高等代数的知识结构
- 格式:doc
- 大小:229.27 KB
- 文档页数:10
高等代数知识结构高等代数是数学中的一个重要分支,它研究向量空间和线性变换的性质和结构。
在高等代数中,学习者需要了解的主要知识点包括向量空间、矩阵、线性方程组、特征值和特征向量,以及代数学的应用等。
下面是对这些知识点的详细介绍。
1.向量空间向量空间是高等代数的基础概念之一、在向量空间中,有两个基本操作:向量加法和标量乘法。
向量加法满足交换律和结合律,标量乘法满足分配律。
向量空间还需要满足零向量的存在性和反元素的存在性,即对于任意向量v,存在一个向量-u,使得v+u=0。
向量空间还可以进一步研究其子空间,即一个向量空间V的子集W,如果W也满足向量加法和标量乘法的封闭性,那么W也是一个向量空间。
2.矩阵矩阵是高等代数中另一个重要的概念。
矩阵可以看作是一个由m行n 列元素组成的矩形阵列。
矩阵的运算包括矩阵加法、矩阵乘法、矩阵的转置等。
矩阵加法满足交换律和结合律,矩阵乘法满足分配律。
矩阵的转置操作是将矩阵的行变成列,列变成行。
3.线性方程组线性方程组是高等代数中的一个重要内容。
线性方程组可以看作是一系列线性方程的集合,其中每个线性方程由一系列未知数和一个常数项组成。
求解线性方程组的目标是找到满足所有方程的解。
线性方程组有两种形式:齐次线性方程组和非齐次线性方程组。
齐次线性方程组的常数项全为零,非齐次线性方程组的常数项至少有一个非零。
求解线性方程组可以通过消元法、矩阵法或特解法等多种方法。
4.特征值和特征向量特征值和特征向量是矩阵理论中的重要概念。
对于一个n阶方阵A,如果存在一个标量λ和一个非零向量v,使得Av=λv,则称λ为A的特征值,v为A对应于特征值λ的特征向量。
特征值和特征向量具有重要的几何和实际意义。
特征值可以用于矩阵的对角化和谱分解,特征向量可以用于描述矩阵的主要方向。
5.代数学的应用代数学是高等代数的一个重要应用分支。
代数学在物理学、工程学、计算机科学等领域有广泛的应用。
在物理学中,代数学可以用于描述物理系统的运动和变化,例如力学中的刚体运动、量子力学中的波函数等。
大一高等代数知识点总结归纳高等代数是大一学生必修的一门数学课程,其内容包括线性方程组、线性空间、线性变换和矩阵等。
下面是对大一高等代数知识点进行总结归纳。
一、线性方程组1. 行列式行列式是一个方阵所对应的一个数,它的运算规则包括定义、性质和计算方法等。
例如,二阶行列式的计算方法是交叉相乘后相减。
2. 矩阵矩阵是由若干个数按照一定的规律排列而成的矩形阵列。
矩阵的运算包括加法、减法和乘法等。
此外,还有转置、伴随和逆矩阵等重要的概念。
3. 线性方程组的解法线性方程组是由多个线性方程组成的方程组,其求解通常采用高斯消元法、矩阵法或克拉默法则等方法。
需要注意的是,线性方程组可能有唯一解、无解或无穷解。
二、线性空间1. 线性空间的定义线性空间是一个向量空间,它包含有向量的加法和数量乘法等运算。
同时,还要满足线性空间的八条公理,如封闭性、结合律和分配律等。
2. 子空间子空间是线性空间的一个非空子集,并且它也是一个线性空间。
子空间的判定可以根据零向量是否属于这个子集来进行。
3. 线性相关与线性无关线性相关表示存在一个非零向量,可以由其他向量线性表示出来。
线性无关表示任何向量组中的向量都不能由其他向量线性表示出来。
三、线性变换1. 线性变换的定义线性变换是指一个向量空间到另一个向量空间之间的变换,它需要满足保持加法和数量乘法运算的性质。
2. 线性变换的表示线性变换可以用矩阵表示,其中矩阵的列向量表示线性变换前的向量组,而矩阵的列向量表示线性变换后的向量组。
3. 特征值与特征向量特征值是指线性变换矩阵的特殊值,满足Ax=λx的等式,其中A为线性变换矩阵,λ为特征值,x为特征向量。
四、矩阵1. 矩阵的运算矩阵的加法、减法和乘法是矩阵运算中的基本操作。
此外,还有转置、伴随和逆矩阵等运算。
2. 矩阵的秩矩阵的秩是指矩阵所具有的线性无关的行或列的最大数目。
秩的计算可以采用初等行变换、高斯消元法或矩阵的特征值等方法。
以上是对大一高等代数知识点的总结归纳。
第二章行列式知识点总结一行列式定义1、n 级行列式111212122212n n ij nn n nna a a a a a a a a a =1等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a 2的代数和,这里12n j j j 是一个n 级排列;当12n j j j 是偶排列时,该项前面带正号;当12n j j j 是奇排列时,该项前面带负号,即:1212121112121222()1212(1)n n nn n j j j ij j j nj nj j j n n nna a a a a a a a a a a a a τ==-∑;2、等价定义121212()12(1)n n ni i i ij i i i n ni i i a a a a τ=-∑和121211221212()()(1)n n n n n ni i i j j j ij i j i j i j ni i i j j j a a a a ττ+=-∑和3、由n 级排列的性质可知,n 级行列式共有!n 项,其中冠以正号的项和冠以负号的项不算元素本身所带的负号各占一半;4、常见的行列式1上三角、下三角、对角行列式 2副对角方向的行列式 3范德蒙行列式:二、行列式性质1、行列式与它的转置行列式相等;2、互换行列式的两行列,行列式变号;3、行列式中某一行列中所有的元素都乘以同一个数,等于用这个数乘以此行列式;即:某一行列中所有的元素的公因子可以提到整个行列式的外面;4、若行列式中有两行成比例,则此行列式等于零;5、若某一行列是两组数之和,则这个行列式等于两个行列式之和,而这两个行列式除这一行列以外全与原来行列式的对应的行列一样;6、把行列式某一行列的各元素乘以同一数然后加到另一行列对应的元素上,行列式不变;三、行列式的按行列展开1、子式1余子式:在n 级行列式ij D a =中,去掉元素ij a 所在的第i 行和第j 列后,余下的n-1级行列式称为ij a 的余子式,记作ij M ;2代数余子式:(1)i j ij ij A M +=-称为ij a 的代数余子式;3k 级子式:在n 级行列式ij D a =中,任意选定k 行和k 列(1)k n ≤≤,位于这些行列交叉处的2k 个元素,按原来顺序构成一个k 级行列式M,称为D 的一个k 级子式;当()k n <时,在D 中划去这k 行和k 列后余下的元素按照原来的次序组成的n k -级行列式M '称为k 级子式M 的余子式;2、按一行列展开1行列式任一行列的各元素与其对应的代数余子式乘积之和等于行列式的值,即 按第i 行展开1122(1,2,,);i i i i in in D a A a A a A i n =+++= 按第j 列展开1122(1,2,,);j j j j nj nj D a A a A a A j n =+++=2行列式某一行列的元素与另一行列的对应元素的代数余子式乘积之和等零,即11220();i j i j in jn a A a A a A i j +++=≠或11220,().i j i j ni nj a A a A a A i j +++=≠3、按k 行k 列展开拉普拉斯定理:在n 级行列式中,任意取定k 个行k 列(11)k n ≤≤-,由这k 行k 列元素组成的所有的k 级子式与它们的代数余子式的乘积之和等于行列式的值; 4、其他性质1设A 为n 阶方阵,则A A '=; 2设A 为n 阶方阵,则n kA k A =;3设,A B 为n 阶方阵,则AB A B =,但A B A B ±≠±; 4设A 为m 阶方阵,设B 为n 阶方阵,则00A A AB BB*==*,但A B A B ±≠±;5行列式的乘法定理:两个n 级行列式乘积等于n 级行列式四、行列式的计算1、计算行列式常用方法:定义法、化三角形法、递推法、数学归纳法、拉普拉斯定理等等;具体计算时需要根据等到式中行或列元素的特点来选择相应的解题方法;方法一:递推法分为直接递推法和间接递推法;用直接递推法的关键是找出一个关于1n D -的代数式来表示n D ,依次从1234n D D D D D →→→→,逐级递推便可以求出n D 的值;方法二:数学归纳法;第一步发现和猜想;第二步证明猜想的正确性;第二步的关键是首先要得到n D 关于1n D -和2n D -的递推关系式;方法三:加边法;加边法是将所要计算的n 级行列式适当地添加一行一列或m 行m 列得到一个新的n+1或m+1级行列式,保持行列式的值不变,但是所得到的n+1或m+1级行列式较易计算;其一般做法如下:11111111111100n nn n n n n a a a a a a a a a a =或111111111111100nn nn n n a a b a a a a b a a =特殊情况取121n a a a ===或121n b b b ===;方法四:拆行列法;将所给的行列式拆成两上或若干个行列式之和,然后再求行列式的值;拆行列法有两种情况:一是行列式中有某行列是两项之和,可直接利用性质拆项;二是所给行列式中行列没有两项和形式,这时需作保持行列式值不变,使其化为两项和;方法五:析因子法;如果行列式D 中有一些元素是变数x 或某个参变数的多项式,那么可以将行列式D 当作一个多项式()f x ,然后对行列式()f x 实行某些变换,求出()f x 的互素的一次因式,使得()f x 与这些因式的乘积()g x 只相差一个常数因子c,根据多项式相等的定义,比较()f x 与的()g x 某一项系数,求出c 值,便可求得()D cg x =;2、行列式计算中常用的类型:类型一:“两条线”型行列式非零元分布在两条线上,例如,*等等;注:“两条线”型行列式一般采取直接展开降阶法计算,或用拉普拉斯定理展开,降阶后的行列式或为三角形行列式,或得到一个递推公式; 类型二:“三条线”行列式非零元分布在三条线上; 1“三对角”行列式,;注:“三对角”行列式可以按如下方法进行求解;首先得到一个一般的递推公式12n n n D pD qD --=+,然后可以用以下两种方法之一求出n D 的表达式:先计算123,,D D D 等,找出规律进行猜想,然后再用数学归纳法进行证明;间接递推法:借助于行列式中元素的对称性,交换行列式构造出关于n D 和1n D -的方程组,从而消去1n D -就可解得n D ;2“爪型”行列式;注:“爪型”行列式可以按行列提取公因子,然后化为上下三角形行列式进行求解;3Hessenerg型行列式;类型三:各行列元素之和相等或多数相等仅个别不相等的行列式; 注:行加法或列加法再化为三角形行列式进行求解;类型四:除主对角线外其余元素相同或成比例型行列式; 注:拆行列法或再结合其他方法进行求解; 类型五:可利用范德蒙行列式计算的行列式; 类型六:其他形式行列式;五、克莱姆法则1、克莱姆法则:如果含有n 个未知量的n 个方程的线性方程组11112211211222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数行列式不等于零,即111110nn n a a D a a =≠, 则方程组有唯一解: 其中(1,2,)j D j n =是把系数行列式D 中第j 列的元素用方程组右端的常数项代替后所得到的n 级行列式;2、含n 个未知量的n 个方程的齐次线性方程组111122121122221122000n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩只有零解的充要条件是系数行列式0D ≠;有非零解的充要条件是系数行列式0.D =。
高等代数知识点总结高等代数是一门研究抽象代数结构的数学学科。
它是线性代数的拓展,主要涉及向量空间、线性变换、矩阵理论、线性方程组、特征值与特征向量、行列式等知识点。
以下是高等代数的主要知识点的总结。
1.向量空间:向量空间是高等代数的核心概念之一、它是一组满足特定性质的向量的集合。
向量空间具有几何和代数两种性质,包括加法、数乘、零向量、负向量等。
2.线性变换:线性变换是一种保持向量空间线性组合关系的变换。
它可以通过矩阵来表示,矩阵的乘法与线性变换的复合运算等价。
线性变换的性质包括保持加法和数乘、保持零向量、保持线性组合等。
3.矩阵理论:矩阵是高等代数中常用的工具,用于表示线性变换、求解线性方程组等。
矩阵具有加法、数乘、乘法等运算规则,还可以求逆矩阵、转置矩阵等。
矩阵的秩、特征值与特征向量等性质也是矩阵理论的重要内容。
4.线性方程组:线性方程组是高等代数中的基本问题之一、它是一组包含线性方程的方程组,可以用矩阵形式表示。
线性方程组的求解可以通过消元法、高斯消元法、矩阵求逆等方法来实现。
5.特征值与特征向量:特征值与特征向量是线性变换的重要性质。
特征值是线性变换在一些向量上的纵向缩放比例,特征向量是特征值对应的非零向量。
特征值与特征向量在很多应用中起到重要作用,如矩阵对角化、求解微分方程等。
6.行列式:行列式是矩阵的一个标量量。
行列式的值代表矩阵所对应的线性变换对单位面积进行的放缩倍数。
行列式具有反对称性、线性性、乘法性等性质,可以用于求解矩阵的逆、计算特征值等。
7.正交性与正交变换:正交性是高等代数中的一个重要概念。
向量空间中的两个向量称为正交,如果它们的内积为零。
正交性和正交变换在几何、物理、信号处理等领域有广泛应用。
8.对称性与对称变换:对称性是高等代数中的一个重要概念。
对称性指的是其中一变换下,物体经过变换后保持不变。
对称性与对称变换在几何、物理、化学等领域有广泛应用。
总结起来,高等代数是一门研究抽象代数结构的学科,主要涉及向量空间、线性变换、矩阵理论、线性方程组、特征值与特征向量、行列式、正交性与正交变换、对称性与对称变换等知识点。
第一学期第一次课第一章 代数学的经典课题§1 若干准备知识1.1.1 代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。
1.1.2 数域的定义定义(数域)设K 是某些复数所组成的集合。
如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有b a K a b K K b ab ∈≠∈/0时,,且当,∈±为一个数域。
,则称K 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {i |∈Q },其中i =b a +b a ,1−。
命题 任意数域K 都包括有理数域Q 。
证明 设K 为任意一个数域。
由定义可知,存在一个元素0≠∈a K a ,且。
于是K aaK a a ∈=∈−=10,。
进而Z ,∈∀m 0>K m ∈+……++=111。
最后,Z ,∈∀n m ,0>K n m ∈,K nmn m ∈−=−0。
这就证明了Q ⊆K 。
证毕。
1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设是集合,与S A B 的公共元素所组成的集合成为与A B 的交集,记作B A ∩;把和B 中的元素合并在一起组成的集合成为与A A B 的并集,记做B A ∪;从集合中去掉属于A B 的那些元素之后剩下的元素组成的集合成为与B 的差集,记做。
A B A \定义(集合的映射) 设、A B 为集合。
如果存在法则,使得中任意元素在法则下对应f A a f B 中唯一确定的元素(记做),则称是到)(a f f A B 的一个映射,记为).(,:a f a B A f a →如果B b a f ∈=)(,则称为在下的像,a 称为在下的原像。
的所有元素在下的像构成的b a f b f A f B 的子集称为A 在下的像,记做,即f )A (f {}A a f A f ∈a =|)()(。
高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a a a a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。
(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ij b a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。
(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。
2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。
运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。
运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B = ③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。
大一高等代数知识点高等代数是大一学生必修的一门数学课程,主要研究抽象代数结构及其相应的运算规则。
在学习高等代数的过程中,掌握一些重要的知识点是非常关键的。
本文将介绍大一高等代数的一些重要知识点,帮助学生们更好地理解与应用这些知识。
一、向量空间向量空间是高等代数的基础概念之一,它是由一组向量组成的集合,并满足一定的性质。
一个向量空间必须满足以下条件:1. 封闭性:对于任意两个向量u和v,它们的线性组合u + v也在向量空间中。
2. 零向量:向量空间中存在一个特殊的零向量0,使得对任意向量u,有u + 0 = u。
3. 反向法则:对于任意向量u,存在一个负向量-v,使得u + (-v) = 0。
4. 数乘性:对于任意向量u和标量k,它们的标量倍u * k也在向量空间中。
二、线性方程组线性方程组是高等代数中的另一个重要概念,它由一组线性方程组成,其中每个方程都是变量的线性组合。
解线性方程组就是找到满足所有方程的变量值。
解线性方程组的方法有很多种,包括高斯消元法、矩阵法等。
三、矩阵和行列式矩阵是高等代数中的重要工具,它是由数构成的矩形阵列。
矩阵可以进行加法、乘法等运算,是解线性方程组和表示线性变换的有效工具。
行列式是矩阵的一个重要概念,它可以用来判断矩阵的可逆性。
四、特征值和特征向量特征值和特征向量是矩阵的另一个重要概念。
一个矩阵A的特征值是满足方程Av = λv的数λ,其中v是非零向量。
特征向量是与特征值相对应的向量。
特征值和特征向量可以帮助我们理解矩阵的性质和变换。
五、线性映射和线性变换线性映射和线性变换是高等代数中的重要概念。
线性映射是指满足两个条件的映射:对于任意两个向量u和v以及标量k,有f(u + v) = f(u) + f(v)和f(uk) = kf(u)。
线性变换是指一个向量空间到另一个向量空间的映射,它是一种保持线性结构的变换。
六、欧几里得空间和内积空间欧几里得空间是一个带有内积的向量空间,内积是一种向量与向量之间的运算。