二元一次不等式与平面区域PPT演示文稿
- 格式:ppt
- 大小:338.50 KB
- 文档页数:19
§4.1 二元一次不等式(组)与平面区域(1)宜黄县安石中学 万 杰教学目标:1.了解二元一次不等式表示平面区域,会用(0,0),(1,0)或(0,1)特殊点去检验不等式0Ax By c ++>(0<)表示的平面区域;2.会画出二元一次不等式(组)表示的平面区域.教学重、难点:怎样用二元一次不等式(组)表示平面区域;怎样确定不等式0Ax By c ++> (0<)表示直线0Ax By c ++=的哪一侧区域.教学过程:问题提出:一名刚参加工作的大学生为自己制定的每月用餐费的最低标准是240元,又知其他费用最少需支出180元,而每月用来支配的资金为500元,这名新员工可以如何使用这些钱?设用餐费为x 元,其他费用为y 元,由题意知x 不小于240,y 不小于180,x 与y 之和不超过500,用不等式组可表示为⎪⎩⎪⎨⎧≥≥≤+180240500y x y x 如果将上述不等式组的一个解),(y x 看作平面直角坐标系上的一个点,那么使问题转化为:确定平面直角坐标系中不等式组的解集区域(一)引入:点集{(,)|10}x y x y +-=是以二元一次方程10x y +-=的解为坐标的集合,它是一条直线,经过(1,0)和(0,1),那么点集{(,)|10}x y x y +->在平面直角坐标系中表示什么图形呢?(二)新课讲解:1.尝试、猜想、证明在平面直角坐标系中,所有的点被直线10x y +-=分成三类:一类是在直线10x y +-=上;二类是在直线10x y +-=的右上方的平面区域内;三类是在直线10x y +-=的左下方的平面区域内.对于任意一个点(,)x y ,把它的坐标代入1x y +-,可得到一个实数,或等于0,或大于0,或小于0,此时,可引导学生尝试在什么情况下,点(,)x y 在直线上、在直线右上方、在直线左下方? 猜想结论:对直线10x y +-=右上方的点(,)x y ,10x y +->;对直线10x y +-=左下方的点(,)x y ,10x y +-<.证明结论:如图,在直线10x y +-=上任取一点00(,)P x y ,过P 作平行于x 轴的直线0y y =,在此直线上点P 右侧的任意一点(,)x y ,都有0x x >,0y y =,所以,00x y x y +>+,00110x y x y +->+-=,因为点00(,)P x y 为直线10x y +-=上任意一点,所以,对于直线10x y +-=右上方任意点(,)x y ,都有10x y +->,同理对于直线10x y +-=左下方任意点(,)x y ,都有10x y +-<,所以,结论得证.2.得出结论一般地,二元一次不等式0Ax By C ++>在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。