∠2互余,则∠1+∠2=90º.
②若∠1与∠2互补,则∠1+∠2=180º.
3、⑴同角(或等角)的余角相等.
⑵同角(或等角)的补角相等.
4、用角度表示方向: 一般以正北、正南为基准,向东旋转的角度表示方向.如图,OA 示为北偏西60º.
5、对顶角相等.。
⎧
⎨
⎩
⎧
⎨
⎩第四章《图形初步认识》复习学案
一、多姿多彩的图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形
平面图形:三角形、四边形、圆等。
主(正)视图---------从正面看
2、几何体的三视图侧(左、右)视图-----从左(右)边看
俯视图---------------从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的。
(2)了解直棱柱、圆柱、圆锥、棱锥的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是,它是几何图形最基本的图形。
线:面和面相交的地方是,分为和。
面:包围着体的是,分为和。
体:几何体也简称体。
(2)点、线、面、体的关系:点动成线,线动成面,面动成体。
二、直线、射线、线段
1、基本概念
图形表示方法端点个数延伸方向度量
线段
线段AB (或线
段BA)
线段 a
不能无限延伸可以
射线射线OP 向一个方向无限延伸不能
直线
直线 AB(或直
线 BA)
直线 a
向两个方向无限延伸不能
2、直线的性质
(1)经过两点有一条直线,并且只有一条直线。
简单地:(直线公理)
(2)两条不同的直线有一个公共点时,就称两条直线,这个公共点叫它们的。
(3)射线和线段都是直线的一部分。
3、画一条线段等于已知线段:(1)度量法(2)用尺规作图法
4、线段的大小比较方法:(1)度量法(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段分成相等的两条线段的点,叫做线段的中点。
图形:
符号:若点M 是线段AB 的中点,则AM=BM=
2
1
AB ,AB=2AM=2BM 。
用符号语言表示就是:
∵ ∴
类似的,把线段分成相等的三条线段的点,叫线段的三等分点。
把线段分成相等的n 条线段的点,叫线段的n 等分点。
6、线段的性质
两点的所有连线中,线段最短。
简单地: (线段公理) 7、两点的距离:连接两点间的线段的长度叫做两点的距离。
8、点与直线的位置关系:(1)点在直线上 (2)点在直线外。
三、角
1、角:有公共端点的两条射线所组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
A 边
公共端点(顶点)
2、角的表示方法:角用“∠”表示,读做“角”。
角的表示方法有下面四种: (1)、角可以用三个大写字母表示,但表示顶点的字母一定要写在中间
A
如:∠ABC 或∠CBA
(2)、 用一个字母表示角,但必须是以这个字母为顶点的角只有一个 如:∠B
(3) 、用一个数字表示角,在靠近顶点处画上弧线,写上数字如:∠1
1
(4)、也可用一个希腊字母表示,并在靠近顶点处画上弧线,写上希腊字母 如:∠ α
3、角的度量单位及换算:度、分、秒是常用的角的度量单位。
1周角=360° , 1平角=180° , 1°= 60′ ,1′= 60″
角的度、分、秒是60进制的,以度、分、秒为单位的角的度量制,叫做角度制。
4、角的分类
∠β 锐角 直角 钝角 平角 周角 范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180°
∠β=360°
5、角的比较方法
α
B
C 边
B C 图形语言
(1)度量法 (2)叠合法
6、角的和、差、倍、分及其近似值:进行角度的四则运算
①用度、分、秒表示37.26°= ②用度表示52°9′36″= 。
③45°19′28″+26°40′32″ ④ 98°18′-56. 5°
⑥36°15′27″×3 ⑦27°47′×3+108°30′÷6
7、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
8、角的平分线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。
图形: 如图,射线OB 是∠AOC 的平分线,则有
∠AOB=∠BOC=
2
1
∠AOC 或 2∠AOB=2∠COB=∠AOC 用符号语言表示就是:
∵
∴
9、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角。
其中∠1是∠2的余角,∠2是∠1的余角。
(2)若∠1+∠2=180°,则∠1与∠2互为补角。
其中∠1是∠2的补角,∠2是∠1的补角。
(3)互余、互补的性质 10、方向角 (1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向:用角度表示方向:一般以正北、正南为基准,
用向东或向西旋转的角度表示方向,
如图所示,OA 方向可表示为
四、课堂练习与作业(一)
1、下列说法中正确的是( )
A 、延长射线OP
B 、延长直线CD
C 、延长线段C
D D 、反向延长直线CD 2、下面是我们制作的正方体的展开图,每个平面内都标注了字母,请根据要求回答问题:
(1)和面A 所对的会是哪一面? (2)和B 面所对的会是哪一面? (3)面 E 会和哪些面相交? 3、两条直线相交有几个交点? 三条直线两两相交有几个交点? 四条直线两两相交有几个交点?
图形语言
60º
思考:n条直线两两相交有几个交点?
4、已知平面内有四个点A、B、C、D,过其中任意两点画直线,最少可画多少条直线,最多可画多少条直线?画出图来.
5、已知点B是线段AD的中点,点C是线段BD的中点,CD=2.5厘米,请你求出线段AB、AC、
AD、BD的长各为多少?
6、已知线段AB=4厘米,延长AB到C,使BC=2AB,取AC的中点P,求PB 的长.。