自动控制原理常用名词解释
- 格式:doc
- 大小:31.00 KB
- 文档页数:3
第一章系统:系统泛指由一群有关联的个体组成,根据预先编排好的规则工作,能完成个别元件不能单独完成的工作的群体。
自动控制(Automatic Control):是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。
开环控制(open loop control):开环控制是最简单的一种控制方式。
它的特点是,按照控制信息传递的路径,控制量与被控制量之间只有前向通路而没有反馈通路。
也就是说,控制作用的传递路径不是闭合的,故称为开环。
闭环控制(closed loop control):凡是将系统的输出量反送至输入端,对系统的控制作用产生直接的影响,都称为闭环控制系统或反馈控制Feedback Control系统。
这种自成循环的控制作用,使信息的传递路径形成了一个闭合的环路,故称为闭环。
复合控制(compound control):是开、闭环控制相结合的一种控制方式。
被控对象:指需要给以控制的机器、设备或生产过程。
被控对象是控制系统的主体,例如火箭、锅炉、机器人、电冰箱等。
控制装置则指对被控对象起控制作用的设备总体,有测量变换部件、放大部件和执行装置。
开环控制系统:不将控制的结果反馈回来影响当前控制的系统闭环控制系统:可以将控制的结果反馈回来与希望值比较,并根据它们的误差调整控制作用的系统开环控制系统:是没有输出反馈的一类控制系统。
其结构简单,价格低,易维修。
精度低、易受干扰。
(2.5分)闭环控制系统:又称为反馈控制系统,其结构复杂,价格高,不易维修。
但精度高,抗干扰能力强,动态特性好。
(2.5分)手动控制系统:必须在人的直接干预下才能完成控制任务的系统自动控制系统:不需要有人干预就可按照期望规律或预定程序运行的控制系统判断:骑自行车——人工闭环系统,导弹——自动闭环系统,人打开灯——人工开环系统,自动门、自动路灯——自动开环系统被控量(controlled variable):指被控对象中要求保持给定值、要按给定规律变化的物理量。
自动控制原理 【1038】
一、名词解释
1、什么是自动控制和反馈控制?
自动控制,是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律运行。
反馈控制,将取自被控量的反馈信息,用于不断的修正被控量与输入之间的偏差,从而实现对被控对象进行控制的任务就是反馈控制。
2、什么是系统结构图?
系统结构图反映的是系统中模块的调用关系和层次关系,谁调用谁,有一个先后次序(时序)关系.所以系统结构图既不同于数据流图,也不同于程序流程图.在系统结构图中的有向线段表示调用时程序的控制从调用模块移到被调用模块,并隐含了当调用结束时控制将交回给调用模块。
结构化设计方法使用的描述方式是系统结构图,也称结构图或控制结构图。
它表示了一个系统 (或功能模块) 的层次分解关系,模块之间的调用关系,以及模块之间数据流和控制流信息的传递关系,它是描述系统物理结构的主要图表工具。
二、简答题
1. 简述根轨迹绘制的八个基本法则?
答:
1) 根轨迹的起点、终点
2) 根轨迹的分支数、对称性和连续性
3) 根轨迹的实轴上的分布
4) 根轨迹的渐近线
5) 根轨迹的分离点和分离角
6) 根轨迹的起始角和终止角
7) 根轨迹与虚轴的交点
8) 根之和
三、计算题
2.单位反馈系统的开环传递函数为1
1)(+=s s G k ,求: 1)系统在单位阶跃信号输入下的稳态误差是多少?
2)求系统的频率特性,幅频特性,相频特性?
3)当系统的输入信号为)30sin()( +=t t x i ,系统的稳态输出?。
自动控制理论名词解释反馈:指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。
相频特性:相移角度随频率变化的特性叫相频特性 调整时间Ts :响应曲线达到接近稳态值的±5%(或±2%)之内时所需要的时间,定义为调整时间。
离散控制系统:控制系统在某处或几处传递的信号是脉冲系列或数字形式的在时间上是离散的系统,称为离散控制系统或离散时间控制系统。
最大超调量M p :阶跃响应曲线的最大峰值与稳态值的差与稳态值之比。
上升时间t r :从零时刻首次到达稳态值的时间。
.峰值时间t p :从零时刻到达峰值的时间,即阶跃响应曲线从t=0开始上升到第一个峰值所需要的时间。
. 当ζ>1时,系统有两个不相等的负实根,称为过阻尼状态。
当0<ζ<1时,系统有一对实部为负的共轭复根,称为欠阻尼状态。
当阻尼比ζ=1时,系统的特征根为两相等的负实根,称为临界阻尼状态。
当阻尼比ζ=0时,系统特征根为一对纯虚根,称为无阻尼状态。
主导极点:如果闭环极点离虚轴很远,则它对应的暂态分量衰减得很快,只在响应的起始部分起一点作用,而离虚轴最近的闭环极点(复极点或实极点)对系统瞬态过程性能的影响最大,在整个响应过程中起着主要的决定性作用,我们称它为主导极点。
偶极子:当极点s i 与某零点z j 靠得很近时,它们之间的模值很小,那么该极点的对应系数A i 也就很小,对应暂态分量的幅值亦很小,故该分量对响应的影响可忽略不计。
我们将一对靠得很近的闭环零、极点称为偶极子。
数学模型:描述自动控制系统输入、输出变量以及内部各变量之间关系的数学表达式称为数学模型。
输入节点(又称源点):只有输出支路的节点叫输入节点或源点。
输出节点(又称陷点):只有输入之路的节点叫输出节点,它对应于因变量或输出信号。
混合节点:既有输入支路又有输出支路的节点叫混合节点。
自动控制原理理解
自动控制原理是指通过使用电子、机械、液压等技术手段,对被控制
对象进行监测、分析和控制,从而实现自动化生产和管理的一种技术。
在自动控制系统中,传感器用于采集被控制对象的信息,经过信号调
理后,输入到控制器中进行处理;执行机构则根据控制器的指令进行
操作。
自动控制系统中最重要的部分是控制器。
它根据传感器采集到的被控
对象信息和设定值之间的差异,计算出误差信号,并通过比例、积分、微分等运算方式对误差信号进行处理,得到最终的输出信号。
这个输
出信号将作为执行机构的驱动力,使得执行机构按照预定目标完成工作。
在自动控制系统中,传感器是获取被控对象信息的关键部件。
传感器
可以将物理量转换成电信号,并将其送入测量电路中进行处理。
常见
的传感器有温度传感器、压力传感器、流量传感器等。
另外,在自动化生产过程中,还需要使用PLC(可编程逻辑控制器)
来实现程序化管理。
PLC可以根据预先编写好的程序,对生产过程中
的各个环节进行控制和管理。
PLC的核心部分是CPU,它可以根据输
入信号进行逻辑运算,并输出相应的控制信号。
总之,自动控制原理是一种基于电子、机械、液压等技术手段,对被控制对象进行监测、分析和控制的技术。
在自动化生产中,传感器、执行机构、控制器和PLC等部件都起着重要的作用。
只有通过这些部件的协同作用,才能实现高效、精准的自动化生产和管理。
频率响应——又称频率特性,是指在正弦输入信号作用下系统输出的稳态分量与正弦输入信号之比。
即()()()ωωωj x j x i 0j G =。
反馈——是指把系统的输出量引入到它的输入端并以某种方式改变输入,进而影响系统功能的工程。
稳态误差——当时间t →∞时,系统的参考输入与输出之间的误差,用ss e 表示。
最大超调量——是指在过渡过程中,系统响应第一次达到的峰值()p t c 和稳态值()∞c 之差与稳态值之比,即()()()%100%⨯∞∞-=c c t c M p p .峰值时间——是指瞬态响应第一次出现峰值的时间,用t P 表示。
单位阶跃响应——是指输入信号为单位阶跃信号()()t t 1=γ时系统的输出响应。
相位裕量——在剪切频率c ω处,使系统达到临界稳定状态时所能接受的附加相位滞后角,即()c φ180ωγ+︒=,其中()c ωϕ是开环频率特性在W C 处的相位。
滞后一超前校正——是指能够同时改善系统的动态和稳态性能的校正。
稳态响应——当时间t →∞时系统的时域响应。
频率特性——是指在正弦输入信号作用下系统输出的稳态分量与正弦输入信号之比。
即()()()ωωωj x j x i 0j G =。
调整时间——又称时间调整,是指阶跃响应曲线c(t)开始进入偏离稳态值()∞c ,t Δ(Δ=2或5)的误差范围,并从此不再超越这个范围的时间,用t s 表示。
当s t t ≥时()()()%c ∆⨯∞≤∞-c c t 。
谐振峰值——是指系统发生谐振(等幅振荡)时,闭环频率特性幅值的最大值,用Mr 表示,)220,-121Mr 2<<=ξξξ(。
谐振频率——是指系统频率响应发生谐振(等幅振荡)时对应的频率值,用Wr 表示,2n 21ξωω-=r ,(220<<ξ)。
截止频率——当输入信号的幅度不变,改变频率使输出信号降至最大值的0.707信时对应的频率。
幅值穿越频率——是指系统开环频率特性上幅值为1时所对应的角频率,用c ω表示,()()()1==c c c j H j G A ωωω。
1.稳定性:指动态过程的振荡倾向和系统能够恢复平稳状态的能力。
2.理想微分环节:输出变量正比于输入变量的微分3.调整时间:系统响应曲线达到并一直保持在允许衰减范围内的最短时间4.根轨迹:指当系统某个参数(如开环增益K)由零到无穷大变化时,闭环特征根在s平面上移动的轨迹。
5.数学模型:如果一物理系统在信号传递过程中的动态特性能用数学表达式描述出来,该数学表达式就称为数学模型。
6.反馈元件:用于测量被调量或输出量,产生主反馈信号的元件。
7.最大超调量:二阶欠阻尼系统在单位阶跃输入时,响应曲线的最大峰值与稳态值的差。
8.自动控制:在没有人直接参与的情况下,使被控对象的某些物理量准确地按照预期规律变化。
9.传递函数:传递函数的定义是对于线性定常系统,在零初始条件下,系统输出量的拉氏变换与输入的拉氏变换之比。
10.瞬态响应:系统在某一输入信号的作用下其输出量从初始状态到稳定状态的响应过程。
11.积分环节:输出变量正比于输入变量的积分12.根轨迹的起始角:指起于开环极点的根轨迹在起点处的切线与水平线正方向的夹角。
13.延迟时间:响应曲线从零上升到稳态值的50%所需要的时间。
14.比例环节:在时间域里,输入函数成比例,即:()()t kx t x i =015.稳态响应:时间t 趋于无穷大时,系统输出的状态,称为系统的的稳态响应。
16.上升时间:响应从稳态值的10%上升到稳态值的90%所需的时间17.位置误差:指输入时阶跃信号时所引起的输出位置上的误差。
18.随动系统:被调量随着给定量(或输入量)的变化而变化的系统就称为随动系统。
19.振荡次数:在调整时间t s 内响应曲线振荡的次数。
20.快速性:指当系统输出量与给定的输入量之间产生偏差时,消除这种偏差过程的快速程度。
21.根轨迹的分离点:几条根轨迹在s 平面上相遇后又分开的点。
22.比较元件:用来比较输入信号与反馈信号之间的偏差的元件。
23.负反馈:把运动的结果所决定的量作为信息再反馈回控制仪器中。
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理常用名词解释词汇第一章自动控制 ( Automatic Control) :是指在没有人直接参与的条件下,利用控制装置使被控对象的某些物理量(或状态)自动地按照预定的规律去运行。
开环控制 ( open loop control ):开环控制是最简单的一种控制方式。
它的特点是,按照控制信息传递的路径,控制量与被控制量之间只有前向通路而没有反馈通路。
也就是说,控制作用的传递路径不是闭合的,故称为开环。
闭环控制 ( closed loop control) :凡是将系统的输出量反送至输入端,对系统的控制作用产生直接的影响,都称为闭环控制系统或反馈控制 Feedback Control 系统。
这种自成循环的控制作用,使信息的传递路径形成了一个闭合的环路,故称为闭环。
复合控制 ( compound control ):是开、闭环控制相结合的一种控制方式。
被控对象:指需要给以控制的机器、设备或生产过程。
被控对象是控制系统的主体,例如火箭、锅炉、机器人、电冰箱等。
控制装置则指对被控对象起控制作用的设备总体,有测量变换部件、放大部件和执行装置。
被控量 (controlled variable ) :指被控对象中要求保持给定值、要按给定规律变化的物理量。
被控量又称输出量、输出信号。
给定值 (set value ) :是作用于自动控制系统的输入端并作为控制依据的物理量。
给定值又称输入信号、输入指令、参考输入。
干扰 (disturbance) :除给定值之外,凡能引起被控量变化的因素,都是干扰。
干扰又称扰动。
第二章数学模型 (mathematical model) :是描述系统内部物理量(或变量)之间动态关系的数学表达式。
传递函数 ( transfer function) :线性定常系统在零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比,称为传递函数。
零点极点 (z ero and pole) :分子多项式的零点(分子多项式的根)称为传递函数的零点;分母多项式的零点(分母多项式的根)称为传递函数的极点。
自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量.3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。
4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入.5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较.反送到输入端的信号称为反馈信号。
6、负反馈:反馈信号与输人信号相减,其差为偏差信号.7、负反馈控制原理:检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号.然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
8、自动控制系统的两种常用控制方式是开环控制和闭环控制 .9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础. (2)、快速性:动态过程时间要短,振荡要轻。
(3)、准确性:稳态精度要高,误差要小。
12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。
第二章1、控制系统的数学模型有: 微分方程、传递函数、动态结构图、频率特性。
2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图.对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。
4、结构图的变换与化简化简方框图是求传递函数的常用方法。
词汇第一章自动控制 ( Automatic Control) :是指在没有人直接参与的条件下,利用控制装置使被控对象的某些物理量(或状态)自动地按照预定的规律去运行。
开环控制 ( open loop control ):开环控制是最简单的一种控制方式。
它的特点是,按照控制信息传递的路径,控制量与被控制量之间只有前向通路而没有反馈通路。
也就是说,控制作用的传递路径不是闭合的,故称为开环。
闭环控制 ( closed loop control) :凡是将系统的输出量反送至输入端,对系统的控制作用产生直接的影响,都称为闭环控制系统或反馈控制 Feedback Control 系统。
这种自成循环的控制作用,使信息的传递路径形成了一个闭合的环路,故称为闭环。
复合控制 ( compound control ):是开、闭环控制相结合的一种控制方式。
被控对象:指需要给以控制的机器、设备或生产过程。
被控对象是控制系统的主体,例如火箭、锅炉、机器人、电冰箱等。
控制装置则指对被控对象起控制作用的设备总体,有测量变换部件、放大部件和执行装置。
被控量 (controlled variable ) :指被控对象中要求保持给定值、要按给定规律变化的物理量。
被控量又称输出量、输出信号。
给定值 (set value ) :是作用于自动控制系统的输入端并作为控制依据的物理量。
给定值又称输入信号、输入指令、参考输入。
干扰 (disturbance) :除给定值之外,凡能引起被控量变化的因素,都是干扰。
干扰又称扰动。
第二章数学模型 (mathematical model) :是描述系统内部物理量(或变量)之间动态关系的数学表达式。
传递函数 ( transfer function) :线性定常系统在零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比,称为传递函数。
零点极点 (z ero and pole) :分子多项式的零点(分子多项式的根)称为传递函数的零点;分母多项式的零点(分母多项式的根)称为传递函数的极点。
状态空间表达式 (state space model) :由状态方程与输出方程组成,状态方程是各状态变量的一阶导数与状态、输入之间的一阶微分方程组。
输出方程是系统输出与状态、输入之间的关系方程。
结构图 (block diagram) :将传递函数与第一章介绍的定性描述系统的方框图结合起来,就产生了一种描述系统动态性能及数学结构的方框图,称之为系统的动态结构图。
信号流图 (signal flow diagram) :是表示复杂控制系统中变量间相互关系的另一种图解法,由节点和支路组成。
梅逊公式 (Mason's gain formula) :利用梅逊增益公式,可以直接得到系统输出量与输入变量之间的传递函数。
第三章时域 (time domain) :一种数学域,与频域相区别,用时间 t 和时间响应来描述系统。
一阶系统 ( first order system) :控制系统的运动方程为一阶微分方程,称为一阶系统。
二阶系统 ( s econd order system) :控制系统的运动方程为二阶微分方程,称为二阶系统。
单位阶跃响应 ( unit step response) :系统在零状态条件下,在单位阶跃信号作用下的响应称单位阶跃响应。
阻尼比ζ (damping ratio) :与二阶系统的特征根在 S 平面上的位置密切相关,不同阻尼比对应系统不同的运动规律。
性能指标 (performance index) :系统性能的定量度量。
上升时间 (rise time)t r :响应从终值 10% 上升到终值 90% 所需时间;对有振荡系统亦可定义为响应从零第一次上升到终值所需时间。
上升时间是响应速度的度量。
峰值时间 (peak time)t p :响应超过其终值到达第一个峰值所需时间。
调节时间 (response time) t s :响应到达并保持在终值内所需时间超调量 (percent overshoot) σ % :响应的最大偏离量 h(t p ) 与终值h( ∞ ) 之差的百分比。
稳定性 (stability) :稳定性只由结构、参数决定,与初始条件及外作用无关。
系统工作在平衡状态 , 受到扰动偏离了平衡状态,扰动消失之后,系统又恢复到平衡状态,称系统是稳定的。
稳定是系统正常工作的先决条件。
劳斯判据 (Routh stability criterion) :判断系统的闭环稳定性的一种代数判据。
稳态误差 ( steady state error) :态误差是指稳态响应的希望值与实际值之差,它是衡量系统最终控制精度的重要性能指标。
状态变量 (state variables) :指描述系统的变量集合。
状态转移矩阵 (state transition matrix) :可完全描述系统零输入响应的矩阵指数函数。
第四章根轨迹 (root locus) :是指开环系统某个参数由 0 变化到∞,闭环特征根在 s 平面上移动的轨迹。
根轨迹方程 (magnitude and phase equations) :根轨迹所应满足的方程,称根轨迹方程。
由相角方程和幅值方程组成。
参数根轨迹 (parameter root locus) :如果系统的可变参数不是增益 ( 根轨迹 K* 或开环增益K) 而是系统的其它参数时,此时的根轨迹叫参数根轨迹。
零度根轨迹 (0 o root locus) :在某些情况下,相角方程右边相角的主值将不再是 180 o ,而是 0 o ,将这种根轨迹叫零度根轨迹。
第五章频域 (frequency domain) :一种数学域,与时域相区别,用频率和频率响应来描述系统。
频率特性 (frequency response characteristics) :对于线性系统来说,当输入信号为正弦信号时,稳态时的输出信号是一个与输入信号同频率的正弦信号,不同的只是其幅值与相位,且幅值与相位随输入信号的频率不同而不同。
输出与输入的幅值比随频率变化的函数称为幅频magnitude-frequency 特性,输出与输入的相位差随频率变化的函数称为相频 phase-frequency 特性。
两者合称频率特性。
幅相曲线 (magnitude and phase diagram) :对于一个确定的频率,必有一个幅频特性的幅值和一个幅频特性的相角与之对应,幅值与相角在复平面上代表一个向量。
当频率ω从零变化到无穷时,相应向量的矢端就描绘出一条曲线。
这条曲线就是幅相频率特性曲线,简称幅相曲线。
对数频率特性曲线 (Bode diagram) :又称为伯德图(曲线),其横坐标采用对数分度,对数幅频曲线的纵坐标的单位是分贝,记作 dB ,对数相频曲线的纵坐标单位是度。
最小相位 ( 相角 ) 系统 (minimum phase system) :零点、极点均在 s 平面的左半平面的系统。
奈奎斯特稳定判据 (Nyquist stability criterion) :简称奈氏判据,是根据开环频率特性曲线判断闭环系统稳定性的一种简便方法。
稳定裕度 (stability margin) :表征系统稳定程度的指标,包括幅值裕度 magnitude margin 和相角裕度 phase margin g 。
第六章校正 (Compensation) :改变或调节控制系统,使之能获得满意的性能。
超前网络 (Phase-lead network) :具有相角超前特性的网络称超前网络。
迟后网络 (Phase-lag network) :具有相角迟后特性的网络称超前网络。
串联校正 (Cascade compensation) :将校正装置接在测量点之后和放大器之前,串接于系统前向通道中,称串联校正。
第七章非线性系统 (non-linear system ) :只要系统中包含一个或一个以上具有非线性静特性的元件,即称为非线性系统。
描述函数 (describing function ) :非线性元件稳态输出的基波分量与输入正弦信号的复数比定义为非线性环节的描述函数。
自激振荡 (Sustained oscillation) :非线性系统在没有外界周期变化信号的作用下,系统中能产生具有固定振幅和频率的稳定的周期运动,称为自激振荡。
相平面 (phase plane) :以状态变量为横坐标,以其一阶导数为纵坐标组成的直角坐标平面称为相平面。
第八章离散控制系统 (Discrete-Time Control System) :系统中有一处或多处为离散信号的系统称离散系统。
采样与复现 (sampling and reconstructing ) :把连续信号变换为脉冲序列的过程称采样过程;将离散信号转换复原成连续信号的过程称信号复现过程。
零阶保持器 ( zero-order holder ) :零阶保持器把采样时刻 kT 的采样值恒定不变地保持到下一个采样周期 (k+1)T 。
z 变换 (z-transform) :从 s 域到 z 域的变换。
脉冲传递函数 (transfer function ) :线性定常离散系统在零初始条件下,离散输出信号的 z 变换与离散输入信号的 z 变换之比,称离散系统的脉冲传递函数。
z 平面 (z-plane) :水平轴为 z 的实部、垂直轴为 z 的虚部的复平面。