运筹学-图论4
- 格式:ppt
- 大小:340.50 KB
- 文档页数:31
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
图论在运筹学中的名词解释一、引言运筹学是一门研究复杂问题的学科,它借助各种数学方法和技术,帮助我们做出最佳的决策。
图论作为运筹学的重要工具之一,被广泛应用于解决各类实际问题。
本文将就图论在运筹学中的几个重要名词进行解释和探讨。
二、图图是图论的核心概念之一。
它由一组顶点和连接这些顶点的边组成。
在运筹学中,图可以用来描述和分析各种现实场景。
比如,交通网络可以用图来表示,道路是边,路口是顶点;社交网络可以用图来表示,用户是顶点,社交关系是边。
通过构建和分析图,我们可以揭示事物之间的关联性和特征,并利用这些信息进行决策。
三、路径路径是图论中一个重要概念。
它指的是在图中顶点之间连接的一系列边的序列。
在运筹学中,路径常常被用来表示两个顶点之间的最佳路线或最优解。
比如,在物流配送中,我们需要找到从仓库到目的地的最短路径,以最大程度地降低运输成本和时间。
通过图论的路径算法,我们可以高效地找到这样的最短路径,为物流管理提供有效支持。
四、最小生成树最小生成树是一种特殊的图结构,它是原图的一个子图,包含了所有顶点,但只有足够的边连接这些顶点,并使得整个图的总权重最小。
在运筹学中,最小生成树常常被用于解决资源分配和网络设计等问题。
比如,在电力输送系统中,我们需要将发电站和各个消费点以最短的电网连接起来,以确保电能的高效分配和传输。
通过构建最小生成树,我们可以优化电网的布局,降低能源损耗,提高供电可靠性。
五、网络流网络流是图论中的一个重要概念,它用来描述在一个有向图中通过各个边所能承载的最大流量。
在运筹学中,网络流被广泛应用于流程设计和资源调度问题。
比如,在工厂生产调度中,我们需要在供应链上对原材料、组件和成品进行优化配送,以实现最佳生产效率和降低成本。
通过分析网络流,我们可以确定各个节点的产能和需求,从而优化生产计划和物流调度。
六、最短路径最短路径是图论中的一个重要问题,即在图中找到连接两个顶点的最短路径。
在运筹学中,最短路径经常被用于解决物流和通信等问题。
四、图论1、求下图中从v1到v3最短路。
v 1v 3v 546从节点 1到节点3的最短路 *************************起点 终点 距离 ---- ---- ---- 1 2 1 2 3 6此问题的解为:7 2、最小生成树电信公司要在15个城市之间铺设光缆,这些城市的位置及相互之间的铺设光缆的费用如下图所示。
试求出一个连接在15个城市的铺设方案,使得总费用最小。
v 1v 2v 3v 4v 5v 6v 7v 8v 9v 10v 11v 12v 13v 14v 152241131456422323135134此问题的最小生成树如下:*************************起点终点距离---- ---- ----1 4 11 2 22 5 25 8 15 6 26 3 18 7 28 9 39 12 212 11 411 10 110 13 313 14 114 15 3此问题的解为:283、最短路问题例. 求下图中从v1到各点的最短路,并指出有哪些点是不可达到的。
vv7v8v4从节点 1到节点2的最短路*************************起点终点距离---- ---- ---- 1 2 4此问题的解为:41到3没有路1到4没有路从节点 1到节点5的最短路*************************起点终点距离 ---- ---- ---- 1 5 1此问题的解为:1从节点 1到节点6的最短路*************************起点终点距离 ---- ---- ---- 1 5 1 5 6 6此问题的解为:7从节点 1到节点7的最短路*************************起点终点距离 ---- ---- ---- 1 7 3此问题的解为:3从节点 1到节点8的最短路*************************起点终点距离 ---- ---- ---- 1 5 1 5 6 66 8 3此问题的解为:104、最短路问题有6个村庄,各村庄的距离如下图所示。
习 题第二章 线性规划习题2-1 某桥梁工地需集合料3万立方米,集合料含量为:粘土含量不大于0.8%,细沙含量在5%~8%之间,粗沙含量在60%~70%之间,砾石含量在20%~30%之间,现有材料数量及单价如下表所示。
问如何配料才能使集合料的总成本费用最低?(试列出数学模型)。
2—2 将下列线性规划问题化成标准型:① 42154m ax x x x S ++=s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥+-≤-+≤+++=+0,,,843104480334304432143432432121x x x x x x x x x x x x x x x② 4321343m in x x x x S --+=s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥≤+-≥++=-+≤+0,0,8434040403213242132141x x x x x x x x x x x x x 2—3 用图解法求解下列线性规划问题:2152m ax x x S +=s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤0,8234212121x x x x x x(答案:19=*S ,()T X 3,2=*。
)2—4 用单纯形法求解下列线性规划问题 ① 321834m in x x x S ++=s.t.⎪⎩⎪⎨⎧≥≥+≤+0,,5223213231x x x x x x x(答案:15=*S ,T X ),0,5,0(=*。
) ② 432132m ax x x x x S -++=s.t. ⎪⎪⎩⎪⎪⎨⎧≥=+++=++=++0,,,1022052153243214321321321x x x x x x x x x x x x x x (答案:15=*S ,T X )0,2/5,2/5,2/5(=*。
)第三章 特殊类型的线性规划习题3-1用表上作业法求解以下运输问题。
3-2某市区交通愿望图有三个始点和三个终点,始点发生的出行交通量a i ,终点吸引的交通量b j 及始终点之间的旅行费用如下所示。