线性代数应用题总结分类及经典例题
- 格式:docx
- 大小:36.54 KB
- 文档页数:5
一21. 设 α1, α2, α3 线性无关,证明β112,β2α2α3 , β3 α3 α1也线性无关。
1 1 1 022.计算行列式11 0 1 。
1 0 1 10 1 1 123. 1 1 0 1 2利用逆矩阵解矩阵方程0 1 1 X -1 1 。
1 0 1 1 -124.1 a 1 2已知A 0 1 a 2 ,求 a 的值,使得 r ( A)2。
1 0 1 225. 求向量组 α11111 , α2 1 , α3 2 , α4 0 的秩和一个极大线性无关组,并111把其余向量用此极大线性无关组线性表示。
26. 求矩阵 A =21的特征值与特征向量。
1 2x 1 4 x 2 3x 3 027.讨论当 取何值时, 齐次线性方程组2 x 1 3x 2 x3 0 有非零解, 并在有非零解时求其x 1x 2 2 x 3通解。
参考答案 : 21. 如果k1 1k 22k 33O ,k 1 ( 12)k 2(23)k 3(31) O ,于是(k 1 k 3 ) 1 (k 1k 2 ) 2 (k 2 k 3 ) 3 O ,由 1 , 2 ,k 1k 3 0, 3线性无关知k 1 k 2 0,k 2k 30,此方程组只有零解 k 1 0, k 2 0, k 30 ,因此 1, 2,3 线性无关。
1 1 1 01 1 1 01 10 1 1 1 0 11 10 10 0 1 122. = =101=10 1=-01 131011 0 1 0 10 11 10 1111 110 3 00 31 1 0 11 -1 1123.0 1 1 1 1 -1 故1 0 12 -11 11 1 0 12 1-1 1 1 23 01X0 1 1 -1 1 1 11-1-11 1 -1 41 0 11 -12-1 111 -12 -1 -21 a 1 20 a0 0 1 0 1 224.A01 a2 0 1 a 2 0 1 a 2 1 01 2 1 01 20 a 0 0当 a=0 时, r (A) 2。
大学数学线性代数题库及答案解析1. 求解方程组a) 3x + 2y - z = 7-x + 3y + 2z = -112x - y + 4z = 5解析:首先,我们可以使用增广矩阵表示方程组:[ 3, 2, -1, 7;-1, 3, 2, -11;2, -1, 4, 5 ]接下来,通过行初等变换将矩阵化为阶梯形:[ 3, 2, -1, 7;0, 7/4, 3/4, -21/4;0, 0, 9/7, 4/7 ]从第三行可以得到 z = 4/7,代入第二行可得 y = -21/7,再代入第一行可以得到 x = 3。
因此,方程组的解为 x = 3, y = -3, z = 4/7。
b) 2x + 3y + 2z = 10x - y + z = 44x + 2y + z = 12解析:同样,我们使用增广矩阵表示方程组:[ 2, 3, 2, 10;1, -1, 1, 4;4, 2, 1, 12 ]通过行初等变换将矩阵化为阶梯形:[ 2, 3, 2, 10;0, -5, -1, -6;0, 0, 0, 0 ]从第二行可以得到 -5y - z = -6,即 z = -6 + 5y。
我们可以令 y = t,其中 t 为任意常数。
则得到 z = -6 + 5t。
将 z 的值代入第一行可以得到x = 4 - 3t。
因此,方程组的解可以表示为 x = 4 - 3t, y = t, z = -6 + 5t。
2. 求解线性方程组的向量空间a) 给定矩阵 A = [1, 2, -1; 2, 4, -2; 3, 6, -3],求解 A 的列空间。
解析:列空间由矩阵 A 的列向量张成。
我们可以计算矩阵 A 的列向量组的极简形式:[ 1, 2, -1;2, 4, -2;3, 6, -3 ]通过初等行变换得到:[ 1, 2, -1;0, 0, 0;0, 0, 0 ]可以看出,第一列是主列,而第二列和第三列都是自由列。
因此,矩阵 A 的列空间可以表示为 Span{[1, 2, -1]}。
2024年考研数学一专题线性代数历年题目归纳线性代数是考研数学一科目中的重要内容之一,涉及到矩阵、向量、线性方程组等多个概念和方法。
了解历年考研数学一专题线性代数的题目,可以帮助考生更好地掌握该专题的重点和难点,提高解题能力。
本文将对2024年考研数学一专题线性代数历年题目进行归纳,以供考生参考。
1. 矩阵运算题矩阵的加法、减法、乘法是线性代数的基本内容,考研中常涉及到矩阵的运算性质和运算规律。
如下是一道历年考研数学一专题线性代数中的矩阵运算题目:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},矩阵C=(c_{ij})_{p×k},试证明:(A×B)×C=A×(B×C)。
解析:首先我们需要明确矩阵的乘法运算满足结合律。
对于(A×B)×C,先计算矩阵A和矩阵B的乘积,得到(m×p)的矩阵D。
然后将矩阵D与矩阵C相乘,得到(m×k)的矩阵E,即(A×B)×C=E。
同样地,对于A×(B×C),先计算矩阵B和矩阵C的乘积,得到(n×k)的矩阵F。
然后将矩阵A与矩阵F相乘,得到(m×k)的矩阵G,即A×(B×C)=G。
因此,(A×B)×C=E=A×(B×C)=G,即(A×B)×C=A×(B×C)。
2. 矩阵的秩题矩阵的秩是指矩阵中非零行的最大线性无关组中所含向量的个数。
在考研数学一专题线性代数中,关于矩阵的秩有很多题目,如下所示:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},且秩(A)=r,秩(B)=s。
试证明:1) 秩(AB)≤min{r,s};2) 如果r=s,且r=min{m,n,p},则秩(AB)=r。
线性代数《线性方程组》常见题型与典型例题壹齐次线性方程组的基本公式与结论(1) 克莱姆法则若n个方程n个未知量构成的非齐次线性方程组AX=b的系数行列式|A|≠0,则方程组有唯一解,并且有其中|A i|是|A|中第i列元素(即x i的系数)替换成方程组右端的系数项b1,b2,…,b n所构成的行列式.(2) 齐次线性方程组解的存在性● 若n个方程n个未知量构成的齐次线性方程组AX=0的系数行列式|A|≠0,则方程组有唯一零解,● 若m个方程n个未知量构成的齐次线性方程组,若r(A)= n,即A的列向量组线性无关,则方程组有唯一零解;若r(A)= s<n,即A 的列向量组线性相关,则方程组有有非零解,且有n-s个线性无关解.(3) 求解方法之高斯消元法将系数矩阵A作初等行变换转换为阶梯型矩阵B,初等变换将方程组化为同解方程组,即Ax=0与Bx=0同解,只需要解Bx=0即可. 设n个变量m各方程构成的方程组,并设r(A)=r≤m≤n,则方程组的独立方程个数为r个,r也是独立变量的个数,故多余方程个数为m-r,自由变量的个数为n-r. 令自由变量为任意常数,回代求得独立未知变量,则得方程组的解.(4) 基础解系和解的结构基础解系:设x1,x2,…,x n-r是方程组Ax=0的解,若①x1,x2,…,x n-r 线性无关;②任一方程组Ax=0的解均由x1,x2,…,x n-r线性表出,则称x1,x2,…,x n-r是方程组Ax=0的一个基础解系.通解:设x1,x2,…,x n-r是方程组Ax=0的一个基础解系,则k1x1+k2x2+…+k n-r x n-r是方程组Ax=0的通解,其中k1,k2,…,k n-r为任意常数.贰非齐次线性方程组的基本公式与结论非齐次线性方程组AX=b,其导出组(即齐次方程组)AX=0,A系数矩阵,(A|b)增广矩阵。
(1) 解的性质● 导出组解的线性组合仍为导出组的解● 非齐次方程组的任意两个解的差为其导出组的解(2) 通解的结构● 导出组的n个线性无关组的线性组合为其通解● 非齐次线性方程组的通解等于其导出组的通解与其任意特解之和● 关于非齐次方程组AX=b解的讨论:若r(A)=r(A|b)=n(未知数个数),则有唯一解若r(A)≠r(A|b),则无解若r(A)=r(A|b)=m<n,则有无穷解,其基础解系所含解向量个数为n-m个(3) 求解方法求导出组的通解加上他的任意一个特解即可.叁常见题型(1) 有关线性方程组的概念与性质的命题解题方法:概念与性质必须娴熟。
第四章
4.1 ①求特征值与特征向量,例2、例3
②特征值与特征向量性质考察,例7,习题2
其他:例5
4.2 ①判断某阵能否对角化,并求幂。
例、习题1、2
②两阵相似,求阵中的未知数。
习题1、3、14
4.3 ①将向量正交化or单位化(方法见P185),习题16、17
②已知实对称矩阵,求正交阵使Q−1AQ为对角阵,例4、例5、习题22、23
注意出现多重特征值时要先正交化再单位化
证明类:习题7、3、19、P172 例5
第三章
3.1①线性方程解的情况:无解、唯一解、无穷解、线性方程的非零解时r(A)和r(A|b)的关系。
例1、例2、例3、例4
3.2①向量的4则运算,分配律、结合律。
②某向量能否被另一向量组线性表示,充要条件是
r(α1….αn)=r(α1…αn,β)。
例5、习题7
③向量组是否等价(能相互表示即可)例6
3.3①判断已知向量组是否线性相关(即r(A)<n),p130例4、习题10、14、15、
3.4①判断某向量组的一个极大无关组,并用它表示其他向量。
例2,习题16、17
3.5①求方程组的基础解系,分齐次和非齐次的。
例1、2、4
第二章
2.2①加减乘法,习题6、23。
注意6题体现规律,矩阵左乘变列,右乘变行。
②矩阵转置和矩阵行列式的性质,用于判断题。
2.4-2.7①分块矩阵、逆矩阵,矩阵的秩习题33、47、48、51
第一章
重点习题:1.3(例5、例7、例6),
1.4行列式按行列展开(例4)
习题21、22、24、32、35。
线性代数部分重点及典型问题举例第二章,矩阵考试要求:⑴ 了解矩阵概念,理解矩阵可逆与逆矩阵概念,知道矩阵可逆的条件,了解矩阵秩的概念;⑵ 熟练掌握矩阵的加法、数乘、乘法和转置等运算,掌握这几种运算的有关性质;⑶ 了解单位矩阵、数量矩阵、对角矩阵、三角形矩阵和对称矩阵的定义和性质.⑷ 理解矩阵初等行变换的概念,熟练掌握用矩阵的初等行变换将矩阵化为阶梯形矩阵、行简化阶梯形矩阵,熟练掌握用矩阵的初等行变换求矩阵的秩、逆矩阵.重点:矩阵概念,矩阵可逆与逆矩阵概念,矩阵可逆的条件,矩阵秩的概念及求法;矩阵的运算和矩阵的求逆,矩阵的初等行变换。
典型例题一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( )可以进行. A .AB B .AB T C .A +B D .BA T 答案:A2.设B A ,为同阶可逆矩阵,则下列等式成立的是( ) A . T T T )(B A AB = B . T T T )(A B AB =C . 1T 11T )()(---=B A ABD . T 111T )()(---=B A AB 答案:B3.设B A ,为同阶可逆方阵,则下列说法正确的是( ). A . 若AB = I ,则必有A = I 或B = I B .T T T )(B A AB =C . 秩=+)(B A 秩+)(A 秩)(BD .111)(---=A B AB 答案:D4.设B A ,均为n 阶方阵,在下列情况下能推出A 是单位矩阵的是( ).A .B AB = B .BA AB =C .I AA =D .I A =-1 答案D5.设A 是可逆矩阵,且A AB I +=,则A -=1( ).A .B B . 1+BC . I B +D . ()I AB --1 答案C6.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( ).A .⎥⎦⎤⎢⎣⎡--6231B .⎥⎦⎤⎢⎣⎡--6321C .⎥⎦⎤⎢⎣⎡--5322D .⎥⎦⎤⎢⎣⎡--5232 答案 D7.设下面矩阵A , B , C 能进行乘法运算,那么( )成立.A .AB = AC ,A ≠ 0,则B = C B .AB = AC ,A 可逆,则B = C C .A 可逆,则AB = BAD .AB = 0,则有A = 0,或B = 0 答案:B二、填空题1.两个矩阵B A ,既可相加又可相乘的充分必要条件是 .答案:同阶矩阵2.若矩阵A = []21-,B = []12-,则A T B=.答案⎥⎦⎤⎢⎣⎡--2412 3.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 时,A 是对称矩阵. 答案:0=a4.当a 时,矩阵⎥⎦⎤⎢⎣⎡-=a A 131可逆. 答案:3-≠a5.设B A ,为两个已知矩阵,且B I -可逆,则方程X BX A =+的解=X . 答案A B I 1)(--6.设A 为n 阶可逆矩阵,则r (A )= . 答案:n7.若矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212,则r (A ) = .答案:22.计算题(1)设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BA I )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 (2)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=843722310A ,I 是3阶单位矩阵,求1)(--A I . 解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I 利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111→---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111即 ()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111 (3)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-7641121461351341B A第三章 线性方程组考试要求:⑴ 了解线性方程组的有关概念,熟练掌握用消元法求线性方程组的一般解;⑵ 理解并熟练掌握线性方程组的有解判定定理.重点:线性方程组有解判定定理、线性方程组解的表示及求解非齐次线性方程组AX = b 的解的情况归纳如下:AX = b 有唯一解的充分必要条件是秩(A ) = 秩(A ) = n ; AX = b 有无穷多解的充分必要条件是秩(A ) = 秩(A ) < n ;AX = b 无解的充分必要条件是秩(A ) ≠ 秩(A ). 相应的齐次线性方程组AX = 0的解的情况为:AX = 0只有零解的充分必要条件是 秩(A ) = n ; AX = 0有非零解的充分必要条件是 秩(A ) < n .典型例题:一、单项选择题1.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=( )时线性方程组有无穷多解.A .1B .1-C .2D .21 (答案D)2. 若非齐次线性方程组A m ×n X = b 的( ),那么该方程组无解. A .秩(A ) = n B .秩(A )=m C .秩(A )≠ 秩 (A )D .秩(A )= 秩(A )(答案C)3.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( ).A . 无解B . 只有0解C . 有唯一解D . 有无穷多解 答案 A4. 线性方程组AX =0只有零解,则AX b b =≠()0( ).A . 有唯一解B . 可能无解C . 有无穷多解D . 无解 答案B5.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组( ). A .有唯一解 B .无解 C .有非零解 D .有无穷多解 答案B6.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =( ). A .无解 B .有非零解 C .只有零解 D .解不能确定 答案C二、填空题1.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b . 答案:无解2.若线性方程组⎩⎨⎧=+=-02121x x x x λ有非零解,则=λ.答案:-1=λ3.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于 .答案:r n -4.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一般解为 .5.线性方程组AX b =的增广矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→110000012401021d A 则当d 时,方程组AX b =有无穷多解.答案:1-=d三.计算题1.求解线性方程组的一般解⎪⎩⎪⎨⎧=-+-=+-+-=++-0232022023432143214321x x x x x x x x x x x x解:将方程组的系数矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----010030101031020031101231311031101231232121211231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→010********* 一般解为⎪⎩⎪⎨⎧===03834241x x x x x (4x 是自由未知量) 2.求当λ取何值时,线性方程组⎪⎩⎪⎨⎧+=+++=+++-=--+1479637222432143214321λx x x x x x x x x x x x 有解,在有解的情况下求方程组的一般解.解 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---1000010511102121119102220105111021211114796371221211λλλ 所以,当1=λ时,方程组有解,且有无穷多解,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00000105111084901 答案:⎩⎨⎧++-=--=43243151110498x x x x x x 其中43,x x 是自由未知量.3.求当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-λ432143214321114724212x x x x x x x x x x x x 解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---273503735024121114712412111112λλ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→500003735024121λ 当5=λ时,方程组有解,且方程组的一般解为⎪⎪⎩⎪⎪⎨⎧-+=--=432431575353565154x x x x x x其中43,x x 为自由未知量.。
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TTTB A B A +=+)( TTkA kA =)( TTTA B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数应用题集锦郑波重庆文理学院数学与统计学院2011年10月目录案例一. 交通网络流量分析问题 (1)案例二. 配方问题 (4)案例三. 投入产出问题 (6)案例四. 平板的稳态温度分布问题 (8)案例五. CT图像的代数重建问题 (10)案例六. 平衡结构的梁受力计算 (12)案例七. 化学方程式配平问题 (15)案例八. 互付工资问题 (17)案例九. 平衡价格问题 (19)案例十. 电路设计问题 (21)案例十一. 平面图形的几何变换 (23)案例十二. 太空探测器轨道数据问题 (25)案例十三. 应用矩阵编制Hill密码 (26)案例十四. 显示器色彩制式转换问题 (28)案例十五. 人员流动问题 (30)案例十六. 金融公司支付基金的流动 (32)案例十七. 选举问题 (34)案例十八. 简单的种群增长问题 (35)案例十九. 一阶常系数线性齐次微分方程组的求解 (37)案例二十. 最值问题 (39)附录数学实验报告模板 (40)这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了.案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
图1 某地交通实况图2 某城市单行线示意图【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计?(3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2 ①400 + x 1 = x 4 + 300 ②x 2 + x 3 = 100 + 200 ③x 4 = x 3 + 300 ④【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪-- ⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪ ⎪-- ⎪ ⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩.为了唯一确定未知流量, 只要增添x 4统计的值即可.当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码:16-17.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的. 500多余(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模.图5 日常膳食搭配 图6 几种常见的作料 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克).【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭, 可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成.【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组 214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩ (*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.图7 三个经济部门这里暂时只讨论一个简单的情形. 【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求?【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表 表 3 消耗与产出情况产出(1元) 产出 消耗 订单 煤 电 运消耗 煤 0 0.6 0.5 x 0.6y + 0.5z60000 电 0.3 0.1 0.1 y 0.3x + 0.1y + 0.1z100000 运 0.2 0.1 0 z 0.2x + 0.1y根据需求, 应该有 (0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩,即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0];>> x = A\bMatlab执行后得x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量, A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得T 1 T 2 T 3T 4 100 8090 80 60 50 60501231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x ’Matlab 执行后得ans =82.9167 70.8333 70.8333 60.4167可见T 1 = 82.9167, T 2 = 70.8333, T 3 = 70.8333, T 4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 15-16.Matlab 实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab 软件求解该线性方程组.(3) 用Matlab 中的函数mesh 绘制三维平板温度分布图.案例五. CT 图像的代数重建问题X 射线透视可以得到3维对象在2维平面上的投影, CT 则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT 图像 这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像.一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明. 3⨯3图像 各点的灰度值 水平方向上 的叠加值x 1 = 1 x 2 = 0 x 3 = 0 x 1 + x 2 + x 3 = 1x 4 = 0 x 5 = 0.5 x 6 = 0.5 x 4 + x 5 + x 6 = 1x 7 = 0.5 x 8 = 0 x 9 = 1 x 7 + x 8 + x 9 = 1.5竖直方向上的叠加值x 1 + x 4 + x 7 = 1.5 x 2 + x 5 + x 8 = 0.5 x 3 + x 6 + x 9 = 1.5 i 表示灰色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x x x x x x x x ++=⎧⎪++=⎪⎨⎪++=⎪⎩ 显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x 1 = 1,x 2 + x 4 = 0,x 3 + x 5 + x 7 = 1,x 6 + x 8 = 0.5,x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组.【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5, x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1;1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0;0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1];>> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol = 4.2305e-015.ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的.这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6,1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解.(2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图13埃菲尔铁塔全景 图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况.【模型准备】在图15所示的双杆系统中, 已知杆1重G 1 = 200牛顿, 长L 1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G 2 = 100牛顿, 长L 2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A , B , C 所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N 1 = N 3,竖直方向受到的合力为零, 故N 2 + N 4 = G 1,以点A 为支点的合力矩为零, 故(L 1sin θ1)N 3 + (L 1cos θ1)N 4 = (12L 1cos θ1)G 1.图16 两杆受力情况对于杆2类似地有 A C 杆1 杆2 C N 1 N 2N 3N 5N 6 G 1G 2 A B杆1杆2 π/6 π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2. 此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4;>> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0;0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2);0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0];>> x = A\b; x ’Matlab 执行后得ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 157-158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组.(2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.图18 污水处理 【模型准备】某厂废水中含KCN, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:KCN + 2KOH + Cl 2 = KOCN + 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KOCN + KOH + Cl 2 === CO 2 + N 2 + KCl + H 2O.(注: 题目摘自福建省厦门外国语学校2008-2009学年高三第三次月考化学试卷)【模型建立】设x 1KOCN + x 2KOH + x 3Cl 2 === x 4CO 2 + x 5N 2 + x 6KCl + x 7H 2O,则1261247141527362222x x x x x x x x x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360*********x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得ans =1 2 3/2 1 1/2 3 1可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KOCN + 4KOH + 3Cl 2 === 2CO 2 + N 2 + 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s, 未知数的个数就是化学方程式中的项数n.当r(A) = n-1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A) ≤n-2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 84-85.Matlab实验题配平下列反应式(1) FeS + KMnO4 + H2SO4——K2SO4 + MnSO4 + Fe2(SO4)3 + H2O + S↓(2) Al2(SO4)3 + Na2CO3 + H2O ——Al(OH)3↓+ CO2↑+ Na2SO4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.图19 农忙互助 图20 装修互助 【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子),(2) 每人的日工资一般的市价在60~80元之间,(3) 日工资数应使每人的总收入和总支出相等. 在谁家工人 木工 电工 油漆工 木工家2 1 6 电工家4 5 1 油漆工家4 43 求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表 在谁家 工人木工 电工 油漆工 各家应付工资 木工家2x 1y 6z 2x + y + 6z 电工家4x 5y 1z 4x + 5y + z 油漆工家4x 4y 3z 4x + 4y + 3z 各人应得收入10x 10y 10z可得 2610451044310x y z x x y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤ k ≤ 80. 也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤ k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下由此可得6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.图21 三个行业 【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示: 表7 行业产出分配表产出分配 购买者 煤炭 电力 钢铁0 0.4 0.6 煤炭0.6 0.1 0.2 电力0.4 0.5 0.2 钢铁每一列中的元素表示占该行业总产出的比例. 求使得每个行业的投入与产出都相等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1, x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩.【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8];>> x = null(A,’r ’); format short, x ’Matlab 执行后得ans =0.9394 0.8485 1.0000可见上述齐次线性方程组的通解为x = k (0.9394, 0.8485, 1)T .这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 49-50.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB 扩展板 【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11v i ⎛⎫ ⎪⎝⎭记录输入电压和输入电流(电压v 以伏特为单位, 电流i 以安培为单位), 用22v i ⎛⎫ ⎪⎝⎭记录输出电压和输入电流. 若22v i ⎛⎫ ⎪⎝⎭= A 11v i ⎛⎫ ⎪⎝⎭, 则称矩阵A 为转移矩阵.图23 具有输入和输出终端的电子电路图 图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫ ⎪-⎝⎭. v 1 v 2 i 1i 2 R 1 v 3i 2 i 3 R 2 输入终端v 1 输出终端v 2i 1i 2 电路【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫ ⎪-⎝⎭, 则上面的梯形网络无法实现. 因为这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2,但把R 1 = 8, R 2 = 2代入上第三个方程却不能使等式成立.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 129-130.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25 简单的回路E 12案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图26 计算机图形学的广泛应用图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现.【模型假设】设平移变换为(x, y) → (x+a, y+b)旋转变换(绕原点逆时针旋转θ角度)为(x, y) → (x cosθ-y sinθ, x sinθ + y cosθ)放缩变换(沿x轴方向放大s倍, 沿y轴方向放大t倍)为(x, y) → (sx, ty)【模型求解】R2中的每个点(x, y)可以对应于R3中的(x, y, 1). 它在xOy平面上方1单位的平面上. 我们称(x, y, 1)是(x, y)的齐次坐标. 在齐次坐标下, 平移变换(x, y) → (x+a, y+b)可以用齐次坐标写成(x, y, 1) → (x+a, y+b, 1).于是可以用矩阵乘积1001001ab⎛⎫⎪⎪⎝⎭1xy⎛⎫⎪⎪⎝⎭=1x ay b+⎛⎫⎪+⎪⎝⎭实现.旋转变换(x, y) → (x cosθ-y sinθ, x sinθ + y cosθ) 可以用齐次坐标写成(x, y, 1) → (x cosθ-y sinθ, x sinθ + y cosθ, 1).于是可以用矩阵乘积cos sin0sin cos0001θθθθ-⎛⎫⎪⎪⎝⎭1xy⎛⎫⎪⎪⎝⎭=cos sinsin cos1x yx yθθθθ-⎛⎫⎪+⎪⎝⎭实现.放缩变换(x, y) → (sx, ty) 可以用齐次坐标写成(x, y, 1) → (sx, ty, 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现. 【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫ ⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译, 北京: 人民邮电出版社, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令>>clear all , clc,>>t = [1,3,5,11,13,15]*pi/8;>>x = sin(t); y=cos(t);>>fill(x,y,'r');>>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26 Matlab 绘制的图形(1) 写出该图形每个顶点的齐次坐标; (2) 编写Matlab 程序, 先将上面图形放大0.9倍; 再逆时针旋转3π; 最后进行横坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.。
线性代数应用题总结分类及经典例题
本文旨在总结线性代数中的应用题,并提供一些经典例题。
以下是对应的分类和例题:
1. 线性方程组
例题1:
已知线性方程组如下:
$$\begin{cases}
2x + y - z = 5 \\
x - 3y + 2z = -4 \\
3x + 4y - z = 6 \\
\end{cases}$$
求解以上线性方程组。
例题2:
已知线性方程组如下:
$$\begin{cases}
2x + 3y - z = 4 \\
x - 2y + 3z = -1 \\
3x + 4y - 2z = 7 \\
\end{cases}$$
求解以上线性方程组。
2. 矩阵与向量
例题1:
已知矩阵$A=\begin{bmatrix}
1 &
2 &
3 \\
4 &
5 &
6 \\
\end{bmatrix}$,向量$\mathbf{b}=\begin{bmatrix}
2 \\
-1 \\
\end{bmatrix}$,求解方程组$A\mathbf{x}=\mathbf{b}$。
例题2:
已知矩阵$A=\begin{bmatrix}
2 & -1 \\
3 &
4 \\
\end{bmatrix}$,向量$\mathbf{b}=\begin{bmatrix}
1 \\
2 \\
\end{bmatrix}$,求解方程组$A\mathbf{x}=\mathbf{b}$。
3. 线性变换
例题1:
已知线性变换$T$将向量$\mathbf{v}=\begin{bmatrix}
2 \\
3 \\
\end{bmatrix}$映射为$\mathbf{w}=\begin{bmatrix}
5 \\
-1 \\
\end{bmatrix}$,求线性变换$T$的矩阵表示。
例题2:
已知线性变换$T$将向量$\mathbf{v}=\begin{bmatrix} 1 \\
-2 \\
\end{bmatrix}$映射为$\mathbf{w}=\begin{bmatrix}
3 \\
4 \\
\end{bmatrix}$,求线性变换$T$的矩阵表示。
4. 特征值和特征向量
例题1:
已知矩阵$A=\begin{bmatrix}
2 & 1 \\
4 & 3 \\
\end{bmatrix}$,求$A$的特征值和对应的特征向量。
例题2:
已知矩阵$A=\begin{bmatrix}
3 & -2 \\
1 & 4 \\
\end{bmatrix}$,求$A$的特征值和对应的特征向量。
以上是一些线性代数应用题的分类和经典例题,希望对你的学习有所帮助。