七年级图形的初步认识
- 格式:doc
- 大小:58.30 KB
- 文档页数:9
七年级数学几何图形初步认识知识点七年级数学几何图形初步认识知识点一、认识几何图形几何图形是数学中重要的一部分,它们是通过点、线、面等基本元素构成的抽象概念。
在七年级数学中,我们将会学习如何分类、识别以及求解各种几何图形。
二、几何图形的分类1、直线型:包括线段、射线、直线。
线段是指两点之间的距离,射线是线段的一个延伸,直线则是线段的两端无限延伸。
2、平面型:包括圆形、三角形、四边形等。
圆形是指所有到定点(圆心)的距离相等的点的集合,三角形是由三个不在同一直线上的点连接而成的图形,四边形则是有四条线段围成的图形。
3、立体型:包括长方体、正方体、圆柱等。
长方体是有六个面、八个顶点和十二条边的立体图形,正方体是长方体的特例,圆柱则是一个旋转的矩形。
三、几何图形的特征和性质1、线段:有两个端点,有一定的长度。
两点之间线段最短。
2、射线:有一个端点,可以向一端无限延伸。
3、直线:没有端点,可以向两端无限延伸。
4、圆形:到定点(圆心)的距离相等的点的集合。
有无数条半径和直径。
5、三角形:具有稳定性,三条边长确定后,形状就不能再改变。
6、四边形:容易变形,四边长度确定后,形状固定。
7、长方体:有六个面,每个面都是矩形。
8、正方体:是长方体的特例,六个面都是正方形。
9、圆柱:上下两个底面是圆,侧面展开后是一个矩形。
四、几何图形的计算1、计算长度:对于线段、弧长、面积等计算,我们通常会用到一些基本的公式。
例如,对于线段,我们可以用尺子直接测量;对于弧长,可以用弧长公式计算;对于面积,可以用面积公式计算。
2、计算角度:对于角度的计算,我们可以用量角器或者三角函数。
例如,对于一个直角三角形,我们可以利用勾股定理来计算角度。
3、计算体积和面积:对于立体图形,我们通常会计算它们的体积和表面积。
例如,对于一个长方体,我们可以利用它的长、宽、高来计算体积和表面积。
五、几何图形的应用几何图形在日常生活中有着广泛的应用。
例如,我们可以用三角形来稳定物品,用圆形来设计优美的曲线,用长方体和正方体来构建房屋和家具。
七年级数学上第四章图形的初步认识单元教学计划第四章:图形认识初步本章介绍了多种图形,包括立体图形和平面图形。
其中,点、线、角等是最基本的图形。
通过自主探究和实例,我们可以探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法、度量、画法、比较、余角和补角等。
此外,我们还可以探索比较线段长短的方法和线段中点。
这些概念都是认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。
本章涉及到的主要数学思想和方法包括分类讨论思想、方程的思想和由特殊到一般的思想。
分类讨论思想可以解决直线上的点点位置不确定的问题,或者从公共端点出发的一条射线在角内或角外的不确定问题。
方程的思想则可以用于涉及线段和角度的计算中,通过列方程求解,可以清楚简捷地表示出几何图形中的数量关系。
由特殊到一般的思想则主要体现在依靠图形寻找规律的题中。
本章的教学重点包括角的比较与度量、余角和补角的概念和性质,以及直线、射线、线段和角的概念和性质。
教学难点则在于正确表达概念和性质的几何语言,以及建立空间观念。
本章的教学目标包括体验、感受和认识以生活中的事物为原型的几何图形,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系。
我们还可以画出从不同方向看一些基本几何体以及它们的简单组合得到的平面图形,了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型。
通过丰富的实例,我们可以进一步认识点、线、面、体,理解它们之间的关系,并在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉。
此外,我们还可以逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形。
四、主要教学方法、手段、选用的教学媒体本章教学采用小组合作、讲授法和练法相结合的教学方法。
在教学过程中,将使用小黑板和班班通等多种教学媒体辅助教学。
五、课时安排本章教学时间约为16课时,具体分配如下:4.1几何图形约4课时,主要介绍基本几何图形的定义、性质及分类。
第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
华师大版数学七年级上册《第4章图形的初步认识》教学设计一. 教材分析华东师范大学版数学七年级上册《第4章图形的初步认识》是学生在小学阶段对图形学习的基础上,进一步深化对图形性质和图形变换的理解。
本章主要内容有:图形的平移、旋转,视图,以及相交线和平行线。
这些内容在日常生活和进一步学习数学中都有广泛的应用。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们可以通过观察、操作、思考来进一步理解图形的性质和图形变换。
但同时,学生的空间想象力还需要进一步培养,他们对于一些抽象的图形变换的理解可能还存在一定的困难。
三. 教学目标1.了解平移、旋转的概念,能进行简单的图形变换。
2.能通过观察、操作、思考,进一步理解图形的性质。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:图形平移、旋转的性质,视图的概念。
2.教学难点:图形变换的理解和应用,空间想象能力的培养。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考来理解图形的性质和图形变换。
2.利用多媒体辅助教学,提供丰富的图形资源,帮助学生直观地理解图形变换。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.多媒体教学设备。
2.图形素材。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些生活中的图形变换,如旋转门、滑滑梯等,引导学生思考:这些现象的本质是什么?它们有什么共同的特点?2.呈现(10分钟)介绍平移、旋转的概念,并通过多媒体展示一些图形的平移、旋转实例,让学生直观地理解这两个概念。
3.操练(10分钟)让学生通过实际操作,尝试进行图形的平移、旋转,并观察、分析平移、旋转前后的图形有什么变化,进一步理解平移、旋转的性质。
4.巩固(10分钟)通过一些练习题,让学生运用所学的平移、旋转知识,解决实际问题,巩固所学内容。
5.拓展(5分钟)引导学生思考:除了平移、旋转,还有哪些图形变换?它们之间有什么联系和区别?6.小结(5分钟)对本节课的主要内容进行小结,强调平移、旋转的性质和应用。
第3章图形的初步认识3.1生活中的立体图形1.能从现实背景中抽象出立体图形;2.认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球;3.认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.重点1.感受图形世界的丰富多彩;2.认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球.难点认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.一、导入新课一幅幅精美的图片带领同学们一起神游大地,去领略祖国的美景.出示图片:北京天坛、故宫、鸟巢、水立方.千姿百态的建筑物美化了我们的生活,展示了建筑师的聪明才智,在这些实物中有没有大家熟悉的立体图形?二、探究新知1.我们生活中的很多物体都是立体的,而这些物体中有一部分是较有规则的,如:生活物体苹果、球天坛顶端塔顶粉笔盒笔筒类似图形球体圆锥棱锥棱柱圆柱2.常见的立体图形如下图:在上面的图形中:(1)图1所表示的立体图形是柱体(圆柱体);(2)图2所表示的立体图形是柱体(棱柱体);(3)图3所表示的立体图形是锥体(圆锥体);(4)图4所表示的立体图形是球体;(5)图5所表示的立体图形是锥体(棱锥体).3.多面体的概念:观察上图2,5与图1,3,4,它们有什么区别?小结:如上图2,5,围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.4.归纳总结:你能将这些立体图形进行分类吗?简单立体图形分类:立体图形{柱体{圆柱棱柱球体锥体{圆锥棱锥5.另外,棱柱有三棱柱、四棱柱、五棱柱、六棱柱……棱锥有三棱锥、四棱锥、五棱锥、六棱锥……三、课堂练习1.在下面四个物体中,最接近圆柱的是()2.下列图形中上面是一些具体的物体,下面是一些立体图形,试找出与上面立体图形对应的实物.四、课堂小结1.简单立体图形分类:立体图形{柱体{圆柱棱柱球体锥体{圆锥棱锥2.多面体的概念:围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.五、课后作业教材习题4.1第1~3题.本节课的教学应从具体的图像入手,引导学生从中抽象出立体图形,使学生经历从具体到抽象的思维过程.初步培养学生的抽象思维能力,通过对简单立体图形的分类,渗透分类思想,提高学生的识图能力,通过比较掌握图形的特征.3.2立体图形的视图3.2.1 由立体图形到视图1. 经历“从不同方向观察物体”的活动过程,发展空间观念与空间想象能力;2. 在观察的过程中,初步体会从不同方向观察同一个物体可能看到不一样的结果.重点1. 仔细观察物体,确定好物体的主视,左视,俯视方向;2. 如何确定物体的三视图.难点1. 根据立体图形和视图方向,画出立体图形的视图;2. 根据具体的立体图形分析图形的组成等.一、导入新课课件展示《题西林壁》:横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中. 苏东坡给我们描绘了一段庐山瑰丽的风景图.问题:1.从诗中可以看出,苏东坡从不同角度对庐山进行了观察,那他都从哪些角度对庐山进行了观察呢?2.诗中蕴含着什么道理,对我们有什么启发?【设计意图】通过诗词描述的形式展示一段风景,通过跨学科的方式,以苏东坡的一首《题西林壁》把同学们带入到一段如诗如画的境界中来,再从诗句中提炼出数学知识.这样,不但增强了学生的人文意识,还让学生感受到了数学中的“美”.二、探究新知(一)从不同方向观察立体图形有一个长方体如图:长方体有6个面,如果我们从上,下,左,右,前,后六个方向去观察,肯定可以确定它的形状和大小,而实际上从正面看与从后面看得到的是同一种图形.请同学们说说,你看到到的是什么图形,边长各是多少?(二)判断由立体图形得到的视图13. ( 2024·江汉区模拟)已知一个几何体如图所示,那么它的左视图是()A B C D9. ( 2024·二道区校级四模)下列几何体中,其主视图和俯视图完全相同的是()A B C D三、课堂练习1.2024年2月17日,全球首架大型客机从上海起飞参加第九届新加坡国际航空航天与防务展.商飞是中国首款按照国际通行适航标准自行研制、具备自主知识产权的喷气式中程干线客机.如图是大型客机的实物图,其俯视图是( A )A BC D2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是( B )A B C D3.( 2019秋·镇平县期末)一个几何体由大小相同的小立方块搭成,从上面看到的几何体形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体得到的形状图是()A B C D四、课堂小结从不同方向观察同一个物体,所看到的结果是不同的,从正面看到的图形成为主视图,从左面看到的图形成为左视图,从上面看到的图形成为俯视图五、课后作业教材第129页习题4.2本节课对学生的抽象思维能力发展比较重要,是学生由形象思维到抽象思维的过度.通过由立体图形到试图的学习过程,是学生明确从不同方向看物体,可能会得到不同的图形,通过观察与归纳能画出不同方向看到的图形,发展观察思维能力3.2.2 由视图到立体图形1. 能画出简单立体图形的三视图;2. 使学生能利用三视图来描述出实际的立体图形.重点1. 仔细观察物体的主视,左视,俯视图,根据三视图描述出立体图形;2. 如何确定物体的三视图.难点1. 如何根据三视图,画出正确的立体图形;2. 根据三视图对立体图形做相关计算(面积,体积,个数等).一、导入新课健康饮水从“凉白开”开始,同学们用来烧开水的水壶是啥样子的呢,请同学们描述一下.下面看看老是找到几种常见的电热水壶的样子,看看跟同学们加的是否一样呢?二、探求新知(一)通过从不同方向观察物体,抽象出具体的物体形象.是不是各种形状的都有呀,请同学们观察下面的电水壶的三种视图,试着想象一下这个电水壶是什么样子的?请同学们分别描述一下你看到的样子:________.(二)通过观察三视图,确定物体具体形象.三、课堂练习1. 如图是一个立体图形的三视图,那么这个立体图形是()A B C D2.如图为某几何体的三种视图,这个几何体可以是()A B C D3.下面两幅图是由5个小正方体搭成的几何体的主视图与俯视图,则搭成这个几何体的左视图为()A B C D4.用若干个相同的小正方体组成的几何体的俯视圈和左视图如困所示,则组成该几何体所用的正方体最少是()A.5个B.6个C.7个D.8个四、课堂小结通过观察物体的三视图(包括三视图所标注的数据等),抽象出具体的立体图形并描述出来..能通过分析三视图,对立体图形进行相关计算.五、课后作业教材第129页习题4.2本节课让然关注学生的抽象思维能力发展,是学生由形象思维到抽象思维的过度.通过由观察三个方向的视图,来确定立体图形是本节课的重点,开始可以由简单的,学生熟悉的图形入手,让学生通过观察和想象,描述具体的立体图形,亦可以让学生通过实物演示得出结论,然后总结规律和方法,逐步过渡到能直接抽象出立体图形.3.3立体图形的表面展开图1.让学生通过直观感知、操作等实践活动,丰富立体图形的认知和感受,进一步认识立体图形与平面图形的关系;2.会判断所给定的平面图形能否折成立体图形;3.给出一些立体图形的展开图,能说出相应立体图形的名称;4.会判断给定的平面图形是否为某立体图形的展开图,并会把一个简单的立体图形展开成平面图形.重点根据立体图形研究其展开图和根据展开图判别立体图形.难点研究一个简单立体图形展开图.一、导入新课1.观察生活的周围,就会发现物体的形状千姿百态……,这其中蕴含着许多图形的知识.2.当我们进行包装时,它们的展开图是怎样的呢?下面让我们一起来探究.二、探究新知1.圆柱体是我们所熟悉的图形,那么圆柱体的侧面展开图是什么图形呢?请你画出来.2.“折一折”:如下图是多面体的展开图,你能说出这些多面体的名称吗?3.正方体有哪几种展开图,你能画出来吗?学生以小组为单位展开探究,将结果画在黑板上,教师及时予以总结.正方体展开图如下图:根据图形做出归纳小结:第一行是1-4-1组合;第二行第1~3个是2-3-1组合;第二行最后两个分别是2-2-2和3-3组合.三、课堂练习1.如图,()不是正方体的展开图.2.如图,下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.3.在图中添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有()A.7种B.4种C.3种D.2种四、课堂小结通过本节课的学习,你有哪些收获?还有哪些疑惑?五、课后作业教材第131~132页练习第1,2,3题.本节课主要内容是立体图形的平面展开图,学习本节课内容需要学生有一定的空间想象能力,所以在实际教学中,应多从具体的实物入手,让学生通过动手操作来发现规律并及时进行总结,然后再通过抽象的想象来解决问题,给学生一个适应的过程.3.4平面图形1.知识目标:让学生经历观察——画图——认知——设计的过程,了解生活中的圆和多边形;通过画图——分析——归纳,了解多边形与三角形之间的关系,将一个多边形分割成三角形.2.能力目标:从具体图形中,通过抽象、概括,画出它的表面形状,把一个多边形进行分割转化成三角形,从中渗透数学转化思想,并锻炼学生的动手操作能力.重点让学生发现生活中的圆、多边形及其给生活带来的美和享受,进而认识多边形,会将一个多边形分割成三角形.难点多边形分割成三角形的方法.一、导入新课1.观察下面所示的各物体,你能画出它们表面轮廓线的形状吗?2.虽然我们所处的世界是一个立体的世界,是一个三维的世界,但通过前面的学习,我们也知道,立体图形是由平面图形所组成的,我们也知道,其实有时我们观察物体,都是从其表面开始的:生活物体硬币镜框塔的横截面三角旗扇子表面图形圆长方形六边形三角形扇形二、探究新知1.其实,生活中的物体,它们的表面都是有一定形状的平面图形,如:2.观察这些图形,你能发现它们是怎样构成的吗?概括:(1)圆是由曲线围成的封闭图形;(2)多边形是由线段围成的封闭图形.按照组成多边形的边数,多边形可分为三角形、四边形、五边形、六边形……另外,多边形也可分为凹多边形与凸多边形.3.我们都知道,每个多边形都可以看成是由三角形组成的,即三角形是最基本的图形,每一个多边形都可以分割成若干个三角形.如:从上图中,可以发现三角形的个数刚好与边数有一定的规律:三角形的个数=边数-2三、课堂练习1.下列图形中,是四边形的是()A.①③B.②③④C.③④D.①②④⑤2.如图,每一个多边形都可以按如图的方法分割成若干个三角形.按如图所示的方法,十五边形可以分成________个三角形.四、课堂小结1.(1)圆是由曲线围成的封闭图形;(2)多边形是由线段围成的封闭图形.2.在多边形中,三角形是最基本的图形,每一个多边形都可以分割成若干个三角形.五、课后作业教材第136页练习第1,2题.1.在本节课的教学中,从数学的具体图形入手,让学生通过观察与思考,得出结论.将多边形分割成若干个三角形是本节课教学的难点,教师要引导学生动手操作,总结出规律,应该鼓励学生采用不同的分割方法.2.本节课能抓住学生的爱好和心理需求,在轻松、愉快的气氛中让学生学到数学知识,并能把数学知识同生活实际联系起来.3.本节课是在学生认识多边形和圆,并认识到它们可以组成各种优美的图案的基础上发散学生的思维能力,培养学生大胆想象的能力、创新能力和动手能力.让学生真正参与了教学,同时学生也得到了展示自己的机会和舞台.3.5最基本的图形——点和线3.5.1点和线1.使学生理解任何图形都是由点和线组成的,体会线段、射线、直线的形象,正确区分这三个图形,掌握它们的表示方法.2.感受、体会、理解“两点之间,线段最短”以及“两点确定一条直线”,掌握两点间距离的概念.重点线段、射线、直线的定义以及表示方法,熟悉简单的几何语言.难点线段、射线、直线的区别与联系.一、导入新课1.如果你站在一座足够高的楼上,望着楼底下的某一个人,那么你将能见到什么?2.黑夜中用聚光灯照射远处的墙壁,我们会看到什么?3.如果你把一条两头都打结的绳子拉直了,你将能发现什么?二、探究新知1.从情景中,我们可以知道,你能看到的将是一个点,而这个点就表示着这个人或聚光灯照射处的位置,因此,可以概括:点通常表示一个物体的位置.点图形:·A表示:点A(A点).2.日常生活中,一根拉紧的绳子、一根竹竿、人行横道线都给我们以线段的形象.线段图形:表示:线段AB线段d3.利用线段的形象,我们顺利地引出了射线与直线.概括:把线段向一方无限延伸所形成的图形叫做射线;把线段向两方无限延伸所形成的图形叫做直线.射线图形:表示:射线AB射线d直线图形:表示:直线AB直线d4.小结:对于线段、射线、直线,应该进行综合的比较:线段射线直线图形表示线段AB 射线AB 直线AB几个端点2个1个0个能否延伸不能向一边无限延伸向两边无限延伸能否度量能不能不能5.试一试.(1)线段公理观察下图,从A地到B地有三条路径,你会选择哪一条?从上边的图中,我们很容易发现:如果从A地到B地,走直路的路程是最短的,即在这些把A,B连结起来的线中,线段AB是最短的.概括:两点之间,线段最短.连结两点间的线段的长度叫做两点间的距离.(2)直线的公理我们要把一根木条钉紧,只用一个钉子,行吗?那么至少需要钉几个钉子才能将木条钉紧?由生活中的经验,我们都知道,一个是不够的,至少需要两个钉子才能将木条钉紧.概括:经过两点有一条直线,并且只有一条直线,即两点确定一条直线.三、课堂练习1.四条直线两两相交,其交点个数最多有()A.3个B.4个C.5个D.6个2.如图所示,共有线段________条;共有射线________条;共有直线________条.3.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明______________________;用两个钉子把细木条钉在木板上,就能固定细木条,这说明________________________.四、课堂小结1.线段、射线、直线之间的区别.2.两点之间,线段最短.连结两点间的线段的长度叫做两点间的距离.3.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.五、课后作业教材习题4.5第1,2题.本节课是学生学习几何的入门课,培养学生的几何意识对于本节课来讲就很重要,教师可以从具体形象的实际例子入手,使学生经历从具体到抽象的思维过程,从而培养学生的几何意识.抽象是数学的一种基本思想和基本方法,让学生从实际生活的物体、图形中抽象得到点、线、面、体等数学概念.概括事物的数学属性,引导学生从数学的角度去看待实际物体,提高学生的抽象思维能力,引导学生的思维习惯.3.5.2线段的长短比较1.使学生分别掌握测量与重叠来比较线段大小的方法;2.使学生充分理解两条线段大小比较所隐含的意义,能从“量”与“形”上进行转化;3.线段中点的性质及其简单运算.重点线段大小比较的方法及其原理.难点如何引导学生从“数量”的角度引入到从“形”的角度来分析两条线段的大小比较.一、导入新课1.如果有两个同学在比较高矮,你们一般是怎么做的?解决方法:让两个人站在一起来比较;分别量出这两个同学的身高.2.如何比较数学书长和宽的长度大小?你能够想到什么方法? 解决办法:可以拿两本相同的数学书,将长和宽重叠进行比较;分别测量长和宽的长度;用圆规截取书本的宽度,再和长相比较.二、探究新知1.从上面的探究总结,怎样比较下图中两条线段的长短?小结:从上面的引例,我们很容易知道,比较两条线段的长短有两种方法: (1)用刻度尺度量;(2)利用圆规进行移动.如图有线段AB 与线段CD ,且进行了以上的有关比较方法.如果通过比较可知:线段AB 比线段CD 短,则表示为: AB<CD(或CD>AB)2.如图,MN 是已知线段,你能用直尺和圆规准确地画一条与MN 相等的线段吗? 小结:我们可以先画射线AB ,然后用圆规量出线段MN 的长,再在射线AB 上截取AC =MN ,那么,AC 就是所要画的线段.3.在一张半透明纸上画一条线段AB ,将线段AB 折叠,使点A 和点B 重合,折痕与线段AB 的交点为C ,测量AC 、BC 和AB 的长度,你有什么发现?小结:AC =CB =12AB ,AC +CB =AB归纳:把一条线段分成两条相等线段的点,叫做这条线段的中点. 如上图,点C 是线段AB 的中点. 三、课堂练习1.如图①,AD =AB -________=AC +________.2.如图②,下列说法不能判断点C 是线段的中点的是( )A .AC =CB B .AB =2AC C .AC +CB =ABD .CB =12AB3.在直线m 上顺次取A ,B ,C 三点,使AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,求线段OB 的长.四、课堂小结1.比较两条线段的长短有两种方法: (1)用刻度尺度量;(2)利用圆规进行移动.2.把一条线段分成两条相等线段的点,叫做这条线段的中点. 如下图,点C 是线段AB 的中点.则AC =CB =12AB ,AC +CB =AB.五、课后作业教材习题4.5第4,5题.在本节课的安排上应逐渐在几何中渗透几何语言的描述,并应注意到其语言的规范性.在知识上应对本节课内容上有所拓展,而不能局限于教材,要引导学生来发现问题,并学会找到解决问题的方法.3.6角3.6.1角1.使学生通过实际生活中对角的认识,建立起几何中角的概念,并能掌握角的两个定义;2.使学生掌握角的各种表示方法;3.使学生掌握平角、周角和直角的概念;4.掌握角的单位换算,会进行计算;5.会用角准确地表示方向.重点角的概念及两个定义和角的表示方法.难点角的单位换算和用角准确地表示方向.一、导入新课观察下面的图形,你发现有什么共同的特点吗?这些图形都给了我们角的形象.二、探究新知1.根据你对上面角的观察,你能说说什么样的图形叫做角?小结:角的定义:(1)角是由两条有公共端点的射线组成的图形.(2)从运动变化的角度来看,角可以看成是有一条射线绕着它的端点旋转而成的图形.2.如何表示一个角呢?小结:角的表示方法:有以下几种表示方法(如图所示):3.平角和周角在上面的旋转过程中,有两种特殊的情况:第一种是绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角;第二种是绕着端点旋转到终边和始边重合,这时所成的角叫做周角.4.角的度量如何使用量角器测量角的大小?从量角器中我们已经知道如果把周角分成360等份,每一份就是一度,记作1°,但是一个角并不正好是整数度数,与长度单位一样,考虑用更小一些的单位.把一度分成60等份,每一份就是1分,记作1′;而把一分再分成60等份,每一份就是1秒,记作1″.这样,角的度量单位度、分、秒有如下关系:1周角=360°1平角=180°1°=60′1′=60″5.方位角还记得下图的八个方向吗?但在日常生活中,八个方向是不够用的,这只是一种大致的方向.如果要准确地表示方向,那就要借用角度的表示方式.三、课堂练习1.计算:(1)180°-(35°18′5″+62°56′15″);(2)180°-79°36′20″;(3)73°45′55″+61°41′37″.2.写出图中所有小于平角的角.四、课堂小结1.角的定义(1)角是由两条有公共端点的射线组成的图形.(2)从运动变化的角度来看,角可以看成是由一条射线绕着它的端点旋转而成的图形.2.一条射线绕着端点旋转到角的终边和始边成一条直线,这时所成的角叫做平角;绕着端点旋转到终边和始边重合,这时所成的角叫做周角.3.角的单位换算1周角=360°1平角=180°1°=60′1′=60″4.我们可以借用角来表示方向.五、课后作业教材第148页练习第1,2题.本节课的教学应该从学生所熟悉的图形入手,结合学生小学已经掌握的关于角的知识来逐步引入本节课内容,然后从静态和动态两个角度给角下定义.在讲解时,可利用相关的教具进行直观的演示,以利于学生理解.角的表示方法是本节课的重点,教师一定要讲清楚每种方法怎样表示以及应该注意的问题,使学生能够熟练掌握.角的度量单位的换算是本节课的难点,教师可提醒学生仿照时间的换算来进行记忆.在进行换算时,教师要先进行示范讲解,将每一步的过程演示清楚,然后可适当补充练习,使学生掌握.3.6.2角的比较和运算1.了解角的大小比较的方法;2.掌握角的度数的运算和角的运算;3.掌握角的平分线及其应用;4.会用圆规和直尺画一个角等于已知角.重点1.角的度数的运算和角的运算;2.角的平分线及其应用.难点1.角的度数的运算;2.角的平分线的应用.一、导入新课1.比较两条线段的长短有哪些方法?小结:测量法;叠合法.2.我们如何比较两个角的大小呢?二、探究新知1.角的大小比较(1)出示教具,探索讨论:观察以下三个角,你能说出它们的大小吗?(2)学生提出方法,教师小结: ①叠合法(课件)把一个角放到另一个角上,使它们的顶点重合,其中一边也重合,并使两个角的另一边都在这一条边的同侧.②度量法用量角器分别量出角的度数,再加以比较. 2.角的和差关系(1)观察下图中有哪几个角,把它写下来:________________________________________.(2)根据上图中角之间的关系填空: ∠AOB =________=________; ∠BOC =________=________; ∠AOC ==________=________. 3.作一个角等于已知角在前面的学习中,我们已经知道如何作一条线段等于已知线段,同样,我们也可以利用圆规来作一个角等于已知角.4.角平分线(1)请同学们把一个角的两边对折,让两边互相重合.这时,我们将看到这个角的中间有一条射线,请你测量所分成的两个角的大小,你有什么发现?(2)小结:这条射线将这个角分成两个相等的角,这时,我们把这条射线称为这个角的角平分线.归纳:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图,已知OC 平分∠AOB ,则有:∠AOC =∠BOC =12 ∠AOB ,∠AOB =2∠AOC=2∠BOC.三、课堂练习。
第四章:几何图形初步一几何图形几何学:数学中以空间形式为研究对象的分支叫做几何学。
从实物中抽象出的各种图形统称为几何图形。
几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。
1、几何图形的投影问题每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。
实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的最大部分在平面内所留下的影子。
2、立体图形的展开问题将立体图形的表面适当剪开,一、点、线、面、体1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;(2)体是由面组成、面与面相交成线、线与线相交成点;例1、如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,•用线连一连.二、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;例1、下列说法正确的是()A、5㎝长的直线比3㎝长的直线要长2㎝;B、线段向两个方向无限延伸就形成了直线;C、直线和射线都是不可度量的,所以它们都无法表示;D、直线AB、射线AB和线段AB表示的都是同一几何图形;2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
概念剖析:①将线段的两个端点位置颠倒,得到的新线段与原来的线段是同一线段,即线段AB与线段BA是同一线段;②将表示射线的两个点位置颠倒,得到的新射线与原来的射线不是同一射线,即射线AB与射线BA不是同一射线,因为它们的端点和方向不同;③将表示直线的两个点位置颠倒,得到的新直线与原来的直线是同一直线,即直线AB与直线BA是同一直线;④识别图中线段的条数要把握一点:只要有一个端点不相同,就是不同的线段;⑤识别图中射线的条数要把握两点:端点和方向缺一不可;A B C例2、看图回答问题(1)图中有线段条、分别是、、;(2)图中有射线条、分别是、、、、、;(3)图中有直线条,它是;线段、射线、直线的联系:①射线和直线都是有线段无限延伸形成的,把线段向一个方向无限延伸就成了射线,把线段向两个方向无限延伸就形成了直线。
②射线和线段都可以看成是直线的一部分。
线段、射线、直线的区别:①线段有两个端点,射线有一个端点,直线没有端点;②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;③直线不能延伸,射线只能向一个方向延伸,线段可以向两个方向延伸;例3、根据语句画出图形.例:读下列语句,并按照语句画出图形:(1)直线L经过A、B两点,点B在点A的左边.(2)直线AB、CD都经过点O,点E不在直线AB上,但在直线CD上.3、直线事实:过两点有且只有一条直线。
简称两点确定一条直线。
4、线段的比较(1)叠合比较法;(2)度量比较法。
5、线段事实:“两点之间,线段最短”。
连接两点的线段的长度,叫做这两点的距离。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着他的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示(1)分别用两条边上的两个点和顶点来表示。
(顶点必须在中间)(2)在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角。
(3)在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角。
(4)直接用一个大写英文字母来表示。
3、角的度量:会用量角器来度量角的大小。
4、角的单位:角的单位有度、分、秒,用°、′、″表示,角的单位是60进制与时间单位是类似的。
度、分、秒的换算:1°=60′,1′=60″。
5、锐角、直角、钝角、平角、周角的概念和大小(1)平角:角的两边成一条直线时,这个角叫平角。
(2)周角:角的一边旋转一周,与另一边重合时,这个角叫周角。
(3)0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。
6、画两个角的和,以及画两个角的差(1)用量角器量出要画的两个角的大小,再用量角器来画。
(2)三角板的每个角的度数,30°、60°、90°、45°。
7、角的平分线从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。
若BD 是∠ABC 的平分线,则有:∠ABD=∠CBD=21∠ABC ;∠ABC=2∠ABD=2∠CBD 8、角的计算。
9、两个的和为90度的角互为余角,同角或等角的余角相等。
两个的和为180度的角互为补角,同角或等角的补角相等。
10、方位角练习题:一、选择题1、如图,以O 为端点的射线有( )条 A 、3 B 、4 C 、5 D 、62、平面上有任意三点,经过其中两点画一条直线,可以画( )直线A 、1条B 、2条C 、3条D 、1条或者3条3、点C 在线段AB 上,不能判断点C 是线段AB 中点的式子是( )A 、AB=2ACB 、AC+BC=ABC 、BC=AB 21 D 、AC=BC 4、下列画图语句中,正确的是( )A 、画射线OP=3cmB 、连结A 、B 两点C、画出A、B两点的中点D、画出A、B两点的距离5、下列说法中正确的是()A、角是由两条射线组成的图形B、一条射线就是一个周角C、两条直线相交,只有一个交点D、如果线段AB=BC,那么B叫做线段AB的中点6、在同一平面内,两条直线的位置可能是()A、平行B、相交C、相交或平行D、以上都不对。
7、如图,∠AOB=90°,以O为顶点的锐角共有()个A、6B、5C、4D、38、经过直线外一点,有且只有一条直线与已知直线()A、垂直B、平行C、垂直或平行D、以上都不是二、填空题9、如图,点A、B、C、D在直线l上(1)AC=_______-CD;AB + _______ + CD=AD;(2)图中共有________条线段,共有_______条射线,以点C为端点的射线是________。
10、45°=______直角=_______平角。
11、(1)23°30′=________°;(2)78.36°= ______°____′________″。
12、如果a∥b,b∥c,那么a_____c。
13、如图,∠AOD=∠AOC+_______=∠DOB+_______。
三、解答题14、如图,M是线段AC的中点,N是线段BC的中点。
(1)如果AC=8cm,BC=6cm,求MN的长(2)如果AM=5cm,CN=2cm,求线段AB的长15、如图,∠AOC和∠BOD都是直角,且∠AOB=150°,求∠COD的度数。
四、选择题1、按下列线段的长度,点A、B、C一定在同一直线上的是()A、AB=2cm,BC=2cm,AC=2cmB、AB=1cm,BC=1cm,AC=2cmC、AB=2cm,BC=1cm,AC=2cmD、AB=3cm,BC=1cm,AC=1cm2、8点30分时,时钟的时针与分针所夹的锐角是()A、70°B、75°C、80°D、60°3、直线l上有两点A、B,直线l外两点C、D,过其中两点画直线,共可以画()A、4条直线B、6条直线C、4条或6条直线D、无数条直线4、或∠1和∠2为锐角,则∠1+∠2满足()A、0°<∠1+∠2<90°B、0°<∠1+∠2<180°C、∠1+∠2<90°D、90°<∠1+∠2<180°5、下面说法正确的是()A、过两点有且只有一条直线B、平角是一条直线C、两条直线不相交就一定平行D、过一点有且只有一条直线与已知直线平行一、填空题.1.在墙上钉一根木条需_______个钉子,其根据是________.2.如下图(1)所示,点A在直线L______,点B在直线L________.3.如下图(2)所示,直线_______和直线______相交于点P;直线AB和直线EF•相交于点______;点R是直线________和直线________的交点.4.如下图(3)所示,图中共有_____条线段,它们是________;共有______条射线,它们是________.二、选择题.5.下面几种表示直线的写法中,错误的是().A.直线a B.直线Ma C.直线MN D.直线MO三、解答题.6.根据下列语句画出图形:(1)直线L经过A、B、C三点,点C在点A与点B之间;(2)两条直线m与n相交于点P;(3)线段a、b相交于点O,与线段c分别交于点P、Q.7.探索规律:(1)若直线L上有2个点,则射线有_____条,线段有______条;(2)若直线L上有3个点,则射线有_____条,线段有______条;(3)若直线L上有4个点,则射线有_____条,线段有______条;(4)若直线L上有n个点,则射线有_____条,线段有______条.。