当前位置:文档之家› 浆液中毒

浆液中毒

浆液中毒
浆液中毒

浆液中毒,有的同行称之为“盲区”,国外的文献上叫做“棕泥”现象。;

出现浆液中毒的原因是浆液中的氟离子和铝离子反应生成了氟化铝和其他物质的络合物,这种络合物呈粘性的絮凝状态,会封闭石灰石颗粒的表面,阻止石灰石颗粒的溶解,因此出现中毒时,加入石灰石吸收剂浆液的pH值不会升高,脱硫效率大大下降。

解决浆液中毒的办法是用新鲜浆液逐步替换已经中毒的浆液,另外也可以在中毒的浆液中加入NaOH来提高浆液的pH值。要注意的一点是中毒浆液的恢复过程需要比较长的时间,根据国内电厂的经验,加入NaOH的时间要2-3天。

浆液中的氟离子的来源是烟气中的氟化氢、石灰石中的可溶性氟化物以及补给水中的氟离子;铝离子主要来自除尘器未脱除的飞灰中的Al2O3。因此要避免中毒现象,首先要限制进入脱硫塔烟气中飞灰的浓度,其次要控制工艺水中的氟离子的含量。

现象:原烟气SO2总量不变时增加CaCO3浆液而PH值持续降低,脱硫率下降。

危害:脱硫率下降达不到预期脱硫效果,污染环境;pH值降低,加剧吸收塔内部腐蚀;过量的CaCO3浆液造成原材料浪费。

原因:

1、FGD进口SO2浓度突变引起石灰石盲区;

基本机理:由于烟气量或FGD进口原烟气SO2浓度突变,造成吸收塔内反应加剧,CaCO3含量减少,PH值下降,此时若石灰石供浆流量自动投入为保证脱硫效率则自动增加石灰石供浆量以提高吸收塔的PH值,但由于反应加剧吸收塔浆液中的CaSO3·1/2H2O含量大量增加,若此时不增加氧量使CaSO3·1/2H2O迅速反应成CaSO4·2H2O,则由于CaSO3·1/2H2O可溶解性强先溶于水中,而CaCO3溶解较慢,过饱和后形成固体沉积,这种现象称为“石灰石盲区”。

2、吸收塔浆液密度高没有及时外排,浆液中的CaSO4·2H2O饱和会抑制CaCO3溶解反应;

3、电除尘后粉尘含量高或重金属成分高,在吸收塔浆液内形成一个稳定的化合物,附着在石灰石颗粒表面,影响石灰石颗粒的溶解反应,导致石灰石浆液对PH值的调解无效;

4、氧化不充分引起亚硫酸盐致盲;(原理如1)

5、工艺水水质差,系统中的氯离子浓度高,石灰石粉品质差,引起吸收塔浆液发生石灰石盲区。

PS:氯离子危害:

1. CL-使脱硫系统中引起金属腐蚀和应力腐蚀

2. CL-还能杨制吸收塔内的化学反映,改变pH值,降低(SO4)2-的去除率;消耗石灰石等吸收剂;氯化物有仰制吸收剂的溶解,降低脱硫效率。

3. 石膏脱水困难,使含水量增加,石膏难以成型影响石膏品质,降低效益。

4. 是吸收塔中不参加反应的惰性物质增加,浆液的利用率下降要达到预想的脱硫效率就得增加溶液和溶质,这样就使得循环系统电耗增加。

5. 氯离子高了主要还有对脱水系统有影响,在8000ppm以上时,必须要大量的冲洗水,这就无法保证石膏品质的含水量控制在10%以下

6. 正常在脱水系统运行是加大废水的排放量,控制塔内氯离子在5000ppm以下最好,怎样可以有利于脱水,对石膏作为其他用途也很有利

6、氟离子超标:浆液中的三价铝和氟离子反应生成AlF3和其他物质的络合物,呈粘性的絮凝状态,附着于石灰石表面。这会导致:封闭石灰石颗粒表面,阻止其溶解,降低了浆液的pH值,必然会导致脱硫率下降。这就要求添加石灰石来调节浆液的pH值,此时若石灰石供浆流量自动投入为保证脱硫效率则自动增加石灰石供浆量以提高吸收塔的pH值,从而使得吸收浆液中的石灰石过量。这就使得整个系统增加了石灰石的消耗、降低了石膏质量并破坏了脱水特性。

处理:

1、若石灰石盲区发生,首先不考虑脱硫率,暂停石灰石浆液的加入,待PH值下降至4.0左右,人工计算石灰石浆液的加入量,使pH值逐步上升,脱硫率缓慢回升;

2、增开氧化风机;

3、若原烟气SO2含量高引起石灰石盲区,申请机组负荷降低,减少SO2量;

4、向吸收塔内补充新鲜的石灰石浆液和工艺水,一边外排吸收塔浆液或排至事故浆液箱进行置换;

5、若FGD的粉尘浓度高,调整电除尘振打方式;

6、若氯离子含量高,加强废水排放,降低吸收塔中的氯离子含量和重金属含量。

置换浆液,如果要保持运行状态,那就是打开吸收塔的排放门排入吸收塔区的地坑,再由地坑泵打到事故浆液箱,吸收塔液位靠加强除雾器冲洗水与吸收塔补水门补充。或者退出脱硫运行,直接用石膏排出泵将浆液打至事故浆液箱内,液位低了,再打开吸收塔排放门,用地坑泵打至事故浆液箱,重新配置浆液,投运脱硫系统。

石灰石化学分析方法

石灰石化学分析方法 分析化验联系电话0519886339130找李主任1. 烧失量的测定称取1.0000克试样,至于瓷坩埚中,放在马弗炉内,从低温逐渐升高温度,在900~1000℃下灼烧1h。2. 二氧化硅的测定称取约0.6g试样,精确至0.0001g ,置于铂坩埚中,将盖斜置于坩埚上,并留有一定缝隙,在900~1000℃下灼烧5min,取出坩埚冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g无水碳酸钠混匀,再将坩埚置于950~1000℃下灼烧10min ,取下冷却至室温。将烧结块移入瓷蒸发皿中,加少量水润湿,盖上表面皿,从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解安全,用热盐酸(1+1)清洗坩埚数次,洗液合并于蒸发皿中,将蒸发皿置于沸水浴上,皿上放一玻璃三角架,再盖上表面皿,蒸发至糊状后,加入1g氯化氨,充分搅匀,在沸水浴上蒸发至干后继续蒸发10~15min 。取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶性盐溶解。用中速滤纸过滤,用胶头檫棒以热水檫洗玻璃棒及蒸发皿,用热水洗涤10~12次。滤液及洗液保存于250mL容量瓶中。将沉淀连同滤纸一并移入原铂坩埚中,干燥、灰化后,放入已升温至950~1000℃的马弗炉内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。向坩埚内加数滴水润

湿沉淀,加3滴硫酸(1+4)和5mL氢氟酸,放入通风橱缓慢加热,蒸发至干,升高温度继续加热至三氧化硫白烟完全散尽。将坩埚放入已升温至950~1000℃内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。经氢氟酸处理后得到的残渣中加入1g焦硫酸钾,在500~600℃下熔融至透明,熔块用热水和数滴盐酸(1+1)溶解,溶液并入分离二氧化硅后得到的滤液和洗液中,用水稀释至标线,摇匀。 3. 氧化钙的测定吸取25mL于400mL烧杯中,加水稀释约200mL,加5mL三乙醇胺(1+2)及适量的CMP(1.000g钙黄绿素、1.000g甲基百里香酚蓝、0.200g酚酞、50g已在105℃烘干过的硝酸钾)混合指示剂,在搅拌下加入氢氧化钾(200g/L)至出现绿色荧光后再过量5~8mL ,以EDTA(0.015mol/L)滴定至绿色荧光消失并出现红色。 4. 氧化镁的测定吸取25mL于400mL烧杯中,加水稀释约200mL,依次加入1mL 酒石酸钾钠(100 g/L)和5mL三乙醇胺(1+2),搅拌,然后加入25mL、pH10缓冲溶液(67.5g氯化氨、570mL氨水)及适量的酸性铬蓝K—萘酚绿B混合指示剂(1.000g酸性铬蓝K、0.200g萘酚绿B、50g硝酸钾),以EDTA(0.015mol/L)滴定,近终点时应缓慢滴定至纯蓝色。5. 浆液pH值的测量电极每天使用前用缓冲溶液进行检查和校核pH值测量必须在现场流动的浆液中进行,并同时观测温度,通过pH计所显示的数字,对浆液在线pH计的读数进行对比。测量完毕

硫化氢(油品罐区)中毒危害分析及防治对策——H2S中毒事例简易版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编订:XXXXXXXX 20XX年XX月XX日 硫化氢(油品罐区)中毒危害分析及防治对策—— H2S中毒事例简易版

硫化氢(油品罐区)中毒危害分析及防治对策——H2S中毒事例简易版 温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 近年来,因H?S中毒导致人员死亡的恶性事故在石油化工行业频繁发生,以下是2个典型案例。 (1)1992年12月8日8时20分,兰州炼油总厂某装置南侧的含硫污水管线的主干线进行人工挖掘时,7人下到沟内,从东侧一下水井边开始一字向西排列作业。因违反了下水井管理的有关规定,为掏水、排水方便,将下水井盖打开,在井的西方向又打掉了一个长约1m的“V”形缺口。由于含硫污水排放的不均衡,从“V”形缺口处处溢的H?S沉积、蔓延至施工

人员作业处,至9时40分造成最东面的3人倒下,接着另2名民工也被熏倒,施工人员下到沟内救人,也倒下。最终造成6名民工中毒,经现场和医院抢救无效死亡。 (2)20xx年1月1日7时30分,因停电事故,至使沧州分公司焦化、重整加氢、空压站等生产装置和公用工程系统全面紧急停工,大量燃料气涌向气柜和火炬。为防止气柜上升过快,在控制室内气柜入口气缸阀未关的情况下,一操作人员到现场关气柜入口阀,在操作过程中,气柜水封突然被瓦斯气冲破,使大量的含硫(事后化验气柜内燃料气中的H?S含量为9%)燃料气连同凝析油、含硫污水急剧冲出,在距气柜15m处,将该操作人员熏倒,送至医院抢救无效死亡。另外3名现场和操作人

食物中毒事件典型案例分析

**市**市**镇初级中学 沙门氏菌食物中毒事件典型案例分析 一、案例 **年*月*日上午,**市食安办接信称**镇初级中学在晨检的过程中发现约有**名的学生有腹痛、腹泻、呕吐等症状,因这些学生在学校有共同就餐史,且发病时间非常集中,怀疑为食物中毒。 二、事件概况 **市**镇初级中学为政府公办初级中学,共有学生1132名,22个班级,83名老师,7名食堂工作人员。其中寄宿生630名,通学生502名,周一至周五上课,周六至周日放假。根据学校报告,**5日下午17:20开始,有学生出现腹痛、腹泻、呕吐、恶心和头痛、头昏等症状,到**6日晨检发现有80余名左右出现同类症状,**6日上午7点30分向**镇卫生院报告,**镇卫生院接报告后立即赶赴现场进行核实,核实后于8点30分向**市疾病预防控制中心报告,**市疾控中心立即将情况报告**市卫生局和**市疾控中心,并于9:20分到达现场。**市疾控中心接到报告后向**市卫生局和湖南省疾控中心报告后,并立即调集流行病学、食品卫生学、微生物检验、理化检验等学科专业人员前往现场调查,于13时到达现场。**7日请省疾控中心专家一起,再次赶赴现场进行调查处置。 **市食品安全管理办公室启动应急预案,组织各有关部门奔赴现场,成立联合调查组对该突发事件进行应急处置,**名符合病例定义的患者均得到有效救治,无重症病例和死亡病例,事态得到有效控制,处置得当。

三、问题分析 (一)、对流行病学特征进行认真详细分析 自**5日17:20出现首发病例后,截止**7日11时,共发生符合病例定义的病例94例。**7日11时后无新发病例。 1、病例定义:**年**5日中餐在该校食堂就中餐,出现呕吐或24小时腹泻3次及以上,伴或不伴头昏、头痛、恶心、腹痛、发热等症状的学生作为本次食物中毒事件的病例定义,截至**7日11时共核实符合病例定义病例94例,后无新增病例。 2、首发病例:**,女,13岁,125班走读生,于**5日17:20出现不适,主要为呕吐(3次)、腹痛,以脐周阵发性疼痛为主,并有头痛、头晕症状,6日8时左右前往**医院就诊,入院后出现体温升高(38.2℃),经积极治疗,患者已痊愈出院。 3、临床症状:主要临床表现为头痛头晕、腹痛、腹泻(黄色水样便)、呕吐、恶心、乏力等症状,部分病例低热。详见表1。 4、病例的三间分布 人群分布:所有发病均为学生,无教职员工发病,女性多于男性,男女比例为1:1.69(35/59)。年龄最大16岁,最小12岁。寄宿生64例,走读生30例。 班级分布:学校22个班级均有病例发生,无明显班级聚集性。 时间分布:病例潜伏期最短为5小时,最**为47小时。中位数为

脱硫吸收塔内浆液中毒的原因与解决措施

影响浆液中毒得因素: 1、塔内ph值对吸收反应得影响 控制塔内ph值就就是控制烟气脱硫反应得一个重要步骤,ph值就就是综合反应得碳酸根、硫酸根以及亚硫酸根含量得重要判断依据。控制ph值就就就是控制烟气脱硫化学反应正常进行得重要手段。控制ph值必须明确:so2溶解过程中会产生大量得氢离子,ph值高有利于氢离子得吸收,也就有利于二氧化硫得溶解;而低得ph值则有助于浆液中caco3得溶解。因为caco3、/2h2o以至于Caso4、2H2o得最终形成都就就是在So2、Caco3溶解得前提下进行得。所以,过高得ph值会严重抑制Caco3得溶解,从而降低脱硫效率。而过低得ph值又会严重影响对so2得吸收,导致脱硫效率严重下降。因此,必须及时调整并时刻保证塔内ph值在5、0~6、2、 2、塔内氧化风对吸收反应得影响 氧化风量决定了浆液内亚硫酸得氧化效果及氧化程度,从而影响着塔内反应得连续性。氧量充足,即氧化充分,生成石膏晶体就会粗壮,易脱水。反之,则会产生含有大量亚硫酸得小晶体,亚硫酸得大量存在不仅会使石膏脱水困难,而且亚硫酸根就就是一种晶体污染物,含量 高时会引起系统设备结垢。另一方面,亚硫酸根得溶解还会形成碱性环境,当亚硫酸盐相对饱与浓度较高时,亚硫酸盐所形成碱性环境也会增强,而碱性环境会抑制碳酸钙得溶解,从而使浆液中不溶解得碳酸钙分子大量增加,不仅增加浆液密度,也会降低吸收率。此时,如果有大量二氧化硫进入浆液,浆液ph值会快速降低,从而出现浆液密度高、ph值却偏低得浆液中毒情况。 3、塔内灰尘、杂质离子对吸收反应得影响 浆液中得杂质多数来源于烟气,少数来源于石灰石原料,有时电除尘经常发生故障,导致带入吸收塔内得灰尘量超标。所以,了解灰尘对吸收塔内浆液吸收率得影响非常重要。灰尘得主要影响: (1)、因烟尘颗粒小,很容易进入石膏晶体间得游离通道,从而将其堵塞。由于烟尘微粒堵塞了水分子通道,不仅造成石膏脱水困难,而且还会阻止石膏得形成与成长。 (2)、由于灰尘中含有氟化物与铝化物,随着浆液中灰尘量得增加,尤其就就是在高ph值下更易形成氟铝络合物,而这些络合物很容易包裹在碳酸钙得表面阻止碳酸钙得溶解。因此,不仅大大影响脱硫效率,还会导致石膏因碳酸钙含量增加而影响石膏脱水,而导致塔内反应流程中断。 (3)灰尘中含有氯离子及铜离子等。氯离子比碳酸根离子活性强,使得极易与溶解得钙离子结合生产氯化钙。同时,由于“铜离子效应”,又会抑制碳酸钙得溶解。另外,由于氯离子比

硫化氢中毒事故案例

硫化氢中毒事故案例分析 一、硫化氢简介 硫化氢是一种无机化合物,分子式为H2S,一种易燃的酸性气体,无色,低浓度时有臭鸡蛋气味,浓度极低时便有硫磺味,有剧毒。常存在于废气、含硫石油、以及下水道、隧道中。含硫有机物腐败也可产生硫化氢气体。在阴沟疏通、河道挖掘、污物清理等作业时时常常会遭遇高浓度的硫化氢气体,在密闭空间中作业情况更为突出。如防范不当,极易造成人员伤亡。 二、典型事故案例 (一)案例一 2005年6月17日下午13时20分左右,某公司发现生产车间冷却用水异常,动力车间组织相关人员对供水系统进行检查。动力车间主任柴某、副主任马某、车间设备员陈某-同到达四号井,下井后相继晕倒在水井里。13时35分,维修工王某第一个到达现场,立即联络人员开展营救。门卫刘某、石某依次下井,刘某第-一个下井,刚要抱起柴某,即晕倒,第二个下井的石某挣扎爬出井外即晕倒。后安全部门人员带呼吸器下井救人,将四人相继救出井外。最终造成柴某等四人均抢救无效死亡的悲痛惨剧,给四个家庭带来了毁灭性的打击伤害,同时也给责任单位带来很大负面损失。 (二)案例二 2008年3月3日,北京某污水处理厂二分厂副长厂姜某带领工

人刘某、王某和高某在对23号泵进行检修时,刘某在未确认该污泥循环系统进水阀门是否关闭的情况下,盲目打开23号泵泵壳的环形夹具,致使该泵处于承压状态,泵的吸入口污泥带压喷出并将刘某掩埋,污泥内厌氧产生硫化氢等有害气体累积并随喷出的污水溢出,现场其他3名作业人员迅速从不同出入口撤离管廊。喷泥事故发生后,污水处理厂二分厂副厂长王某(代理厂长)、技术员赵某,三分厂书记潘某、厂长袁某等人员在对事故情况不清、未采取安全防护措施的情况下,分别从不同出入口下到地下管廊内查看情况,在查看过程中,四人先后晕倒在管廊内。消防人员赶到后,分别将五人救出,经医护人员抢救无效潘某、王某、赵某、刘某四人死亡,一人受重伤。(三)案例三 2008年9月13日8时左右,某市某实业有限公司水处理剂车间二工段7号反应釜,在检修过程中发生1人中毒,3人盲目施救,造成3人死亡、1人受伤事故。经初步调查了解,在检修前张某、王某用水对7号反应釜进行几次冲洗置换后,张某在未对釜中置换情况进行空气检测,且未佩戴防护用品的情况下擅自进入作业,导致中毒晕倒。 三、事故原因分析 (一)案例一的事故原因 直接原因: ①城市污水渗入水井中,产生大量不明有毒有害气体,致使下井检查及抢救人员中毒。

石灰石浆液中毒分析

现象:原烟气SO2总量不变时增加CaCO3浆液而PH值持续降低,脱硫率下降。 危害:脱硫率下降达不到预期脱硫效果,污染环境;pH值降低,加剧吸收塔内部腐蚀;过量的CaCO3浆液造成原材料浪费。 原因: 1、FGD进口SO2浓度突变引起石灰石盲区; 基本机理:由于烟气量或FGD进口原烟气SO2浓度突变,造成吸收塔内反应加剧,CaCO3含量减少,PH值下降,此时若石灰石供浆流量自动投入为保证脱硫效率则自动增加石灰石供浆量以提高吸收塔的PH值,但由于反应加剧吸收塔浆液中的CaSO3·1/2H2O含量大量增加,若此时不增加氧量使CaSO3·1/2H2O迅速反应成CaSO4·2H2O,则由于CaSO3·1/2H2O 可溶解性强先溶于水中,而CaCO3溶解较慢,过饱和后形成固体沉积,这种现象称为“石灰石盲区”。 2、吸收塔浆液密度高没有及时外排,浆液中的CaSO4·2H2O饱和会抑制CaCO3溶解反应; 3、电除尘后粉尘含量高或重金属成分高,在吸收塔浆液内形成一个稳定的化合物,附着在石灰石颗粒表面,影响石灰石颗粒的溶解反应,导致石灰石浆液对PH值的调解无效; 4、氧化不充分引起亚硫酸盐致盲;(原理如1) 5、工艺水水质差,系统中的氯离子浓度高,石灰石粉品质差,引起吸收塔浆液发生石灰石盲区。 PS:氯离子危害: 1. CL-使脱硫系统中引起金属腐蚀和应力腐蚀 2. CL-还能杨制吸收塔内的化学反映,改变pH值,降低(SO4)2-的去除率;消耗石灰石等吸收剂;氯化物有仰制吸收剂的溶解,降低脱硫效率。 3. 石膏脱水困难,使含水量增加,石膏难以成型影响石膏品质,降低效益。 4. 是吸收塔中不参加反应的惰性物质增加,浆液的利用率下降要达到预想的脱硫效率就得增加溶液和溶质,这样就使得循环系统电耗增加。 5. 氯离子高了主要还有对脱水系统有影响,在8000ppm以上时,必须要大量的冲洗水,这就无法保证石膏品质的含水量控制在10%以下 6. 正常在脱水系统运行是加大废水的排放量,控制塔内氯离子在5000ppm以下最好,怎样可以有利于脱水,对石膏作为其他用途也很有利 6、氟离子超标:浆液中的三价铝和氟离子反应生成AlF3和其他物质的络合物,呈粘性的絮凝状态,附着于石灰石表面。这会导致:封闭石灰石颗粒表面,阻止其溶解,降低了浆液的pH值,必然会导致脱硫率下降。这就要求添加石灰石来调节浆液的pH值,此时若石灰石供浆流量自动投入为保证脱硫效率则自动增加石灰石供浆量以提高吸收塔的pH值,从而使得吸收浆液中的石灰石过量。这就使得整个系统增加了石灰石的消耗、降低了石膏质量并破坏了脱水特性。 处理: 1、若石灰石盲区发生,首先不考虑脱硫率,暂停石灰石浆液的加入,待PH值下降至4.0左右,人工计算石灰石浆液的加入量,使pH值逐步上升,脱硫率缓慢回升; 2、增开氧化风机; 3、若原烟气SO2含量高引起石灰石盲区,申请机组负荷降低,减少SO2量; 4、向吸收塔内补充新鲜的石灰石浆液和工艺水,一边外排吸收塔浆液或排至事故浆液箱进行置换;

建筑石灰试验方法化学分析方法

建筑石灰试验方法化学分析方法 时间: 2004-01-18 11:57:13 | [<<][>>] 1 主题内容与适用范围 本标准规定了建筑石灰化学分析的仪器设备、试样制备、试验方法和结果计算以及化学分析允许误 差。 本标准适用于建筑生石灰、生石灰粉和消石灰粉化学分析方法,其他品种石灰可参照使用。 2 总则 2.1送检试样应具有代表性,数量不少于100g,装在磨口玻璃瓶中,瓶口密封。检验时,将试样混均以 四分法缩取25g,在玛钵内研细全部通过80um方孔筛用磁铁除铁后,装人磨口瓶内供分析用。 2.2分析天平不应低于四级,最大称量200g,天平和砝码应定期进行检定。 2.3称取试样应准确至0.0002g,试剂用量与分析步骤严格按照本标准规定进行。 2.4化学分析用水应是蒸馏水或去离子水,试剂为分析纯和优级纯。所用酸和氨水,未注明浓度均为浓

酸和浓氨水。 2.5滴定管、容量瓶、移液管应进行校正。 2.6做试样分析时,必须同时做烧失量的测定,容量分析应同时进行空白试验。 2.7分析前,试样应于100-105℃烘箱中干燥2h。 2.8各项分析结果百分含量的数值,应保留小数点后二位。 3 分析方法 3.1二氧化硅的测定 3.1.1氟硅酸钾容量法 3.1.1.1方法提要 在有过量的氟,钾离子存在的强酸性溶液中,使硅酸形成氟硅酸钾(KaSiF 6)沉淀,经过滤、洗涤、中 和滤纸上的残余酸后,加沸水使氟硅酸钾沉淀水解生成等当量的氢氟酸,然后以酚酞为指示剂,用氢氧化钠 标准溶液进行滴定。 3.1.1.2试剂

a.硝酸(浓); b.氯化钾(固体) c.氟化钾溶液(150s/L):将15g氟化钾放在塑料杯中,加50mL水溶解后,再加20mI硝酸,用 水稀释至100mL,加固体氯化钾至饱和,放置过夜,倾出上层清液,贮存于塑料瓶中备用; d.氯化钾-乙醇溶液(50g/L):将5g氯化钾溶于50mL水中,用95%乙醇,稀至100mL混匀; e.酚酞指示剂乙醇溶液(10g/L):将1g酚酞溶于95%乙醇,并用95%乙醇稀释至100mL; f.氢氧化钠标准溶液(0.05mol/L):将10g氢氧化钠溶于5L水中,充分摇匀,贮于塑料桶中; 标定方法:准确称取0.3000g苯二甲酸氢钾置于400mL烧杯中,加入约15 0mL新煮沸的冷水 (用氢氧化钠熔液中和至酚酞呈微红色),使其溶解,然后加入7 ̄ 8滴酚酞指示剂乙醇溶液(10g/L), 以氢氧化钠标准溶液滴定至微红色为终点,记录V。 氢氧化钠溶液对二氧化硅的滴定度按式(1)计算:

硫化氢中毒事故分析与对策参考文本

硫化氢中毒事故分析与对 策参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

硫化氢中毒事故分析与对策参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 硫化氢是具有高度危害的窒息性气体,因硫化氢中毒 致人死亡的恶性事故在石油化工企业频繁发生。因此,积 极稳妥地做好预防工作,避免硫化氢中毒尤为必要。下 面,先看两个硫化氢中毒事故案例: 1.1999年8月7日,某厂加氢裂化车间硫化氢管道泄 漏,9点15分,一职工巡检时被熏倒。班长发现后,立即 配戴防毒面具去施救。在救人过程中,因所戴防毒面具不 能防硫化氢,故也被熏倒,造成两人死亡的重大事故。这 起事故是职工巡检时没有采取必要的防范措施,班长施救 时错戴了防毒面具所致。 2.20xx年1月21日,某厂催化装置精制工段酸性水 系统停车,对各有关管线进行排液处理。按规定,应先将

酸性水泵向汽提塔进料管线上的阀门关上,再将酸性水泵的出口阀和出口排凝阀打开排液。但是,操作人员未关酸性水泵向汽提塔进料管线上的阀门,就打开水泵出口阀和排凝阀排液,排放过程中又无人监护。在进料管线内酸性水排放完后,汽提塔内压力为0.23MPa、浓度为68%的硫化氢气体经过进料管线从酸性水泵的排凝阀处排出,迅速弥漫整个泵房。此时约10点零5分,2名女工正在泵房内打扫卫生,立即被硫化氢气体熏倒,中毒窒息。10点10分左右被人发现,立即进行抢救,抢救中又有7人不同程度地中毒,2名女工抢救无效死亡,其余7人送医院观察治疗,幸好无险。事故的直接原因是当班操作工在脱水排凝时未将酸性水向汽提塔管线上的阀门排入泵房。这是一起性质严重的违章操作事故。 仅这两起事故,对于在含硫化氢设备区域工作的人们来说,无疑就是一个足够的警示。那么,在此类区域作业

2018.2浅谈火电厂脱硫中PH计的重要性

浅谈火电厂脱硫中PH计的重要性 脱硫运行刘云龙 摘要:火电厂脱硫中吸收塔浆液PH计是脱硫系统中非常重要的表计;是环保监测脱硫的重要指标之一;是脱硫装置长周期安全稳定运行的重要保障。运行工作人员可根据浆液PH值大小,控制石灰石浆液的供给量,从而控制SO2的排放量。 引言:我厂2×35万超临界循环流化床火电机组#1机组第一次脱石膏,浆液中携带刺鼻的SO2充斥整个脱水间;2016年5月份#1机组吸收塔浆液第一次起泡;2017年#1机组6月份脱硫系统运行5台泵时间较长。这几次脱硫系统异常运行状况分别反映了运行中重视PH计数值和缩小PH计表计误差的重要性。 1、PH表计安装部位及系统组成 我厂脱硫系统中PH表计安装在脉冲泵出口母管处(综合泵房内),并列3根采样管(?76不锈钢管)分别供给3台PH表计采样,经过PH表计后的吸收塔浆液汇聚同一母管返回吸收塔。 PH计表计示意图 2、运行工作中PH值测量及PH表计保养方法 现运行人员测量吸收塔浆液PH值采用就地实测和DCS上PH表计

监视两种方法。就地实测采用上海三爱思试纸,色差因人而异,误差大。PH表计每班工艺水冲洗,停运注水保养。 3、运行工作中PH值控制及实际意义 如果用比喻的方法说PH表计是什么,在电厂脱硫中PH表计就是脱硫运行工人的眼睛。PH值大小关系到脱硫系统结垢、堵塞、腐蚀、耗能、环保指标、石膏、长周期运行等。 PH值过大或PH值过小对脱硫运行影响简表如下: 所以合理的PH值范围是脱硫系统长周期运行的保障。确保脱硫高效能、合理的液气比、钙硫比、氧硫比。 4、今后工作方向 建议运行中PH值控制范围向设计值靠拢(4.5~5.5)。相关部门PH表计定期标定,更换失效电极,确保PH表计不受冲洗水影响。5、结束语 PH值合理范围和误差大小能够使运行人员真实有效的控制供浆

脱硫吸收塔内浆液中毒的原因与解决措施

影响浆液中毒的因素: 1. 塔内ph值对吸收反应的影响 控制塔内ph值是控制烟气脱硫反应的一个重要步骤,ph值是综合反应的碳酸根、硫酸根以及亚硫酸根含量的重要判断依据。控制ph值就是控制烟气脱硫化学反应正常进行的重要手段。控制ph值必须明确:so2溶解过程中会产生大量的氢离子,ph值高有利于氢离子的吸收,也就有利于二氧化硫的溶解;而低的ph值则有助于浆液中caco3的溶解。因为caco3./2h2o以至于Caso4.2H2o的最终形成都是在So2、Caco3溶解的前提下进行的。所以,过高的ph值会严重抑制Caco3的溶解,从而降低脱硫效率。而过低的ph值又会严重影响对so2的吸收,导致脱硫效率严重下降。因此,必须及时调整并时刻保证塔内ph值在5.0~6.2. 2. 塔内氧化风对吸收反应的影响 氧化风量决定了浆液内亚硫酸的氧化效果及氧化程度,从而影响着塔内反应的连续性。氧量充足,即氧化充分,生成石膏晶体就会粗壮,易脱水。反之,则会产生含有大量亚硫酸的小晶体,亚硫酸的大量存在不仅会使石膏脱水困难,而且亚硫酸根是一种晶体污染物,含量高时会引起系统设备结垢。另一方面,亚硫酸根的溶解还会形成碱性环境,当亚硫酸盐相对饱和浓度较高时,亚硫酸盐所形成碱性环境也会增强,而碱性环境会抑制碳酸钙的溶解,从而使浆液中不溶解的碳酸钙分子大量增加,不仅增加浆液密度,也会降低吸收率。此时,如果有大量二氧化硫进入浆液,浆液ph值会快速降低,从而出现浆液密度高、ph值却偏低的浆液中毒情况。 3. 塔内灰尘、杂质离子对吸收反应的影响 浆液中的杂质多数来源于烟气,少数来源于石灰石原料,有时电除尘经常发生故障,导致带入吸收塔内的灰尘量超标。所以,了解灰尘对吸收塔内浆液吸收率的影响非常重要。灰尘的主要影响: (1).因烟尘颗粒小,很容易进入石膏晶体间的游离通道,从而将其堵塞。由于烟尘微粒堵塞了水分子通道,不仅造成石膏脱水困难,而且还会阻止石膏的形成和成长。 (2).由于灰尘中含有氟化物和铝化物,随着浆液中灰尘量的增加,尤其是在高ph值下更易形成氟铝络合物,而这些络合物很容易包裹在碳酸钙的表面阻止碳酸钙的溶解。因此,不仅大大影响脱硫效率,还会导致石膏因碳酸钙含量增加而影响石膏脱水,而导致塔内反应流程中断。 (3)灰尘中含有氯离子及铜离子等。氯离子比碳酸根离子活性强,使得极易和溶解的钙离子结合生产氯化钙。同时,由于“铜离子效应”,又会抑制碳酸钙的溶解。另外,由于氯

白云石、石灰石、方解石化学分析

白云石、石灰石、方解石化学分析 1.主要内容与适用范围 本标准规定了玻璃工业用白云石、石灰石、方解石化学成分分析的原理,使用的试剂、仪器,分析步 骤和结果处理。 本标准适用于玻璃工业用白云石、石灰石、方解石的化学成分分析。 2.试样的制备 试样必须具有代表性和均匀性,没有外来杂质混入,经过缩分,最后得到约20g试 样,在玛瑙钵中研磨至全部通过孔径150μm(100目)筛,然后装于称量瓶中备用。 3.分析方法 3.1一般规定 3.1.1 标准中同一成分所列不同分析方法,可根据具体情况选用,如发生争议。以第一种方法为准。 3.1.2 所用分析天平感量应为0.0001g,天平与砝码应定期进行校验。“恒重”系指 连续两次称重之差不大于0.0002g。 5.1.3 所用仪器和量器应经过校正。 3.1.4 分析试样应于烘箱中在105-110℃烘干1h以上,冷却至室温,进行称量。

3.1.5 分析用水应为蒸馏水或去离子水;所用试剂应为分析纯或优级纯;用于标定溶 液的试剂应为基准试剂。对水和试剂应做空白试验。 3.1.6 标准中试剂的浓度采用下列表示法: 3.1.6.1当直接用名称表示下列试剂时,系指符合下列百分浓度的浓试剂: 试剂名称试剂浓度(%) 盐酸 36-38 氢氟酸 40以上 硝酸 65-68 高氯酸 70-72 硫酸 95-98 氨水 25-28 3.1.6.2 被稀释的试剂浓度以下列的形式表示: 盐酸(5+95),系指5份体积的盐酸加95份体积的水配成之溶液。3.1.6.3 固体试剂配制的溶液浓度用重量/体积的百分浓度表示(作标准溶液时除外 ),例如:20%氢氧化钾是指每20g氢氧化钾溶于100mL水而制成之溶液。在没有特别指 明时,均指水溶液。 3.1.7 吸光度测量所用之“试剂空白溶液”指不含待测组分之溶液。3.2 烧失量的测定

硫化氢中毒事故原因分析

硫化氢中毒事故原因分析 1、没有真正落实好企业安全主体责任 用人单位和作业单位及个人在空气不畅,容易产生有毒有害气体可能造成人员中毒和窒息的作业场所(洞室、井坑、管道、容器、打井钻孔和船舱)进行作业时 1、没有按照安全操作规程执行; 2、没有选择具有相应资质的企业和专业培训的作业人员承担; 3、没有建立健全其预防硫化氢等有害气体中毒的岗位责任,作业方案,安全技术措施和事故应急预案; 4、作业前未审定作业方案,未进行安全技术交底,没有执行下井作业操作制度; 5、没有采取监测、通风、排气等防护措施; 6、未配备相应的供压缩空气的隔离式防护装具; 7、没有指派专人进行监护。 2、忽视安全生产,冒险进入危险作业场所 井下作业项目还没有得到高度重视。井下作业项目还没有得到各级领导、生产和安全管理人员和作业人员的高度重视,特别是未把下井作业当作一项危险任务来安排和布置,任意选择无作业资格的作业人员从事下井作业,施工人员和管理人员对井下作业缺乏危险辨识和应采取相应的安全保证措施,不了解井下各种气体情况,私自盲干和随意性较大,一但出现问题,抢救措施不当,造成一人中毒多人冒险下井抢救而同时中毒死亡。 3、有关规章制度得不到认真落实 有的单位缺乏对《安全生产法》、《建设工程安全管理条例》及行业法规(建设部《排水管道维护安全技术规程》)的学习掌握和自觉贯彻和执行,特别是负责生产和管理人员以及作业人员对行业法规制度和规范标准领会不深,执行不严,有的甚至不掌握或根本不懂,导致施工现场违章指挥,违章作业,施工的安全技术要求、现场安全生产监督、安全防护设备使用等达不到规范要求或根本就没有,作业人员盲目作业而导致人员伤亡。 4、专业性安全教育和培训不到位 专业性安全教育和培训不到位,管理和作业人员安全意识淡薄,缺乏自我保护意识对井下作业项目复杂性、专业性、危险性认识不清,不按规范要求佩带配备下井作业专用的安全防护装具,更没有制定事故应急救援预案并执行,从而导致事故发生。 5、下井作业监管不到位,随意性和盲目性强 下井作业未列入有关单位排水生产和工程施工的一个专题项目,因此安排作业项目随意性较大,缺乏懂知识、有经验的安全管理人员和专业井下作业人员进行管理和施工,作业时现场安全专项检查不到位或不及时,作业前没有进行有针对性的安全交底,制定作业方案,不掌握和不交待作业环境气体情况,缺乏危险源辨识,更有甚者是从社会上任意找来民工,冒险作业和盲目施救现象严重而导致人员伤亡。 6、安全投入不足,没有配备和使用专用的气体监测和下井防护设备 7、发生事故后盲目施救也是造成事故进一步扩大的重要原因,常见的是盲目施救发生多人中毒。

吸收塔浆液中毒

吸收塔浆液中毒 石灰石——石膏湿法脱硫系统在运行的过程中,经常会出现持续进浆而吸收塔浆液pH不上升、脱硫效率反而下降的现象,我们将此现象称为“吸收塔浆液中毒”,有的同行称之为“盲区”,国外的文献上叫做“棕泥”现象。 造成吸收塔浆液中毒的原因,最常见的有以下两种: 一、煤燃烧后产生的烟气中,含有大量的卤族元素和金属元素,其中的氟离子和铝离子反应生成了氟化铝和其他物质的络合物,这种络合物呈粘性的絮凝状态,会包裹在石灰石颗粒的表面,阻止石灰石颗粒的溶解,因此出现中毒时,加入石灰石吸收剂浆液的pH值不会升高,脱硫效率反而下降。 二、氧化风量不足。当氧化风量不足时,吸收塔内浆液反应,会产生大量的CaSO3.1/2H2O,其特性较粘稠,容易包裹在石灰石颗粒的表面,与氟化铝络合物相类似,阻止石灰石溶解。即使大量进浆,pH值不会升高,脱硫效率下降。 解决办法: 一、取吸收塔浆液样品,进行观察。由于大多数氟化氢和三氧化二铝来自于烟气,当浆液是由于氟化铝络合物引起的中毒,则说明电除尘除尘效果差,浆液经沉淀后在分层的界面上会出现一层不易沉淀的、灰黑色的胶体。此时要检查电除尘器的除尘效果。 有时也会有一部分氟离子来自脱硫补给水,所以要定期化验脱硫补给水中氟离子的含量。

二、氧化风不足引起的吸收塔浆液中毒,解决办法是降低吸收塔pH值,同时启动备用氧化风机,使包裹在石灰石颗粒表面的CaSO3.1/2H2O转变成CaSO4.2H2O,中毒现象将自行消失。 三、置换浆液。用新鲜浆液逐步替换已经中毒的浆液。 四、在中毒的浆液中加入NaOH来提高浆液的pH值。要注意的一点是中毒浆液的恢复过程需要比较长的时间,根据国内电厂的经验,加入NaOH的时间要2~3天。 由于脱硫系统运行工况复杂多变,浆液中毒的原因可能是多种因素共同造成的结果,且想要确定具体是由哪个原因引起的浆液中毒,分析化验参数需要一定的时间,而由于环保要求,浆液中毒后留给专业处理的时间非常有限,目前专业上处理浆液中毒的方法是前三种处理方法同时使用。同时,专业也通过日常参数化验结果,判断分析浆液品质的好坏,尽量避免发生浆液中毒的现象。

水泥厂原料的化学分析方法

水泥厂原料的化学分析方法 D1石灰石的化学分析方法 D⒈1试样的制备 试样必须具有代表性和均匀性。由大样缩分后的试样不得少于100g,试样通过0.08mm 方孔筛时的筛余不应超过15%。再以四分法或缩分器减至约25g,然后研磨至全部通过孔径为0.008mm方孔筛。充分混匀后,装入试样瓶中,供分析用。其余作为原样保存备用。 D⒈2烧失量的测定 D⒈⒉1方法提要 试样中所含水分、碳酸盐极其他易挥发性物质,经高温灼烧即分解逸出,灼烧所失去的质量即为烧失量。 D⒈⒉2分析步骤 称取约1g试样(m),精确至0.0001g,置于已灼烧恒量的瓷坩锅中,将盖斜置于坩锅上,放入马弗炉内,从低温开始逐渐升温,在950~1000℃下灼烧1h,取出坩锅置于干燥器中,

冷却至室温,称量。反复灼烧,直至恒量。 D⒈⒉3结果表示 烧失量的质量百分数X LOI 按式(D1.1)计算: m-m 1 X LOI =————×100 ......................(D1.1) m 式中: X LOI—烧失量的质量百分数,%; m 灼烧后试料的质量,g; 1— m—试料的质量,g。 D⒈⒉4允许差 同一实验室的允许差为:0.25%; 不同实验室的允许差为:0.40%。 D⒈3二氧化硅的测定(基准法) D⒈⒊1方法提要

试样以无水碳酸钠烧结,盐酸溶解,加固体氯化铵于沸水浴中加热蒸发,使硅酸凝聚,灼烧称量。用氢氟酸处理后,失去的质量即为二氧化硅含量。 D⒈⒊2分析步骤 称取约0.6g试样(m2 ),精确至0.0001g,置于铂坩锅中,将盖斜置于坩锅上,在950~1000℃下灼烧5min,取出铂坩锅冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g研细无水碳酸钠混匀。再将坩锅置于950~1000℃下灼烧10min,取出冷却至室温。 将烧结物移入瓷蒸发皿中,加少量水润湿,盖上表面皿。从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解完全,用热盐酸(1+1)清洗坩锅数次,洗液合并于蒸发皿中。将蒸发皿置于沸水浴上,皿上放一玻璃三角驾,再盖上表面皿,蒸发至糊状后,加入氯化铵充分搅匀,放入沸水浴中蒸发至干后继续蒸发10~20min。 取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶

硫化氢中毒事故分析与对策(正式版)

文件编号:TP-AR-L8234 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 硫化氢中毒事故分析与 对策(正式版)

硫化氢中毒事故分析与对策(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 硫化氢是具有高度危害的窒息性气体,因硫化氢中毒致人死亡的恶性事故在石油化工企业频繁发生。因此,积极稳妥地做好预防工作,避免硫化氢中毒尤为必要。下面,先看两个硫化氢中毒事故案例: 1.1999年8月7日,某厂加氢裂化车间硫化氢管道泄漏,9点15分,一职工巡检时被熏倒。班长发现后,立即配戴防毒面具去施救。在救人过程中,因所戴防毒面具不能防硫化氢,故也被熏倒,造成两人死亡的重大事故。这起事故是职工巡检时没有采取必要的防范措施,班长施救时错戴了防毒面具所致。 2.20xx年1月21日,某厂催化装置精制工段酸

性水系统停车,对各有关管线进行排液处理。按规定,应先将酸性水泵向汽提塔进料管线上的阀门关上,再将酸性水泵的出口阀和出口排凝阀打开排液。但是,操作人员未关酸性水泵向汽提塔进料管线上的阀门,就打开水泵出口阀和排凝阀排液,排放过程中又无人监护。在进料管线内酸性水排放完后,汽提塔内压力为0.23MPa、浓度为68%的硫化氢气体经过进料管线从酸性水泵的排凝阀处排出,迅速弥漫整个泵房。此时约10点零5分,2名女工正在泵房内打扫卫生,立即被硫化氢气体熏倒,中毒窒息。10点10分左右被人发现,立即进行抢救,抢救中又有7人不同程度地中毒,2名女工抢救无效死亡,其余7人送医院观察治疗,幸好无险。事故的直接原因是当班操作工在脱水排凝时未将酸性水向汽提塔管线上的阀门排入泵房。这是一起性质严重的违章操作事故。

硫化氢中毒事故分析与对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 硫化氢中毒事故分析与对 策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3208-29 硫化氢中毒事故分析与对策(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 硫化氢是具有高度危害的窒息性气体,因硫化氢中毒致人死亡的恶性事故在石油化工企业频繁发生。因此,积极稳妥地做好预防工作,避免硫化氢中毒尤为必要。下面,先看两个硫化氢中毒事故案例: 1.1999年8月7日,某厂加氢裂化车间硫化氢管道泄漏,9点15分,一职工巡检时被熏倒。班长发现后,立即配戴防毒面具去施救。在救人过程中,因所戴防毒面具不能防硫化氢,故也被熏倒,造成两人死亡的重大事故。这起事故是职工巡检时没有采取必要的防范措施,班长施救时错戴了防毒面具所致。 2.20xx年1月21日,某厂催化装置精制工段酸性水系统停车,对各有关管线进行排液处理。按规定,应先将酸性水泵向汽提塔进料管线上的阀门关上,再将酸性水泵的出口阀和出口排凝阀打开排液。但是,

一起食物中毒案例的分析(有答案)

卫生检验综合技术-微生物检验部分课堂讨论 模块二:细菌性食物中毒案例讨论 一、一起食物中毒案例的分析 目的要求: 1.掌握细菌性食物中毒实验室检测流程及检测技术 2.熟悉引起食物中毒的原因,食物中毒类型、临床表现、诊断及治疗处理原则 3.熟悉食物中毒的调查与处理的方法 4.了解食物中毒案例的分析方法 学时:11学时 课程内容: 一、事件概述 B市C镇初级中学为政府公办初级中学,共有学生1132名,22个班级,83名老师,7名食堂工作人员。其中寄宿生630名,走读生502名,周一至周五上课,周六至周日放假。根据学校报告,6月5日下午17:20开始,有学生出现腹痛、腹泻、呕吐、恶心和头痛、头昏等症状,到6月6日晨检发现有80余名左右出现同类症状,因这些学生在学校有共同就餐史,且发病时间非常集中,怀疑为食物中毒。6月6日上午7:30学校向C镇卫生院报告并组织患病学生就诊。【问题1】C镇卫生院接到报告后,首先应当开展什么工作?当卫生院同天接到数例相同症状体征的病人时,应如何考虑?作何处理? 【参考答案】C镇卫生院接到报告后应第一时间奔赴现场核实情况,并及时开展救治。当同一天接到数例相同症状体征的病人时,则考虑食物中毒的可能。因此,对病人采取紧急处理的同时及时报告当地CDC或卫生执法监督机构。

镇卫生院接报告后立即赶赴现场进行核实,核实后于6月6日上午8:30向B市疾病预防控制中心报告…… 【问题2】B市疾病预防控制中心接到报告后,如果怀疑是食物中毒,应做何处理? 【参考答案】及时将事件报告给市卫生局和省疾控中心。除了及时报告之外,还应:○1对病人采取紧急处理,包括停止食用中毒食品;采取病人标本,以备送检;对病人的急救治疗;○2对中毒食品的控制:保护现场,封存中毒食品或疑似中毒食品;追回已售出的中毒食品或疑似中毒食品;○3对中毒场所采取消毒处理

浆液中毒

浆液中毒,有的同行称之为“盲区”,国外的文献上叫做“棕泥”现象。; 出现浆液中毒的原因是浆液中的氟离子和铝离子反应生成了氟化铝和其他物质的络合物,这种络合物呈粘性的絮凝状态,会封闭石灰石颗粒的表面,阻止石灰石颗粒的溶解,因此出现中毒时,加入石灰石吸收剂浆液的pH值不会升高,脱硫效率大大下降。 解决浆液中毒的办法是用新鲜浆液逐步替换已经中毒的浆液,另外也可以在中毒的浆液中加入NaOH来提高浆液的pH值。要注意的一点是中毒浆液的恢复过程需要比较长的时间,根据国内电厂的经验,加入NaOH的时间要2-3天。 浆液中的氟离子的来源是烟气中的氟化氢、石灰石中的可溶性氟化物以及补给水中的氟离子;铝离子主要来自除尘器未脱除的飞灰中的Al2O3。因此要避免中毒现象,首先要限制进入脱硫塔烟气中飞灰的浓度,其次要控制工艺水中的氟离子的含量。 现象:原烟气SO2总量不变时增加CaCO3浆液而PH值持续降低,脱硫率下降。 危害:脱硫率下降达不到预期脱硫效果,污染环境;pH值降低,加剧吸收塔内部腐蚀;过量的CaCO3浆液造成原材料浪费。 原因: 1、FGD进口SO2浓度突变引起石灰石盲区; 基本机理:由于烟气量或FGD进口原烟气SO2浓度突变,造成吸收塔内反应加剧,CaCO3含量减少,PH值下降,此时若石灰石供浆流量自动投入为保证脱硫效率则自动增加石灰石供浆量以提高吸收塔的PH值,但由于反应加剧吸收塔浆液中的CaSO3·1/2H2O含量大量增加,若此时不增加氧量使CaSO3·1/2H2O迅速反应成CaSO4·2H2O,则由于CaSO3·1/2H2O可溶解性强先溶于水中,而CaCO3溶解较慢,过饱和后形成固体沉积,这种现象称为“石灰石盲区”。 2、吸收塔浆液密度高没有及时外排,浆液中的CaSO4·2H2O饱和会抑制CaCO3溶解反应; 3、电除尘后粉尘含量高或重金属成分高,在吸收塔浆液内形成一个稳定的化合物,附着在石灰石颗粒表面,影响石灰石颗粒的溶解反应,导致石灰石浆液对PH值的调解无效; 4、氧化不充分引起亚硫酸盐致盲;(原理如1) 5、工艺水水质差,系统中的氯离子浓度高,石灰石粉品质差,引起吸收塔浆液发生石灰石盲区。 PS:氯离子危害: 1. CL-使脱硫系统中引起金属腐蚀和应力腐蚀 2. CL-还能杨制吸收塔内的化学反映,改变pH值,降低(SO4)2-的去除率;消耗石灰石等吸收剂;氯化物有仰制吸收剂的溶解,降低脱硫效率。 3. 石膏脱水困难,使含水量增加,石膏难以成型影响石膏品质,降低效益。 4. 是吸收塔中不参加反应的惰性物质增加,浆液的利用率下降要达到预想的脱硫效率就得增加溶液和溶质,这样就使得循环系统电耗增加。 5. 氯离子高了主要还有对脱水系统有影响,在8000ppm以上时,必须要大量的冲洗水,这就无法保证石膏品质的含水量控制在10%以下

相关主题
文本预览
相关文档 最新文档