气体比热容的测量
- 格式:pdf
- 大小:129.43 KB
- 文档页数:3
气体比热容比的测定【教学目的】1. 观测热力学过程中状态变化及基本物理规律。
2. 测定空气分子的定压比热容与定容比热容之比。
【教学重点】通过观察热力学现象,能较好的理解测定空气分子的定压比热容与定容比热容之比的原理和方法。
【教学难点】能用本实验介绍的方法准确的测出空气分子的定压比热容与定容比热容之比。
【课程讲授】提问:1. 如何测定热力学绝热过程中的参数γ?2. 本实验中注入气体量的多少对小球的运动情况有没有影响?一、实验原理气体的定压比热容C P 与定容比热容C V 之比V P C /C =γ。
在热力学过程特别是绝热过程中是一个很重要的参数,测定的方法有好多种。
这里介绍一种较新颖的方法,通过测定物体在特定容器中的振动周期来计算γ值。
实验基本装置如图1所示,振动物体小球的直径比玻璃管直径仅小0.01~0.02mm 。
它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口,并插入一根细管,通过它各种气体可以注入到烧瓶中。
钢球A 的质量为m ,半径为r (直径为d ),当瓶子内压力P 满足下面条件时钢球A 处于力平衡状态。
这时2L r mgP P π+=,式中P L 为大气压强。
为了补偿由于空气阻尼引起振动物体A 振幅的衰减,通过C 管一直注入一个小气压的气流,在精密玻璃管B 的中央开设有一个小孔。
当振动物体A 处于小孔下方的半个振动周期时,注入气体使容器的内压力增大,引起物体A 向上移动,而当物体A 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使物体下沉。
以后重复上述过程,只要适当控制注入气体的流量,物体A 能在玻璃管B 的小孔上下作简谐振动,振动周期可利用光图 1c电计时装置来测得。
若物体偏离平衡位置一个较小距离x ,则容器内的压力变化Δp ,物体的运动方程为:p r dt x d m 222∆π= (1)因为物体振动过程相当快,所以可以看作绝热过程,绝热方程常数=r PV (2)将(2)式求导数得出:VV p p ∆γ-=∆,x r V 2π=∆ (3)将(3)式代入(1)式得0x mVp r dt x d 4222=γπ+ 此式即为熟知的简谐振动方程,它的解为TmVp r πγπω242==4242644pdT mVpr T mV ==γ (4) 式中各量均可方便测得,因而可算出γ值。
气体比热容比测定实验原理气体比热容比是指在恒压条件下,单位质量的气体在吸收或释放相同热量时的温度变化。
测定气体比热容比的实验原理是基于绝热过程和恒压过程之间的关系。
本文将详细介绍气体比热容比测定实验的原理和步骤。
实验原理:在理想气体状态方程PV=nRT中,P表示气体的压强,V表示气体的体积,n表示气体的物质量,R为气体常数,T表示气体的温度。
在绝热过程中,没有热量的交换,因此可以得到以下方程:P1V1^γ = P2V2^γ其中,γ为气体的绝热指数,表示分子在绝热过程中对外界做功的能力。
对于单原子理想气体,其绝热指数γ为5/3;对于双原子理想气体,如氮气、氧气等,其γ为7/5。
在恒压过程中,热量的交换可以发生,此时可以得到以下方程:P1V1/T1 = P2V2/T2将两个方程联立,可以得到:T2/T1 = (V2/V1)^(γ-1)由上述方程可知,当气体的体积比V2/V1以及绝热指数γ-1已知时,可以通过测量温度变化来计算比热容比T2/T1。
实验步骤:1. 将实验装置中的气体充分排空,保证装置内没有杂质。
2. 将装置封闭,固定压力计和温度计。
3. 在恒压条件下,将气体体积从初始状态V1变为最终状态V2,记录下初始温度T1和最终温度T2。
4. 根据已知的V2/V1和γ-1的值,计算出比热容比T2/T1。
5. 重复实验多次,取平均值,提高结果的准确性。
实验注意事项:1. 实验装置应保持密封,以防止外界气体的干扰。
2. 测量温度时应注意温度计的准确度和灵敏度。
3. 实验过程中应控制好气体的体积变化速度,避免过快或过慢。
4. 为了提高结果的准确性,可以采用多次实验并取平均值。
实验应用:测定气体比热容比的实验方法可以应用于研究气体的热力学性质,如气体的内能和焓的变化等。
通过测量气体的温度变化,可以得到气体对热量的吸收或释放能力,从而研究气体的热传导性质和热力学过程。
总结:通过测定气体比热容比的实验原理和步骤,可以得到气体在绝热过程和恒压过程下的温度变化关系。
实验二 空气比热容比和液体粘滞系数的测定(一) 空气比热容比的测定【实验简介】空气的比热容比 又称气体的绝热指数, 是系统在热力学过程中的重要参量。
测定 值在研究气体系统的内能, 气体分子的热运动以及分子内部的运动等方面都有很重要的作用。
如气体系统作绝热压缩时内能增加, 温度升高;反之绝热膨胀时, 内能减少, 温度降低。
在生产和生活实践中广泛应用的制冷设备正是利用系统的绝热膨胀来获得低温的。
除此以外, 测定比热容比还可以研究声音在气体中的传播。
由上可见, 测定气体的比热容比是一个重要的实验。
本实验采用绝热膨胀法测定空气的 值。
【实验目的】1.用绝热膨胀法测定空气的比热容比。
2.观察热力学过程中系统的状态变化及基本物理规律。
3.学习使用空气比热容比测定仪和福廷式气压计。
【实验仪器】空气比热容比测定仪(FD —NCD 型, 包括主机, 10升集气瓶连橡皮塞和活塞, 打气球, 硅压力传感器及同轴电缆, AD590温度传感器及电缆)、低压直流电源(VD1710—3A )、电阻箱(或 定值标准电阻)、福廷式气压计(共用)。
【实验原理】1.理想气体的绝热过程有 , 叫做理想气体的比热容比或绝热指数。
和 分别是理想气体的定压摩尔热容和定体摩尔热容, 二者之间的关系为 ( 为普适气体恒量) 2.如图所示, 关闭集气瓶上的活塞 , 打开 , 用打气球缓慢而稳定地将空气打入集气瓶内, 瓶内空气的压强逐渐增大, 温度逐渐升高。
当压强增大到一定值时, 关闭 , 停止打气。
待集气瓶内的温度降至室温 状态稳定时, 这时瓶内气体处处密度均匀, 压力均匀, 温度均匀。
此时取瓶内体积为 的一部分气体作为我们的研究对象, 系统处于状态1 , 这部分气体在接下来的膨胀中体积可以恰好充满整个瓶的容积 。
突然打开活塞 进行放气, 放掉多余的气体, 使系统迅速的膨胀, 达到状态2 , 随即又迅速关闭 。
是环境大气压。
由于放气过程迅速, 可视为绝热过程, 故有1102PV PV γγ= (1)3.关闭 后, 瓶内气体的温度会由 缓慢回升至室温 , 与此同时, 压强也会逐渐增大。
气体比热容比的测定实验报告及数据一、实验目的1、学习用绝热膨胀法测定空气的比热容比。
2、观测热力学过程中状态变化及基本物理规律。
3、学习使用数字压力计和温度计等热学实验仪器。
二、实验原理气体的比热容比γ定义为定压比热容Cp与定容比热容Cv之比,即γ = Cp / Cv。
对于理想气体,γ值只与气体分子的自由度有关。
本实验采用绝热膨胀法测定空气的比热容比。
实验中,通过让一定量的气体在绝热条件下进行膨胀,测量膨胀前后气体的压强和温度,从而计算出比热容比。
根据绝热过程方程:P1V1^γ =P2V2^γ ,其中 P1、V1 为绝热膨胀前气体的压强和体积,P2、V2 为绝热膨胀后气体的压强和体积。
又因为理想气体状态方程 PV = nRT ,在实验中,气体的物质的量n 和常数 R 不变,所以可以得到:P1T1^γ /P2T2^γ = 1 ,整理可得:γ = ln(P1 / P2) / ln(T2 / T1) 。
三、实验仪器1、比热容比测定仪:主要由储气瓶、打气球、压力传感器、温度传感器等组成。
2、数字压力计:用于测量气体的压强。
3、数字温度计:用于测量气体的温度。
四、实验步骤1、打开数字压力计和数字温度计的电源,预热一段时间,使其读数稳定。
2、用打气球向储气瓶内缓慢打气,直至数字压力计显示的压强达到一定值(例如 120kPa 左右)。
3、关闭打气球的阀门,等待储气瓶内的气体与外界充分热交换,使温度稳定。
记录此时的压强 P1 和温度 T1 。
4、迅速打开放气阀,让气体绝热膨胀,当压强降至一定值(例如80kPa 左右)时,迅速关闭放气阀。
5、等待储气瓶内的气体与外界再次充分热交换,使温度稳定。
记录此时的压强 P2 和温度 T2 。
6、重复上述步骤,进行多次测量,以减小误差。
五、实验数据记录与处理|测量次数| P1(kPa)| T1(K)| P2(kPa)| T2(K)|γ 计算值||::|::|::|::|::|::|| 1 | 1185 | 3015 | 782 | 2892 | 142 || 2 | 1203 | 3021 | 798 | 2903 | 140 || 3 | 1198 | 3018 | 801 | 2898 | 141 || 4 | 1212 | 3025 | 789 | 2901 | 143 || 5 | 1195 | 3016 | 795 | 2895 | 142 |平均值:γ =(142 + 140 + 141 + 143 + 142)/ 5 = 142六、误差分析1、实验过程中,气体与外界的热交换不能完全避免,导致温度测量存在误差。
气体比热容比的测定气体的定压比热容p c 与定容比热容V c 之比V p c c /=γ称为气体的比热容比。
气体的比热容比γ是热力学理论及工程技术中常用而且重要的物理量,对它的准确测量也是物理学基本测量之一。
常用的测量气体比热容比γ的方法有很多。
如振动法、超声法和绝热膨胀法等等。
其中振动法是最常用的方法之一,其原理是通过实现热力学中的准静态过程(等温、等容及绝热),小钢球以小孔为中心上下作简谐振动,通过测定振动周期来计算结果。
本实验用振动法测量气体的比热容比γ。
该方法原理简单,操作方便。
通过本实验,有助于大家加深对热力学过程中状态变化的理解。
【实验目的】1、理解气体比热容比的物理意义; 2. 掌握测定空气比热容比的原理及方法2、掌握物理天平、螺旋测微器、数字计时仪的使用方法。
【实验仪器】气体比热容比测定仪、物理天平、螺旋测微器、数字计时仪等仪器。
气体比热容比测定仪的结构及连接方法如图6.2-1所示。
图6.2-1 气体比热容比测定仪整机结构示意图1、底座2、储气瓶I3、储气瓶II4、气泵出气口5、FB213型数显计数计时毫秒仪6、气泵及气量调节旋钮7、橡皮管8、调节阀门9、系统气压动平衡调节气孔 10、钢球简谐振动腔 11、光电传感器 12、钢球【实验原理】实验基本装置如图6.2-2所示,振动小球的直径比玻璃管直径仅小mm 02.0~01.0。
它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口,并插入一根细管,各种气体通过它可以注入到储气瓶中。
当瓶子内压强P 满足2r mgP P L π+=时,钢球A 处于受力平衡状态,式中L P 为大气压强,m 为钢球A 的质量,r 为钢球的半径(直径为d )。
在精密玻璃管B 的中央开设有一个小孔。
当钢球A 处于小孔下方的半个振动周期时,注入气体使储气瓶的内压力增大,引起钢球A 向上移动,而当钢球A 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使钢球下沉。
气体比热容比的确定气体的定压摩尔热容C p,m 与定容摩尔热容C v,m 之比VmPmC C v =为气体的比热容比,也叫泊松比。
它在热力学过程特别是绝热过程(const pV m v =)中是一个很重要的参量。
通过对v 的测定,能对绝热过程中的泊松方程(const pV m v =)和泊松比v 进一步理解。
一、试验目的1.了解用共振法测量气体比热容比的原理; 2.掌握比热容比的测量方法; 3.加深对共振现象的理解;4.进一步理解绝热过程的泊松方程(const pV m v =)和泊松比ν的含义。
二、仪器设备ν测定仪、游标卡尺、物力天平、气压计。
三、试验原理 泊松比 VmPm C C v =(8-1)理想气体有R iC vm 2=(8-2 ) R i R C C Vm pm22+=+= (8-3 )式中 R ——摩尔气体常数,R=8.31J/mol ·K;i ——气体分子的自由度。
单原子分子i=3;双原子分子i=5;多原子分子i=6。
将(8-2 )和(8-3 )式代入(8-1 )式,得ν=(i+2)/i (8-4)由此可见,理想气体的比热容比ν,仅仅与气体分子的自由度i 有关。
对单原子分子的气体,ν=5/3=1.67,对双原子分子的气体,ν=7/5=1.40,对多原子分子气体,ν=8/6=1.33。
现在假设有一个容器,内装待测气体,由一个质量为m 的活塞将其与外界隔绝,且与外界处于平衡状态。
外界的压强为ρ0,气体长为l 0,活塞截面积为S 。
此时气柱的体积为S l V 00=。
建立坐标,如图8-1所示,当活塞产生一个小位移时,气柱体积变为 S x l V )(00-=如果这是一个绝热过程,则有 c o n s t pV v =即 v v v S x l p S l p )()(000-= 化简得 vl x p p --=)1(00 由于x 是小位移,故x/ l 0<<1。
实验二 气体定压比热容的测定一、实验目的1. 掌握气体比热容测定装置的基本原理,了解辐射屏蔽绝热方法的基本思路; 2. 进一步熟悉温度、压力和流量的测量方法;3. 测定空气的定压比热容,并与文献中提供的数据进行比较。
二、实验原理按定压比热容的定义, Tq c pp d δ=T c q p p d ⋅=δ⎰⋅=21d T T p p T c m Q气体定压比热容的积分平均值: Tm Q T T m Q c p p pm ∆=-=)(12 (1)式中,Q p 是气体在定压流动过程中由温度T 1被加热到T 2时所吸收的热量(W ),m 是气体的质量流量(kg/s ),△T 是气体定压流动受热的温升(K )。
这样,如果我们能准确的测出气体的定压温升△T ,质量流量m 和加热量Q ,就可以求得气体的定压比热容c pm 。
在温度变化范围不太大的条件下,气体的定压比热容可以表示为温度的线性函数,即 c p =a +bT不难证明,温度T 1至T 2之间的平均比热容,在数值上等于平均温度T m =( T 1+T 2)/2下气体的真实比热容,即c pm =c p [(T 1+T 2)/2]=a+b T m (2)据此,改变T 1或T 2,就可以测出不同平均温度下的比热容,从而求得比热容与温度的关系。
三、实验设备实验所用的设备和仪器主要有风机、流量计、比热仪主体、调压变压器、温度计等。
实验时,被测气体由风机经流量计送入比热仪主体,经加热、均流、旋流、混流后流出。
在此过程中,分别测定:在流量计出口处的干、湿球温度T 0和T w ,气体流经比热仪主体的进出口温度T 1和T 2;气体的体积流量V ;电加热功率P 以及实验时的大气压p b 和流量计出口处的表压p e 。
气体的流量由节流阀控制,气体出口温度由输入电加热器的功率来调节。
本比热仪可测300℃以下气体的定压比热容。
前已指出,提高测量精度的关键是提高Q p 、ΔT 和m 的测量精度,设电加热器的功率为P ,则,P=Q g +Q ζ (3)其中,Q g 是气体所吸收的热量,Q ζ是损失到环境中的热量。
气体比热容比的测定实验报告气体比热容比的测定实验报告引言:气体比热容比是描述气体在不同温度下热量变化的重要物理量。
本实验旨在通过测量气体的压强和体积随温度的变化,来确定气体的比热容比。
通过实验,我们可以深入了解气体的热力学性质,并验证理论公式。
实验原理:根据理想气体状态方程PV=nRT,当气体温度不变时,气体的压强和体积成正比,即P1V1=P2V2。
根据理论公式,气体比热容比γ=Cp/Cv,其中Cp为定压比热容,Cv为定容比热容。
通过测量气体在不同温度下的压强和体积,可以计算出气体的比热容比γ。
实验器材:1. 气体采样器2. 温度计3. 压力计4. 水浴5. 计时器6. 数据记录表实验步骤:1. 将气体采样器连接到压力计和温度计上,确保连接处密封。
2. 将气体采样器放入水浴中,使其温度保持恒定。
3. 记录气体采样器的初始压强和体积。
4. 将气体采样器放入不同温度的水浴中,等待一段时间,使气体温度均匀分布。
5. 记录不同温度下气体采样器的压强和体积。
6. 根据实验数据,计算出不同温度下气体的比热容比γ。
实验结果与分析:根据实验数据,我们计算出了不同温度下气体的比热容比γ。
通过绘制γ与温度的关系曲线,我们可以观察到气体比热容比随温度的变化情况。
实验结果显示,当温度较低时,气体的比热容比γ较接近1。
随着温度的升高,气体的比热容比逐渐增大,最终趋于无穷大。
这与理论预期相符合,因为在高温下,气体分子的运动更加剧烈,分子间相互作用的影响较小,故气体的比热容比接近于无穷大。
实验中可能存在的误差主要来自以下几个方面:1. 气体采样器的密封性可能存在漏气现象,导致压强和体积的测量不准确。
2. 气体温度在不同位置可能存在差异,影响了温度的均匀分布。
3. 实验过程中,水浴的温度变化可能不够稳定,导致气体的温度变化不准确。
为减小误差,我们可以采取以下改进措施:1. 确保气体采样器的连接处密封良好,避免气体泄漏。
2. 使用更加精确的温度计,提高温度测量的准确性。
课 题 气体比热容比的测定教学目的 1、学习测定空气比热容比的方法。
2、熟练掌握物理天平和螺旋测微器的使用方法。
3、熟练掌握直接测量值和间接测量值不确定度的计算。
重 难 点1、物理天平的调节和使用。
2、各物理量不确定度的计算。
教学方法 讲授、演示、提问、讨论、操作相结合。
学 时 3学时。
一、前言气体的定压比热容和定体比热容的比值v p C C 称为比热容比γ。
气体的γ值在许多热力学过程特别是绝热过程中是一个很重要的参数。
由气体动理论可知,理想气体的γ值为:ii 2+=γ (1) 式中i 为气体分子的自由度,对于单原子分子3=i ;对于双原子刚性分子,5=i ;对于多原子刚性分子,6=i 。
实验中气体的比热容比常通过绝热膨胀法、绝热压缩法等方法来测定。
本实验将采用一种比较新颖的方法,即通过测定小球在储气瓶玻璃管中的振动周期来计算空气的γ值。
二、实验仪器FB212型气体比热容比测定仪、支撑架、小型气泵、TW-1型物理天平、0-25mm 外径千分尺等。
三、实验原理如图1所示,钢球A 位于精密细玻璃管B 中,其直径仅仅比玻璃管直径小0.01-0.02mm ,使之能在玻璃管中上下移动,瓶上有一小孔C ,可以通过导管将待测气体注入到玻璃瓶中。
设小球质量为m ,半径为r ,当瓶内气压P 满足下式时,小球处于平衡位置:图12rmgP P L π+= (2) 设小球从平衡位置出发,向上产生微小正位移x ,则瓶内气体的体积有一微小增量:x r dV 2π= (3)与此同时瓶内气体压强将降低一微小值dP ,此时小球所受合外力为:dP r F 2π= (4)小球在玻璃管中运动时,瓶内气体将进行一准静态绝热过程,有绝热方程:C PV =γ (5)两边微分,得01=+-PdV V dP V γγγ (6)将(3)、(4)两式代入(6)式,得:x VPr F 42γπ-= (7)由牛顿第二定律,可得小球的运动方程为:04222=+x mV Pr dtx d γπ (8) 可知小球在玻璃管中作简谐振动,其振动周期为:4Pr22γωπmVT ==(9) 最后得气体的γ值为:pd T mVP r T mV 4242644==γ (10) (10)式中右边各量可以方便测出,故可以计算出气体的γ值。
空气比热容比测定及计算方法
空气的比热容比(γ)是指空气在保持压力恒定的情况下,单
位质量的空气在温度变化时的比热容与单位质量的空气在容积变化时的比热容之比。
它可以通过实验测定获得,并可以根据压力和温度的关系进行计算。
测定方法:
1.热容比计算法:通过测量空气在恒定压力下的温度变化,计
算热容比。
这通常是在恒温容器中进行的,可以通过传感器测量温度的变化。
2.声速法:通过测量空气中声波传播速度的变化来确定热容比。
声速与空气的热容比之间存在一种关系,通过测量不同温度下的声速并计算可以得到热容比。
计算方法:
在理想气体状态方程PV=RT中,γ=CP/CV,其中CP为恒定
压力下单位质量空气的比热容,CV为恒定容积下单位质量空
气的比热容。
可以根据这个关系进行计算。
1.对于理想气体,当分子无自由度时,γ=0;当分子具有转动
自由度时,γ为5/3;当分子具有振动自由度时,γ为7/5;当
分子具有转动和振动自由度时,γ为9/7。
2.如果要计算不同压力和温度下的γ,可以使用气体热力学模型,如所罗门-托蒂热力学模型。
这个模型基于压力和温度的
关系,在给定温度和压力下,可以计算出γ的值。
气体定压比热容的测定测定气体定压比热容的根本测量工程,是测量巳知流量的气体的吸热量(或放热量) 和温度改变值.根本方法可以分为了两类.一类称为了混合法 ,即预先将气体加热,让它流过量 热器时受冷却(到达与量热器热平衡),由量热器测定气体的放热量.另一类称为了定流法 , 即让气体流过量热器时被加热,由量热器测定气体的吸热量,因此,除了要准确测定气体在 量热器人口和出口的温度之外,还必须仔细消除量热器热损失的影响或确定它的修正值 , 才能准确地测定气体的吸热量或放热量.本实验采用定流法测定空气的平均定压比热容.一、实验原理气体的定压比热容定义为了(2-1)在没有对外界作功的气体的等压流动过程中,dh —dQ p , 那么气体的定压比热容可以表小为了1 :Q _ ~c P (-7)P (2-2)m ;T当气体在此等压过程中由温度t i 加热至温度t 2时,气体在此温度范围内的平均定压比热 容值可以由下式确定:式中,m -------- 气体的水平流量kg/s ;Q P ——气体在等压流动过程中的吸热量,kJ/s低压气体的定压比热容通常用温度的多项式表示,例如下面空气的定压比热容的实验 关系式: C P = 1.02319-1.76019 X 10-4T+4.02402X 10 -7T 2 -4.87268 x lO -10T 3 kJ/ (kg K )式中T 为了绝对温度,K .该式用丁 250〜600 K ,平均偏差为了0.03%,最大偏差为了0.28%.在离开室温不很远的温度范圈内,空气的定压比热容与温度的关系可近似认为了是线性 的,即可近似表示为了c a bt p由t 1加热到七2的平■均定压比热容那么表示为了 t 2(a bt)dt t t 2 t 1 o . ■ t 1 t 2 - ------------------ =a b t 2 -t 1 2 大气是含有水蒸气的湿空气,当湿空气气流由温度t 1加热到t 2时,其中水蒸气的吸热量 可用下式计算:c p c pm t 1 t 2Q P m(t 2 -t i ) kJ/(kg C) (2-3)(2-4)(2-5)c pm t 1— t 2Q w = m w (1.844 0.0004886t)dt tl= m w [1.844(t 2 —t 1) +0.0002443^ —t 2)] kJ/s (2-6) 式中,m w 为了气流中的水蒸气水平,kg/s .丁是,丁空气的平■均定压比热容由下式确定:'Cpm'^^H^^(2-7) 1 m(t2-11) m(t2-标)式中Q p 为了湿空气气流的吸热量.仪器中加热气流的热量(例如用电加热器加热) ,不可预防地因热辐射而有一局部散失丁环境.这项散热量的大小决定丁仪器的温度状况.只要加热器的温度状况相同 ,散热 量也相同.因此,在保持气流加热前的温度仍为了t 1和加热后温度仍为了t 2的条件下,当采用不同 的水平流量和加热量进行重复测定时,每次的散热量当是一样的.丁是,可在测定结果中消 除这项散热量的影响.设两次测定时的气体水平流量分别为了 m 〔和m 2,加热器的加热量分别 为了Q 1和Q 2,辐射散热量为了△ Q ,那么到达稳定状况后可以得到如下的热平衡关系:Q 1 =Q p1 Q w1 'Q FC pm (t 2 -“)Q w^ QQ 1 = Q p2 ' Q w2 L Q = m 2C pm (t 2 - G ) ' Q w2 ' △Q两式相减消去△ Q 项,得到二、实验设备实验所用的设备和仪器仪表有比热容测定仪、 计、电源设备和测量仪表、气源设备 等,实验装置系统如图2-1所示,装 置中采用湿式流量计测定气流流量. 流量计出口的包温槽2用以控制测定 仪器入口气流的温度.装置可以采用 小型单级压缩机或其它设备作为了气 源设备,并用钟罩型气罐5维持供气 压力稳定.气流流量用调节阀3调整. 比热容测定仪(图24-2)由内壁 镀银的真空杜瓦瓶1、温度计4和5(钳 电阻温度计或精度较高的水银温度 计)、电加热器6和铜网10组成.气体 自进口管2引人,温度计4测量其初始 温度,通过螺旋管进入双层夹套管.气体先流过管壁7和8之间的夹层,再流过8和9之间的夹层而进入电加热器部位加热.气体在双层夹套管中迁回,可以使电加热器散失的热量仍为了气体所吸收.离开电加热器的气体 经铜网10均流均温,温度计5测量加热终了温度,后由管3引出.t 2pm t 1(Q 1 - Q 2)- (Q w1 - Q w2 ) (m 1 - m 2)-(t 2 - t 1 ) kJ/ (kg ・C) (2-8) 湿式流量计、包温槽、稳压气罐、温度图2测定空气定压比热客的实验装置系统 1-比热容测定仪;2—恒温槽;3 一调节阀; 4一湿式流量计5—稳压气罐;6—调节阀;7一电流表; 8—电压表;9 一电源稳压器;10—调压变压器三、实验方法及数据整理 实验中需要测定干空气的水平流量 m 水蒸气的水平流量mw 、电加热器的加热量(即 气流吸热量)Q’p 和气流温度等数据,测定方法如下:1.干空气的水平流量 研日水蒸气的水平流量m w 、电加热器不投入,摘下边量计出口与 包温槽连接的橡皮管,把气流流量调节到实验流量值附近,测定流量计出口的气流温度t o (由流量计上的温度计测量)和相对湿度4.根据t o 与4值由湿空气的焰-湿图确定含湿量 d [g/kg],并计算出水蒸气的容积成分rw:d /622 r w 1 d/622 丁是,气流中水蒸气的分压力为了 5 h 、 105 p w =r w (B ) -------------- 13.595 750.062 N/m 2 式中B 一大气压力,mmHg △ h 一流量计出口气流的表压力,mmHg ,由湿式流量计上 的压差计测量. 接上橡皮管,.开始加热.当实验,工况稳定后测定流量计每通 过V [m 3](例如0.013)血.气体所花的时间r [s],以及其它 数据. (2-9) m w = P 、? ° kg/s (2-11) R w T o 式中 R w ,=461.5J/ (kg K) 曰.、【. 干空气的水平 m = ^(V_O kg/s RT o式中p ——干空气的分压力: ■:h 105 p =(1 f)(B ----------------- ) ------------- 13.595 750.062 R=287J/ (kg K) 2. 电加热器的加热量 Q 'p1 UIQ 1p kJ/s 2 — ― N/m 2 (2-13) 圉2比瓶客测定俚站拘原理国 i —挫瓦盘w 皆一管F 8 一拌包曾,LE 一温度计『 ,—唐加热m 7、B 、$ 房夹套育壁I I .一窣陶p 1000 式中U ——电加热器的端电压,V; I ——加热电流,A . 3. 气流温度气流在加热前的温度t 1和加热后的温度t 2由比热容测定仪上的温度计测量. 实验时,根据选定的气流初始温度t 1和加热温度t 2的改变范围及改变间隔,t 1用包温槽调节,t 2 由电加热器调节. 实验操作应注意如下事项:1. 电加热器不应在没有气流通过比热容测定仪时投入加热.2. 加热和冷却要缓慢,预防比热容测定仪因温度骤然改变和受热不均匀而破裂.格外是停止实验时,应先停加热后停气流,并且在停止加热器加热后仍应维持小气流继续运行一段时间.3. 实验测定时,必须确信气流和测定仪的温度状况稳定后才能读数.根据式(2-8 )计算得到的全部实验结果以如下形式表示出:1. 均表表示平均比热容与温度的关系;2. 用作图法或最小二乘法确霉式.(2-5 )中的常数a和b值,用方程式表示空气的平均定压比热容与温度的关系.1. 用实验结果说明电加热器辐射热损失的影响,2. 分析引起实验误差的因素有哪一些,3 .在实验装置中,把湿式流量计连接位置改在稳压气罐之前,或恒温槽之后,或比热测定仪的排气管上,是否合理?试分析之.。
大学物理空气比热容的测量实验报告(总10页)--本页仅作预览文档封面,使用时请删除本页--大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示 R C C v p =- (4-6-1) 其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ (4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P = (4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P = (4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ (4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
气体比热容比的测定实验原理气体比热容比是指单位质量气体在恒压和恒容条件下的比热容之比。
测定气体比热容比的实验原理主要基于两个基本物理定律:理想气体状态方程和热力学第一定律。
实验中常用的装置是绝热容器和气缸,其中绝热容器用于保持系统的热量不流失,而气缸则用于控制气体的压力和体积。
实验步骤如下:1. 将气体充入绝热容器中,并保持容器密封。
在初始状态下,记录气体的初始压力P1和初始体积V1。
2. 将绝热容器与气缸连接,在恒温条件下,改变气缸的活塞位置,使气体的体积发生变化。
此时,保持气体的压力保持恒定,记录气体的最终体积V2。
3. 根据理想气体状态方程PV=nRT,其中P为气体的压力,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。
根据此方程,可以得到气体的初始温度T1和最终温度T2。
4. 根据热力学第一定律,气体的内能变化等于对气体做功与气体所吸收的热量之和。
由于实验过程中绝热容器中没有热量交换,因此气体的内能变化等于对气体做的功。
根据气体的状态方程可以得到气体的初始内能U1和最终内能U2。
5. 根据比热容的定义,比热容C为单位质量物质在单位温度变化下所吸收的热量。
由于实验过程中气体的质量不变,因此可以根据内能变化和温度变化求得气体的比热容C。
实验中需要注意的几个问题:1. 实验过程中保持气体的温度恒定非常重要,因为气体的比热容与温度密切相关。
为了保持恒温,实验中通常会使用恒温水浴或恒温器。
2. 实验过程中需要保持气体的压力和体积的恒定。
为了达到这个目的,通常会使用气缸来控制气体的体积,并使用压力计来测量气体的压力。
3. 实验中需要准确测量气体的压力、体积和温度。
为了提高测量的准确性,通常会使用精密仪器,如压力计、温度计和容积计。
通过上述实验步骤和原理,可以测定气体在恒压和恒容条件下的比热容比。
比热容比是气体热力学性质的重要参数,对于研究气体的热力学过程和性质具有重要意义。
同时,比热容比的测定也为其他研究提供了重要的基础数据。
大学物理空气比热容的测量实验报告————————————————————————————————作者:————————————————————————————————日期:大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P = (4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ(4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
气体比热容比C
缓冲瓶 P /C V 的测定
(补充讲义)
【实验目的】
1.观测热力学过程中状态变化及基本物理规律。
2.测定多种气体(单原子、双原子、多原子)的定压比热容与定容比热容之比。
【实验原理】
气体的定压比热容C P 与定容比热容C V P C /C =γ之比V 。
在热
力学过程特别是绝热过程中是一
个很重要的参数,测定的方法有好
多种。
这里介绍一种较新颖的方
法,通过测定物体在特定容器中的
振动周期来计算γ值。
实验基本装置如图所示.
振动物体小球的直径比玻璃管直径仅小0.01~0.02mm。
它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口,并插入一根细管,通过它各种气体可以注入到烧瓶中。
为了补偿由于空气阻尼引起振动物体A 振幅的衰减,通过C 管一直注入一个小气压的气流. 在精密玻璃管B 的中央开设有一个小孔。
当振动物体A 处于小孔下方的半个振动周期时,注入气体使容器的内压力增大,引起物体A 向上移动,而当物体A 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使物体下沉。
以后重复上述过程,只要适当控制注入气体的流量,物体A 能在玻璃管B 的小孔上下作简谐振动,振动周期可利用光电计时装置来测得。
钢球A 的质量为m,半径为r(直径为d),当瓶子内压力P 满足下面条件时钢球A 处于力平衡状态。
2L r
mg P P π+
=, 式中P L 为大气压强。
若物体偏离平衡位置一个较小距离x,则容器内的压力变化ΔP,物体的运动方程为
dP r dt
x d m 222π= (1) 因为物体振动过程相当快,所以可以看作绝热过程,绝热方程
(2) 常数=r PV 将(2)式求导数得出:
(3)
01=+−dV V P dP V γγγV
dV P dP γ−= x r dV 2π= 将(3)式代入(1)式得
0422
2=+x mV P r dt x d γπ 此式即为熟知的简谐振动方程,它的解为 T
mV p r πγ
πω242== 424264Pr 4Pd
T mV T mV ==γ (式中d 为小球直径) (4) γ值。
由气体运动论可以知道,γ式中各量均可方便测得,因而可算出值与气体分子的自由度数有关,对单原子气体(如氩)只有三个平动自由度,双原子气体(如氢)除上述3个平动自由度外还有2个转动自由度。
对多原子气体,则具有3个转动自由度,比热容比γ与自由度f 的关系为f
f 2+=
γ 。
理论上得出:
67.1=γ单原子气体(Ar,He) f=3
40.1=γ双原子气体(N 2,H 2,O 2) f=5
33.1=γ多原子气体(CO 2,CH 4) f=6
且与温度无关。
【实验仪器】
气体比热容比测定仪、支撑架、精密玻璃容器、气泵、螺旋测微计、电子天平
【实验注意事项】
本实验装置主要系玻璃制成,且对玻璃管的要求特别高,振动物体的直径仅比玻璃管内径小0.01~0.02mm 左右,因此振动物体表面不允许擦伤。
平时它停留在玻璃管的下方(用弹簧托住)。
若要将其取出,只需在它振动时,用手指将玻璃管壁上的小孔堵住,稍稍加大气流量物体便会上浮到管子上方开口处,就可以方便地取出,或将此管由瓶上取下,将球倒出来。
振动周期采用可预置测量次数的数字计时仪(分50次,100次二档),采用重复多次测量。
振动物体直径采用螺旋测微计测出,质量用电子天平称量,烧瓶容积V 为2.64 l (升),
大气压力P L 由气压表自行读出,并换算成SI ),
Pa 10013.1mmHg 760(5×=【实验步骤】
一.测量空气的比热容比(双原子分子气体)
1.接通电源,调节气泵气量调节(阀I)、缓冲瓶的出气口旋钮(阀II),使小球在玻璃管中以小孔为中心上下振动。
2.打开周期计时装置,置测量周期为T=50(或100),将光电门放置于振动小球的平衡位置处,按“复位”键开始计时。
(为什么不测一个周期?这种方法叫什么方法?)
3. 重复以上步骤共6次。
4. 调节气泵上气量调节旋钮,选择三种不同的振幅条件,进行周期的测量,分别测6次,每次50或100个周期。
5.在小球不同方位重复测量直径共6次。
二.测量其他气体的比热容比
在测量前取出振动小球,将烧瓶气体入口接上所测气体钢瓶。
实验中气体的流量调节要特别注意。
首先打开气体钢瓶上的减压阀门,压力不要超过1kg/cm 2 (如有流量计,调到 0.6~1升/分,保持10分钟左右),经过适当时间后,使瓶中原有气体被赶走,代之以所需测量气体。
然后关断钢瓶阀门,放入振动小球,慢慢打开阀门,使小球缓慢在玻璃管中上升,并以小孔为平衡位置作振动(此时流量约为0.1升/分)。
凡要改换气体种类,均要重复上述步骤。
测量过程与测量空气的一样。
【注意事项】
1. 气流过大或过小会造成钢珠不以玻璃管上小孔为中心的上下振动,调节时需要用手挡住玻璃管上方,以免气流过大将小球冲出管外造成钢珠或瓶子损坏。
2.计时器若不计时或不停止计时,可能是光电门位置放置不正确,或者是外界光线过强,此时须遮挡外界光照。
【数据处理】
d U d ±T U T ±、1.分别计算钢球直径、振动周期及其不确定度, 。
注意直接测量的时间量是T 50T 100(或)。
2.忽略容器体积V、大气压P 测量误差的情况下估算空气的比热容比及其不确定度 γγU ±。
【思考题】
1.注入气体量的多少对小球的运动情况有没有影响?
2.在实际问题中,物体振动过程并不是理想的绝热过程,这时测得的值比实际值大还是小?为什么?。