2015-2016年福建省漳州市龙海市八年级(上)期末数学试卷及答案
- 格式:doc
- 大小:224.51 KB
- 文档页数:16
福建省漳州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·平凉期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2018七上·瑶海期末) 在下列调查中,适宜采用全面调查的是()A . 了解我省中学生的视力情况B . 了解七(1)班学生校服的尺码情况C . 检测一批电灯泡的使用寿命D . 调查安徽卫视《超级演说家》栏目的收视率3. (2分) (2019七上·蚌埠月考) 2018年合肥市常住总人口约800万,关于“800万”,下列说法正确的是()A . 它精确到个位B . 它精确到百位C . 它精确到万位D . 它精确到百万位4. (2分)(2016·株洲) 如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A . 1B . 2C . 3D . 45. (2分) (2019八上·鄂州期末) 已知点P(a+1,2a -3)关于x轴的对称点在第一象限,则a的取值范围是()A .B .C .D .6. (2分) (2016七上·嘉兴期中) 数轴上的点与下列各数中的什么数一一对应()A . 整数B . 有理数C . 无理数D . 实数7. (2分) (2017八上·上城期中) 下列各组所列条件中,不能判断和全等的是().A . ,,B . ,,C . ,,D . ,,8. (2分) (2016九上·龙湾期中) 下列选项中的事件,属于必然事件的是()A . 掷一枚硬币,正面朝上B . 某运动员跳高的最好成绩是20.1米C . 明天是晴天D . 三角形的内角和是180°9. (2分)三角形两边长为6与8,那么周长l的取值范围()A . 2<l<14B . 16<l<28C . 14<l<28D . 20<l<2410. (2分)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A . 甲、乙两人的速度相同B . 甲先到达终点C . 乙用的时间短D . 乙比甲跑的路程多二、填空题 (共8题;共9分)11. (1分) (2016八上·盐城期末) 分式有意义的条件是________.12. (1分) (2017九上·潮阳月考) 平面直角坐标系中,P(2,3)关于原点对称的点A 坐标是________.13. (1分) (2019八下·番禺期末) 将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为________.14. (1分)在△ABC中,∠A+∠B=150°,∠C=3∠A,则∠A=________ °.15. (1分) (2017八下·老河口期末) 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高长度为________.16. (1分)(2018·长春) 如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x 与线段AB有公共点,则n的值可以为________.(写出一个即可)17. (2分)从2001年2月21日零时起,中国电信执行新的固定电话收费标准,其中本地网营业区内通话费是:前3分钟是0.2元(不足3分钟近3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟科计算),现有一个学生星期天打本地网营业区内电话t分钟(t>3)应交电话费________元.18. (1分) (2017八下·丽水期末) 如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________三、解答题 (共8题;共84分)19. (10分)求下列各式中的x.①x2=25②(x﹣3)3=27.20. (2分) (2020九上·莘县期末) 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点△ABC的三个顶点A,B,C都在格点上将△ABC绕点A顺时针方向旋转90°得到△AB'C'。
漳州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019七下·武汉月考) 下列结论中: ①若a=b,则 = ,②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④| -2|=2- ,正确的个数有()A . 1个B . 2个C . 3个D . 4个2. (2分)(2017·双桥模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .3. (2分)(2017·个旧模拟) 下列说法正确的是()A . 了解飞行员视力的达标率应使用抽样调查B . 某班7名女生的体重(单位:kg)分别是35,37,38,40,42,42,74,这组数据的众数是74C . 从2000名学生中选200名学生进行抽样调查,样本容量为2000D . 一组数据3,6,6,7,9的中位数是64. (2分)(2017·赤峰) 将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A . y=2x﹣5B . y=2x+5C . y=2x+8D . y=2x﹣85. (2分)如图,线段AB的两个端点坐标分别为A(1,4),B(6,2),以原点O为位似中心,将线段AB缩小后得到线段A′B′.若AB=2A′B′,则端点B′的坐标为()A . (2,2)B . (3,2)C . (2,1)D . (3,1)6. (2分)如图,在□ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A . AM=ANB . MN⊥ACC . MN是∠AMC的平分线D . ∠BAD=120°7. (2分)如图,将矩形ABCD沿DE折叠,使A点落在BC边上F处,若∠EFB=70°,则∠AED=()A . 80°B . 75°C . 70°D . 65°8. (2分)(2017·宁波模拟) 如图,四个全等的直角三角形纸片既可以拼成(内角不是直角)的菱形ABCD,也可以拼成正方形EFGH,则菱形ABCD面积和正方形EFGH面积之比为()A . 1B .C .D .二、填空题 (共10题;共10分)9. (1分)(2016·铜仁) 函数的自变量x取值范围是________.10. (1分)将直线y=﹣x﹣2向下平移3个单位,得到直线________.11. (1分) (2017九上·安图期末) 数学老师将全班分成6个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是________.12. (1分)如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为________.13. (1分)的平方根是________14. (1分)分式与的最简公分母是________ .15. (1分)(2016·新化模拟) 已知函数满足下列两个条件:①x>0时,y随x的增大而增大;②它的图象经过点(1,2).请写出一个符合上述条件的函数的表达式________16. (1分)(2017·泾川模拟) 如图,如图,点A(3,m)在第一象限,OA与x轴所夹的锐角为∠1,tan∠1=,则m的值是________.17. (1分) (2018八上·硚口期末) 在中,,,点是射线上的一个动点,作,且,连接交射线于点,若,则 ________.18. (1分) (2016八上·灵石期中) 一次函数y=﹣6x+5的图象可由正比例函数________的图象向上平移5个单位长度得到.三、解答题 (共8题;共86分)19. (5分) (2016七上·禹州期末) 已知关于x的方程2x﹣a=1与方程 = ﹣a的解的和为,求a的值.20. (15分)(2018·邯郸模拟) 如图,在平面直角坐标系中,已知点A(5,3),点B(-3,3),过点A的直线(m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D。
整式的加减知识点总结1. 单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2. 单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数。
3. 单项式的次数:单项式中所有字母的指数的和,叫单项式的次数。
4. 多项式:几个单项式的和叫做多项式。
5. 多项式的项与项数:多项式中每个单项式叫多项式的项; 不含字母的项叫做常数项,多项式里所含单项式的个数就是多项式的项数。
6. 多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0。
注意:若a 、b 、c 、p 、q 是常数,ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式。
7. 多项式的升幂排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幂排列;多项式的降幂排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排 列。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
8.整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字 母的代数式叫整式。
9.整式分类:⎩⎨⎧多项式单项式整式 注意:分母上含有字母的不是整式。
10.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
11.合并同类项法:各同类项系数相加,所得结果作为系数,字母和字母指数不变。
12.去括号的法则:(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。
13.添括号的法则:(1)若括号前边是“+”号,括号里的各项都不变号;(2)若括号前边是“-”号,括号里的各项都要变号。
14. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在 去括号的基础上,把多项式的同类项合并。
初整式的加减综合练习题一.选择题(共14小题)1.下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.32.下面计算正确的是()A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣+ba=03.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+14.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,75.下列各组中,不是同类项的是()A.52与25 B.﹣ab与ba C.与﹣a2b D.a2b3与﹣a3b26.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5 C.3a2b﹣3ba2=0 D.5a2﹣4a2=17.如果单项式﹣x a+1y3与是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=28.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,39.下列各题运算正确的是()A.3x+3y=6xy B.x+x=x2 C.﹣9y2+16y2=7 D.9a2b﹣9a2b=0 10.化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n11.下列各式中与a﹣b﹣c的值不相等的是()A.a﹣(b+c)B.a﹣(b﹣c)C.(a﹣b)+(﹣c)D.(﹣c)﹣(b ﹣a)12.计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4 B.a2﹣3a+2 C.a2﹣7a+2 D.a2﹣7a+413.化简﹣16(x﹣)的结果是()A.﹣16x﹣B.﹣16x+ C.16x﹣8 D.﹣16x+814.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是()A.2015x2015 B.4029x2014C.4029x2015D.4031x2015二.填空题(共11小题)15.若单项式2x2y m与x n y3是同类项,则m+n的值是.16.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015= .17.一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是.18.若﹣4x a y+x2y b=﹣3x2y,则a+b= .19.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m= .20.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=x2+y2,空格的地方被钢笔水弄污了,请你帮他补上.21.已知单项式3a m b2与﹣a4b n﹣1的和是单项式,那么m= ,n= .22.计算:4(a2b﹣2ab2)﹣(a2b+2ab2)= .23.小明在求一个多项式减去x2﹣3x+5时,误认为加上x2﹣3x+5,得到的答案是5x2﹣2x+4,则正确的答案是.24.小明、小亮、小强三个人在一起玩扑克牌,他们各取了相同数量的扑克牌(牌数大于3),然后小亮从小明手中抽取了3张,又从小强手中抽取了2张;最后小亮说小明,“你有几张牌我就给你几张.”小亮给小明牌之后他手中还有张牌.25.扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是.三.解答题(共15小题)26.先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.27.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少(2)若|a+1|+(b﹣2)2=0,求A的值.28.先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.29.有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.30.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.31.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.32.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.33.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.34.先化简,再求值:,其中x=﹣1,y=2.35.已知三角形的第一边长为3a+2b,第二边比第一边长a﹣b,第三边比第二边短2a,求这个三角形的周长.36.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油37.已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣(1)当x=y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.38.化简:(1);(2)3x2﹣[7x﹣(4x﹣3)﹣2x2](3)(2xy﹣y)﹣(﹣y+yx)(4)5(a2b﹣3ab2)﹣2(a2b﹣7ab2)39.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.整式的加减综合练习题参考答案与试题解析一.选择题(共14小题)1.(2015秋?龙海市期末)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母不是整式.故整式共有4个.故选:C.2.(2016秋?南漳县期末)下面计算正确的是()A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣+ba=0【解答】解:A、3x2﹣x2=2x2≠3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣+ba=0,故D正确.故选:D.3.(2009?太原)已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1【解答】解:设这个多项式为M,则M=3x2+4x﹣1﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x﹣1.故选:A.4.(2016秋?黄冈期末)单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,7【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.5.(2015?崇左)下列各组中,不是同类项的是()A.52与25B.﹣ab与ba C.与﹣a2b D.a2b3与﹣a3b2【解答】解:不是同类项的是a2b3与﹣a3b2.故选:D.6.(2015?玉林)下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0 D.5a2﹣4a2=1【解答】解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b﹣3ba2=0,C正确;D、5a2﹣4a2=a2,D错误,故选:C.7.(2013?凉山州)如果单项式﹣x a+1y3与是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2【解答】解:根据题意得:,则a=1,b=3.故选:C.8.(2013?佛山)多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,3【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.9.(2014秋?南安市期末)下列各题运算正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+16y2=7 D.9a2b﹣9a2b=0【解答】解:A、3x+3y不是同类项不能合并,A错误;B、x+x=2x≠x2,故B错误;C、﹣9y2+16y2=7y2≠7,故C错误;D、9a2b﹣9a2b=0,故D正确.故选:D.10.(2008?咸宁)化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n【解答】解:m+n﹣(m﹣n)=m+n﹣m+n=2n.故选C.11.(2013秋?通城县期末)下列各式中与a﹣b﹣c的值不相等的是()A.a﹣(b+c) B.a﹣(b﹣c)C.(a﹣b)+(﹣c)D.(﹣c)﹣(b﹣a)【解答】解:A、a﹣(b+c)=a﹣b﹣c;B、a﹣(b﹣c)=a﹣b+c;C、(a﹣b)+(﹣c)=a﹣b﹣c;D、(﹣c)﹣(b﹣a)=﹣c﹣b+a.故选:B.12.(2015秋?招远市)计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4 B.a2﹣3a+2 C.a2﹣7a+2 D.a2﹣7a+4【解答】解:(6a2﹣5a+3 )﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4.故选D.13.(2015?济宁)化简﹣16(x﹣)的结果是()A.﹣16x﹣B.﹣16x+ C.16x﹣8 D.﹣16x+8【解答】解:﹣16(x﹣)=﹣16x+8,故选:D.14.(2015?临沂)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是()A.2015x2015B.4029x2014C.4029x2015D.4031x2015【解答】解:根据分析的规律,得第2015个单项式是4029x2015.故选:C.二.填空题(共11小题)15.(2007?深圳)若单项式2x2y m与x n y3是同类项,则m+n的值是 5 .【解答】解:由同类项的定义可知n=2,m=3,则m+n=5.故答案为:5.16.(2015?遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015= 1 .【解答】解:由同类项的定义可知a﹣2=1,解得a=3,b+1=3,解得b=2,所以(a﹣b)2015=1.故答案为:1.17.(2016秋?太仓市校级期末)一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2 .【解答】解:设这个整式为M,则M=x2﹣1﹣(﹣3+x﹣2x2),=x2﹣1+3﹣x+2x2,=(1+2)x2﹣x+(﹣1+3),=3x2﹣x+2.故答案为:3x2﹣x+2.18.(2007?滨州)若﹣4x a y+x2y b=﹣3x2y,则a+b= 3 .【解答】解:由同类项的定义可知a=2,b=1,∴a+b=3.19.(2016秋?海拉尔区期末)若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m= ﹣6 .【解答】解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.20.(2008秋?大丰市期末)今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=x2﹣xy +y2,空格的地方被钢笔水弄污了,请你帮他补上.【解答】解:原式=﹣x2+3xy﹣y2+x2﹣4xy+y2=﹣x2﹣xy+y2∴空格处是﹣xy.21.(2013秋?白河县期末)已知单项式3a m b2与﹣a4b n﹣1的和是单项式,那么m=4 ,n= 3 .【解答】解:由同类项定义知:m=4,n﹣1=2,得m=4,n=3,故答案为:4;3.22.(2008秋?滨城区期中)计算:4(a2b﹣2ab2)﹣(a2b+2ab2)= 3a2b﹣10ab2.【解答】解:4(a2b﹣2ab2)﹣(a2b+2ab2)=4a2b﹣8ab2﹣a2b﹣2ab2=3a2b﹣10ab2故答案为:3a2b﹣10ab2.23.(2011秋?河北区期中)小明在求一个多项式减去x2﹣3x+5时,误认为加上x2﹣3x+5,得到的答案是5x2﹣2x+4,则正确的答案是3x2+4x﹣6 .【解答】解:误认为加上x2﹣3x+5,得到的答案是5x2﹣2x+4,则原式为5x2﹣2x+4﹣(x2﹣3x+5)=4x2+x﹣1.然后用原式按照正确的方法减去x2﹣3x+5,得3x2+4x﹣6.故答案为3x2+4x﹣6.24.小明、小亮、小强三个人在一起玩扑克牌,他们各取了相同数量的扑克牌(牌数大于3),然后小亮从小明手中抽取了3张,又从小强手中抽取了2张;最后小亮说小明,“你有几张牌我就给你几张.”小亮给小明牌之后他手中还有8张牌.【解答】解:设每人有牌x张,小亮从小明手中抽取了3张,又从小强手中抽取了2张后,则小亮有x+2+3张牌,小明有x﹣3张牌,那么给小明后他的牌有:x+2+3﹣(x﹣3)=x+5﹣x+3=8张.25.(2005?扬州)扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌的张数.你认为中间一堆牌的张数是 5 .【解答】解:设第一步时,每堆牌的数量都是x(x≥2);第二步时:左边x﹣2,中间x+2,右边x;第三步时:左边x﹣2,中级x+3,右边x﹣1;第四步开始时,左边有(x﹣2)张牌,则从中间拿走(x﹣2)张,则中间所剩牌数为(x+3)﹣(x﹣2)=x+3﹣x+2=5.故答案为:5.三.解答题(共15小题)26.先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.【解答】解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.27.(2016秋?定州市期末)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少(2)若|a+1|+(b﹣2)2=0,求A的值.【解答】解:(1)∵A﹣2B=A﹣2(﹣4a2+6ab+7)=7a2﹣7ab,∴A=(7a2﹣7ab)+2(﹣4a2+6ab+7)=﹣a2+5ab+14;(2)依题意得:a+1=0,b﹣2=0,a=﹣1,b=2.原式A=﹣(﹣1)2+5×(﹣1)×2+14=3.28.(2016秋?靖远县期末)先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.【解答】解:原式=﹣2mn+6m2﹣m2+5(mn﹣m2)﹣2mn,=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn,=mn,当m=1,n=﹣2时,原式=1×(﹣2)=﹣2.29.(2008秋?海门市期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.【解答】解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3=﹣2×(﹣1)3=2.因为化简的结果中不含x,所以原式的值与x值无关.30.(2016秋?秦皇岛期末)先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.31.(2015秋?莘县期末)先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.【解答】解:原式=2a2b+2ab2﹣(2a2b﹣2+3ab2+2)=2a2b+2ab2﹣2a2b﹣3ab2=﹣ab2.当a=2,b=﹣2时,原式=﹣2×(﹣2)2=﹣8.32.(2016秋?桂林期末)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.33.(2015秋?普宁市期末)化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.【解答】解:原式=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy,当x=﹣1,y=﹣2时,原式=4+14=18.34.先化简,再求值:,其中x=﹣1,y=2.【解答】解:原式=,当x=﹣1,y=2时,原式=﹣3×(﹣1)+2=5.35.(2015秋?徐闻县期中)已知三角形的第一边长为3a+2b,第二边比第一边长a﹣b,第三边比第二边短2a,求这个三角形的周长.【解答】解:第一边长为3a+2b,则第二边长为(3a+2b)+(a﹣b)=4a+b,第三边长为(4a+b)﹣2a=2a+b,∴(3a+2b)+(4a+b)+(2a+b)=3a+2b+4a+b+2a+b=9a+4b.36.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油【解答】解:5x2﹣10x﹣(7x﹣5)+(x2﹣x)﹣5=5x2﹣10x﹣7x+5+x2﹣x﹣5=6x2﹣18x(桶),(2)当x=5时,6x2﹣18x=6×52﹣18×5=150﹣90=60(桶),37.(2012秋?番禺区期末)已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣(1)当x=y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.【解答】解:(1)A﹣2B=2x2+3xy+2y﹣1﹣2()=2x2+3xy+2y﹣1﹣2x2+2xy﹣2x+1=5xy+2y﹣2x,当x=y=﹣2时,A﹣2B=5xy+2y﹣2x=5×(﹣2)×(﹣2)+2×(﹣2)﹣2×(﹣2)=20;(2)由(1)可知A﹣2B=5xy+2y﹣2x=(5y﹣2)x+2y,若A﹣2B的值与x的取值无关,则5y﹣2=0,解得.38.(2015秋?营山县校级期中)化简:(1);(2)3x2﹣[7x﹣(4x﹣3)﹣2x2](3)(2xy﹣y)﹣(﹣y+yx)(4)5(a2b﹣3ab2)﹣2(a2b﹣7ab2)【解答】解:(1)原式=(﹣4)mn=﹣;(2)3x2﹣[7x﹣(4x﹣3)﹣2x2]=3x2﹣(7x﹣4x+3﹣2x2]=3x2﹣7x+4x﹣3+2x2=(3+2)x2+(﹣7+4)x﹣3=5x2﹣3x﹣3;(3)(2xy﹣y)﹣(﹣y+yx)=2xy﹣y+﹣y﹣yx=xy;(4)5(a2b﹣3ab2)﹣2(a2b﹣7ab2)=5a2b﹣15ab2﹣2a2b+14ab2=(5﹣2)a2b﹣(15﹣14)ab2=3a2b﹣ab2.39.(2015秋?冠县期末)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.【解答】解:由题意设十位上的数为x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),则100(3x﹣1)+10x+(2x+1)﹣[100(2x+1)+10x+(3x﹣1)]=99,解得x=3.所以这个数是738.。
2015八年级数学上期末检测试卷(有答案和解释)福建省漳州市2014-2015学年八年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分,每小题只有一个正确的选项,请将正确选项填入相应的表格内) 1.(2014•莱芜)下列四个实数中,是无理数的为() A. 0 B.�3 C. D.考点:无理数.专题:常规题型.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、0是整数,是有理数,故A选项错误; B、�3是整数,是有理数,故B 选项错误; C、 =2 是无理数,故C选项正确; D、是无限循环小数,是有理数,故D选项错误.故选:C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的(2014秋•漳州期末)无理数的整数部分是() A. 1 数. 2.B. 2 C. 3 D. 4考点:估算无理数的大小.分析:看在哪两个整数之间即可得到它的整数部分.解答:解:∵ ,∴2<<3,∴ 的整数部分为2,故选:B.点评:本题考查估算无理数的大小的知识;用“夹逼法”得到无理数的范围是解决本题的关键. 3.(2014秋•漳州期末)下列计算正确的是() A.(x3)3=x6 B.a6•a4=a24 C.(�mn)4÷(�mn)2=m2n2 D. 3a+2a=5a2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,合并同类项法则对各选项分析判断利用排除法求解.解答:解:A、(x3)3=x3×3=x9,故本选项错误; B、a6•a4=a6+4=a10,故本选项错误; C、(�mn)4÷(�mn)2=m2n2,故本选项正确; D、3a+2a=5a,故本选项错误.故选C.点评:本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,合并同类项法则,熟记各性质并理清指数的变化情况是解题的关键. 4.(2014秋•漳州期末)观察下列各组数:①9,16,25;②8,15,17;③7,24,25;④12,15,20.其中能作为直角三角形边长的组数为() A.①② B.②③ C.③④ D.①④考点:勾股定理的逆定理.分析:利用勾股定理的逆定理对四个答案进行逐一判断即可.解答:解:①、错误,∵92+162=337≠252=625,∴不能作为直角三角形边长;②、正确,∵82+152=172=289,∴能作为直角三角形边长;③、正确,∵72+242=252=625,∴能作为直角三角形边长;④、错误,∵122+152=369≠202=400,∴不能作为直角三角形边长.故选B.点评:本题考查的是利用勾股定理的逆定理判断三角形是否为直角三角形,即三角形的三边若满足a2+b2=c2,则此三角形是直角三角(2014秋•漳州期末)下列命题中正确的是() A.全形. 5.等三角形的高相等 B.全等三角形的中线相等 C.全等三角形的角平分线相等 D.全等三角形对应角相等考点:命题与定理.分析:认真读题,只要甄别,其中A、B、C选项中都没有“对应”二字,都是错误的,只有D是正确的.解答:解:A、全等三角形的对应边上的高相等,故错误; B、全等三角形的对应边上的中线相等,故错误; C、全等三角形的对应角的角平分线相等,故错误; D、全等三角形的对应角相等,正确.故选D.点评:本题考查了全等三角形的性质;注意全等三角形的性质中指的是各对应边上高,中线,角平分线相等.对性质中对应的真正理解是解答本题的关键. 6.(2014秋•漳州期末)计算(18x4�48x3+6x)÷6x的结果为() A. 3x3�13x2 B. 3x3�8x2C. 3x3�8x2+6x D. 3x3�8x2+1考点:整式的除法.分析:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.解答:解:(18x4�48x3+6x)÷6x=3x3�8x2+1.故选:D.点评:考查了整式的除法,多项式除以单项式实质就是转化为单项式除以单项式.多项式除以单项式的结果仍是一个多项式. 7.(2014秋•漳州期末)若等腰三角形的周长为20,有一边长为4,则它的腰长为()A. 4 B. 8 C. 10 D. 4或8考点:等腰三角形的性质;三角形三边关系.分析:根据等腰三角形的性质分为两种情况解答:当边长4cm为腰或者4cm底边时.解答:解:分情况考虑:当4是腰时,则底边长是20�8=12,此时4,4,12不能组成三角形,应舍去;当4是底边时,腰长是(20�4)× =8,4,8,8能够组成三角形.此时腰长是8.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 8.(2014秋•漳州期末)要直观反映我市某一周每天的最高气温的变化趋势,宜采用() A.折线统计图 B.条形统计图 C.频数分布统计图 D.扇形统计图考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:A.点评:此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断. 9.(2014秋•漳州期末)如图,有两棵树,一颗高10m,另一颗高5m,两树相距12m,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行() A. 5m B. 10m C. 13m D. 17m 考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=5m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=5m,EC=12m,AE=AB�EB=10�5=5(m),在Rt△AEC 中,AC= = =13(m).故小鸟至少飞行13m.故选:C.点评:本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力. 10.(2014秋•漳州期末)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是() A. a2�b2=(a+b)(a�b) B.(a+b)2=a2+2ab+b2 C.(a�b)2=a2�2ab+b2 D.(a+2b)(a�b)=a2+ab�2b2考点:平方差公式的几何背景.分析:左图中阴影部分的面积=a2�b2,右图中矩形面积=(a+b)(a�b),根据二者相等,即可解答.解答:解:由题可得:a2�b2=(a�b)(a+b).故选:A.点评:此题主要考查了平方差公式的几何背景.解题的关键是运用阴影部分的面积相等得出关系式. 11.(2014秋•漳州期末)如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是() A. AE、BF是△ABC的内角平分线 B.点O到△ABC三边的距离相等 C. CG也是△ABC的一条内角平分线D. AO=BO=CO考点:作图―基本作图;角平分线的性质.分析:利用尺规作图的痕迹可得AE、BF是△ABC的内角平分线,即可得出答案.解答:解:∵由尺规作图的痕迹可得AE、BF是△ABC的内角平分线,∴点O到△ABC三边的距离相等,CG也是△ABC的一条内角平分线,故D 选项不正确,故选:D.点评:本题主要考查了基本作图及角平分线的性质,解题的关键是熟记角平分线的作图方法. 12.(2014秋•漳州期末)如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是() A. 10 B. 8 C. 6 D. 4考点:等腰三角形的判定与性质;三角形的面积.分析:延长BD 交AC于点E,则可知△ABE为等腰三角形,则S△ABD=S△ADE,S△BDC=S△C DE,可得出S△ADC= S△ABC.解答:解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC�T S△ABC= ×12=6,故选C.点评:本题主要考查等腰三角形的判定和性质,由BD=DE得到S△ABD=S△ADE,S△BDC=S△CDE是解题的关键.二、填空题(共8小题,每小题3分,共24分) 13.(3分)(2013•泰州)9的平方根是±3.考点:平方根.专题:计算题.分析:直接利用平方根的定义计算即可.解答:解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根. 14.(3分)(2014秋•漳州期末)计算(2m+n)(2m�n)= 4m2�n2 .考点:平方差公式.专题:计算题.分析:原式利用平方差公式计算即可得到结果.解答:解:原式=4m2�n2.故答案为:4m2�n2.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键. 15.(3分)(2014秋•漳州期末)计算:�8x3y2÷2xy=�4x2y .考点:整式的除法.分析:利用系数,同底数幂分别相除后,作为商的因式求解.解答:解:�8x3y2÷2xy=�4x2y.故答案为:�4x2y.点评:本题主要考查了整式的除法,解题的关键是熟记,把系数同底数幂分别相除后,作为商的因式. 16.(3分)(2014秋•漳州期末)若 +(b�3)2=0,则a+b= 2 .考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:利用非负数的性质解得a,b,求得a+b.解答:解:∵ +(b�3)2=0,≥0,(b�3)2≥0,∴a+1=0,b�3=0,解得:a=�1,b=3,∴a+b=2,故答案为:2.点评:本题主要考查了非负数的性质,利用算术平方根的非负性求值是解答此题的关键. 17.(3分)(2014秋•漳州期末)测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,则该班身高在1.60m以下的学生有16 人.考点:频数与频率.分析:利用频率= ,进而得出该班身高在1.60m 以下的学生数.解答:解:∵测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,∴该班身高在1.60m以下的学生有:40×0.4=16(人).故答案为:16.点评:此题主要考查了频数与频率,正确掌握频数与频率之间的关系是解题关键. 18.(3分)(2014秋•漳州期末)如图,∠A=∠D=90°,要使△ABC≌△DCB,只需再添加一个条件∠ABC=∠DCB,本题答案不唯一即可.考点:全等三角形的判定.专题:证明题;开放型.分析:添加的条件是∠ABC=∠DCB,根据全等三角形的判定定理AAS即可求出答案.解答:解:添加的条件是∠ABC=∠DCB,理由是:在△ABC 和△DCB中∴△ABC≌△DCB(AAS),故答案为:∠ABC=∠DCB.本题答案不唯一.点评:本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据全等三角形的判定定理进行证明是解此题的关键. 19.(3分)(2014秋•漳州期末)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,若CE=1,∠AEC=45°,则BE的长是.考点:线段垂直平分线的性质.分析:根据等腰直角三角形的性质得到AE= CE,然后根据线段的操作频繁的性质即可得到结果.解答:解:∵∠C=90°,∠AEC=45°,∴∠EAC=45°,∴AE= CE= ,∵DE垂直平分AB,∴BE=AE= ,故答案为:.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,熟记各性质是解题的关键. 20.(3分)(2014秋•漳州期末)如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是9.6 .考点:垂线段最短;等腰三角形的性质;勾股定理.分析:过点A作AE⊥BC,垂足为E,过点B作BD⊥AC,垂足为D,首先由等腰三角形三线合一可知BE=6,在Rt△AEB中,由勾股定理可求得AE=8,然后利用等面积法即可求得BD的长.解答:解:如图,过点A作AE⊥BC,垂足为E,过点B作BD⊥AC,垂足为D.∵AC=AC,AE⊥BC,∴BE=EC=6,在Rt△AEB中, = =8,由三角形的面积公式可知:,即:,∴BD=9.6.故答案为:9.6.点评:本题主要考查的是等腰三角形的性质、勾股定理以及垂线段的性质,利用等面积法求得BD的长是解题的关键.三、解答题(共7题,满分52分) 21.(6分)(2014秋•漳州期末)计算: + +(�1)2015+|4�π|.(结果保留π)考点:实数的运算.专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用乘方的意义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=2+3�1+4�π=8�π.点评:此题考查了(2014实数的运算,熟练掌握运算法则是解本题的关键. 22.(8分)秋•漳州期末)(1)9x2�4y2;(2)2x2+4x+2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式利用平方差公式分解即可;(2)原式提取2,再利用完全平方公式分解即可.解答:解:(1)原式=(3x+2y)(3x�2y);(2)原式=2(x2+2x+1)=2(x+1)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 23.(6分)(2014秋•漳州期末)如图,已知B,F,E,D在同一条直线上,AB=CD,AB∥CD,BF=DE,求证:AE=CF.考点:全等三角形的判定与性质.专题:证明题.分析:利用SAS证明△ABE≌△CDF,根据全等三角形,对应边相等,可得到结论AE=CF.解答:证明:∵BF=DE,∴BE+EF=DE+EF.即BE=DF,∵AB∥CD,∴∠B=∠D,在△ABE和△CDF中,,∴△ABE≌△CDF.∴AE=CF.点评:本题考查了全等三角形的判定和性质;证明线段相等往往可以通过全等三角形来证明,这是一种经常用、很重要的方法,要注意掌握. 24.(6分)(2014秋•漳州期末)近年来,各地“广场舞”噪音干扰的问题倍受关注,某中学八年级学生就此问题对市民进行了随机问卷调查,问卷内容有以下四种: A.有一定影响,要控制好音量; B.影响很大,建议取缔; C.没影响; D.其它根据调查结果,制作了如图两幅不完整的统计图:根据以上信息解答下列问题:(1)本次调查的人数是200 人.(2)将两幅统计图补充完整.考点:条形统计图;扇形统计图.分析:(1)根据项目A有80人,所占的百分比是40%即可求得总人数;(2)根据百分比的意义即可求得B、C项目的人数以及B、D所占的百分比,从而补全图形.解答:解:(1)本次调查的总人数是:80÷40%=200(人),故答案是:200;(2)项目C的人数是:200×20%=40(人), B项目的人数是:200�80�40�50=30(人). D项目所占的百分比是:×100%=25%,B项目所占的百分比是:×100%=15%.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 25.(8分)(2014秋•漳州期末)先化简,再求值:[(x�y)2]�x(x+y)+4xy÷y,其中x=�1,y=2.考点:整式的混合运算―化简求值.分析:先化简,再把x=�1,y=2代入求值.解答:解:[(x�y)2]�x(x+y)+4xy÷y=x2�2xy+y2�x2�xy+4x, =�3xy+y2+4x,当x=�1,y=2时,原式=6+4�4=6.点评:本题主要考查了整式的化简求值,解题的关键是正确的化简. 26.(8分)(2014秋•漳州期末)如图,在海上观察所A处,我边防海警发现正北60海里的B处,有一可疑船只正在往正东方向80海里的C处行驶,速度为40海里/小时,我边防海警立即派海警船从A处出发,沿AC方向行驶前往C处拦截,当可疑船只行驶到C处时,海警船也同时到达并将其截住,求海警船的速度.考点:勾股定理的应用.分析:首先利用勾股定理求得线段AC的长,然后利用行驶时间相等求得边防海警船的速度.解答:解:∵AB=60海里,BC=80海里,∴AC= =100(海里),∵可疑船只的行驶速度为40海里/小时,∴可疑船只的行驶时间为80÷40=2(小时),∴我边防海警船的速度为100÷2=50(海里/小时),答:我边防海警船的速度为50海里/小时,才能恰好在C处将可疑船只截住.点评:本题考查了勾股定理在实际生活中的应用,本题中正确的找到CB,AB,AC的等量关系,并且根据该等量关系在直角△CAB中求解是解题的关键. 27.(10分)(2014秋•漳州期末)如图,在Rt△ABC 中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB= 50 cm,AB边上的高为24 cm;(2)点D在运动过程中,当△BCD 为等腰三角形时,求t的值.考点:勾股定理.专题:动点型.分析:(1)在Rt△ABC中,由勾股定理即可求出AB;由直角三角形的面积即可求出斜边上的高;(2)分三种情况:①当BD=BC=30cm时,得出2t=30,即可得出结果;②当CD=CB=30cm时,作CE⊥AB于E,则BE=DE= BD=t,由(1)得出CE=24,由勾股定理求出BE,即可得出结果;③当DB=DC时,∠BCD=∠B,证明DA=DC,得出AD=DB= AB,即可得出结果.解答:解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB= = =50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积= AB•CE=AC•BC,∴CE= = =24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm 时,作CE⊥AB于E,如图2所示:则BE=DE= BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE= = =18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°�∠B,∠ACD=90°�∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB= AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.点评:本题考查了勾股定理、等腰三角形的判定与性质、三角形面积的计算;本题综合性强,有一定难度,特别是(2)中,需要进行分类讨论,运用勾股定理和等腰三角形的性质才能得出结果.。
福建省漳州市八年级上学期数学期末考试试卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2020 八下·西华期末) 下列叙述中,正确的是( )A . 直角三角形中,两条边的平方和等于第三边的平方B.中,的对边分别为,若,则C.若是直角三角形,且,则D.若,则是直角三角形2. (2 分) 下列说法:①无理数都是无限小数;② 的算术平方根是 3; ③数轴上的点与实数一一对应; ④平方根与立方根等于它本身的数是 0 和 1; ⑤若点 A(-2,3)与点 B 关于 x 轴对称,则点 B 的坐标是(-2,-3). 其中正确的个数是( ) A . 1个 B . 2个 C . 3个 D . 4个3. (2 分) (2017 七上·西湖期中) 有下列说法:①的算术平方根是 ;②是 的平方根;③没有平方根;④A. 个B. 个C. 个D. 个;⑤.其中正确的有( ).4. (2 分) (2018·绥化) 若A.且B.C.有意义,则 x 的取值范围是第 1 页 共 18 页D.5. (2 分) (2017 七下·福建期中) 已知点 P 位于第二象限,且距离 单位长度,则点 P 的坐标是( )A . (-3,4) B . (3,-4) C . (-4,3) D . (4,-3) 6. (2 分) (2019 七下·普陀期中) 下列说法正确是( )轴 3 个单位长度,距离轴4个A . 是 0.5 的平方根 B . 正数有两个平方根,且这两个平方根之和等于 0 C . 的平方根是 7 D . 负数有一个平方根 7. (2 分) 如图,点 E 在 BC 的延长线上,下列条件中能判断 AB∥CD 的是( )A . ∠3=∠4 B . ∠D=∠DCE C . ∠1=∠2 D . ∠B=∠2 8. (2 分) 一个直角三角形的两边长是 6 和 8,那么第三边的长是( ) A . 10B.2C . 10 或 2 D . 50 或 28 9. (2 分) 一次函数 y=-3x+2 的图象不经过( ) A . 第一象限; B . 第二象限; C . 第三象限; D . 第四象限. 10. (2 分) 平面直角坐标系中,已知 A(-3,0)、B(9,0)、C(0,-3)三点,D(3,m)是一个动点,当第 2 页 共 18 页周长最小时,的面积为( )A.6B.9C . 12D . 15二、 填空题 (共 6 题;共 7 分)11. (1 分) (2018 八上·栾城期末) 一组数 ,2, ,2 , 着,则这组数中最大的有理数为________.,…2按一定的规律排列12. (2 分) (2016 七下·鄂城期中) 的平方根是________;=________.13. (1 分) 如果样本方差:S2=[+++…+],那么这个样本的平均数为________.14. (1 分) 在草稿纸上计算:① ;②;③;④用你发现的规律直接写出下面式子的值:=________., 观察你计算的结果,15. (1 分) Rt△ABC 中,∠B=90°,AD 平分∠BAC,DE⊥AC 于 E,若 BC=8,DE=3,则 CD 的长度是________ .16. (1 分) (2019 九上·南浔月考) 如图所示,将矩形 OABC 置于平面直角坐标系中,点 A,C 分别在 x,y 轴的 正半轴上,已知点 B(4,2),将矩形 OABC 翻折,使得点 C 的对应点 P 恰好落在线段 OA(包括端点 O,A)上,折痕所在直线 分别交 BC、OA 于点 D、E;若点 P 在线段 OA 上运动时,过点 P 作 OA 的垂线交折痕所在直线于点 Q.设点 Q 的坐标为 (x,y),则 y 关于 x 的函数关系式是________ .第 3 页 共 18 页三、 解答题 (共 9 题;共 80 分)17. (5 分) (2017·永定模拟) 计算:2tan30°﹣|1﹣ |+( +π)0+ .18. (5 分) (2017·通州模拟) 解方程组:.19. (5 分) (2019 八下·鄂伦春期末) 如图,E、F 是平行四边形 ABCD 的对角线 AC 上的点,且 CE=AF.求证:BE∥DF.20. (5 分) 为倡导市民绿色出行,提高市民环保意识和健康意识,怀柔区建立了城市公共自行车系统,共建 64 个站点,投放 2300 辆自行车.并于 2016 年 8 月 15 日正式投入运营.办理借车卡和借车服务费标准如下:首次办理借车卡免收工本费,本地居民收取 300 元保证金及预充值消费 50 元、外地居民收取 500 元保证金及 预充值消费 50 元.借车服务费用实行分段合计,还车刷卡时,从借车卡中结算扣取,每次借车 1 小时(含)为免费租用期;超过 免费租用期 1 小时以内(含)的收取 1 元;超过免费租用期 2 小时到 4 小时以内(含)的,每小时收取 2 元;超过 免费租用期 4 个小时以上的,每小时收取 3 元;一天 20 元封顶(不足一小时按 1 小时计).刘亮妈妈到网点首次办了一张借车卡.第一次,她用了 5 小时 20 分钟后才还车.后来妈妈又借车出行了 30 次, 卡中预充值的费用就全部用完了,妈妈说后来的这 30 次,每次从卡中扣除的服务费都是 1 元或 3 元.请你通过列方 程或方程组的方法帮刘亮妈妈算一算她扣除 1 元和 3 元服务费各几次.21. (5 分) 若单项式 4xayb+8 与单项式 9x2by3a-b 的和仍是一个单项式,求这两个单项式的和. 22. (15 分) (2020 八上·蚌埠月考) 如图(1) 请写出各顶点的坐标.第 4 页 共 18 页(2) 若把向上平移 2 个单位,再向右平移 3 个单位得到,请在图中画出,并写出点 、 、 的坐标.(3) 求出的面积23. (10 分) (2017 八下·海安期中) 如图,在平面直角坐标系 xOy 中,已知正比例函数数的图像交于点 A.与一次函(1) 求点 A 的坐标;(2) 设 x 轴上一点 P(a,b),过点 P 作 x 轴的垂线(垂线位于点 A 的右侧),分别交和的图像于点 B、C,连接 OC,若 BC= OA,求△OBC 的面积. 24. (15 分) (2017 八下·大石桥期末) 我市某中学举行“中国梦·校园好声音”歌手大赛,七、八年级根据初赛成绩,各选出 5 名选手组成七年组和八年组代表队参加决赛,两个队各选出的 5 名选手的决赛成绩(满分为 100 分)如图所示。
福建省漳州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·福州模拟) 下列计结果为a10的是()A . a6+a4B . a11-aC . a5·a2D . a12÷a22. (2分)计算(﹣2)2015+22014等于()A . 22015B . ﹣22015C . ﹣22014D . 220143. (2分) (2017八下·西城期末) 函数中,自变量x的取值范围是().A . x≠B . x≠1C . x>D . x≥4. (2分)如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C 的度数为()A . 30°B . 40°C . 50°D . 60°5. (2分) (2019八上·道外期末) 如图,直线是四边形的对称轴,点是直线上的点,下列判断错误的是()A .B .C .D .6. (2分)(2017·邵阳模拟) 下列计算正确的是()A . a2•a3=a6B . (a2)3=a5C . (﹣2ab)2=4a2b2D . 3a2b2÷a2b2=3ab7. (2分)如图所示,AB∥CD,AD∥BC,BE=DF,则图中全等三角形共有()对.A . 2B . 3C . 4D . 58. (2分)下列条件中,不能确定两个三角形全等的条件是()A . 三条边对应相等B . 两角和其中一角的对边对应相等C . 两角和它们的夹边对应相等D . 两边和一角对应相等9. (2分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
已知爸爸比小朱的速度快100米/分,求小朱的速度。
八年级上册漳州数学压轴题 期末复习试卷测试卷附答案一、压轴题1.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的內数是______,6的內数是______;(2)若3是x 的內数,求x 的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;……①用n 表示t 的內数;②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)2.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.3.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCE S最大值. 4.如图,在平面直角坐标系中,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,过点B的另一条直线交x 轴正半轴于点C ,且OC =3.图1 图2(1)求直线BC 的解析式;(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标;(3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标;5.直角三角形ABC 中,∠ACB =90°,直线l 过点C .(1)当AC =BC 时,如图①,分别过点A 、B 作AD ⊥l 于点D ,BE ⊥l 于点E .求证:△ACD ≌△CBE .(2)当AC =8,BC =6时,如图②,点B 与点F 关于直线l 对称,连接BF ,CF ,动点M 从点A 出发,以每秒1个单位长度的速度沿AC 边向终点C 运动,同时动点N 从点F 出发,以每秒3个单位的速度沿F →C →B →C →F 向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒.①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示) ②直接写出当△MDC 与△CEN 全等时t 的值.6.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究. (1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.7.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.8.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).9.如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由10.如图,已知直线l 1:y 1=2x +1与坐标轴交于A 、C 两点,直线l 2:y 2=﹣x ﹣2与坐标轴交于B 、D 两点,两直线的交点为P 点.(1)求P 点的坐标;(2)求△APB 的面积;(3)x 轴上存在点T ,使得S △ATP =S △APB ,求出此时点T 的坐标.11.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.12.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A (3,2),B (4,0),请在x 轴上找一个C ,使得△OAB 与△OAC 是偏差三角形.你找到的C 点的坐标是______,直接写出∠OBA 和∠OCA 的数量关系______.(2)如图2,在四边形ABCD 中,AC 平分∠BAD ,∠D+∠B=180°,问△ABC 与△ACD 是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD 中,AB=DC ,AC 与BD 交于点P ,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC <90°,且点C 到直线BD 的距离是3,求△ABC 与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2,7,4;(2)83x ≥;(3)①t 的内数n =有2个,离原点最远的格点的坐标有两个,为()8,4-±.【解析】【分析】(1)根据内数的定义即可求解;(2)根据内数的定义可列不等式2331x ≤+,求解即可;(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.【详解】解:(1)22311=⨯+,所以1的内数是2;232017⨯+>,所以20的内数是7;23614⨯+>,所以6的内数是4;(2)∵3是x 的內数,∴2331x ≤+,解得83x ≥; (3)①当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =,……∴t 的内数n =;②当t 的内数为2时,最大实心正方形有1个;当t 的内数为3时,最大实心正方形有2个,当t 的内数为4时,最大实心正方形有1个,……即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;∴当t 的內数为9时,符合条件的最大实心正方形有2个,由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,∴此时最大实心正方形的边长为8,离原点最远的格点的坐标有两个,为()8,4-±.【点睛】本题考查图形类规律探究,明确题干中内数的定义是解题的关键.2.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC ,再判断出∠CAD=∠BCE ,进而判断出△ACD ≌△CBE ,即可得出结论;(2)先判断出MF=NG ,OF=MG ,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q (1,0),OQ=1,再判断出PQ=SQ ,即可判断出OH=4,SH=0Q=1,进而求出直线PR 的解析式,即可得出结论.【详解】证明:∵∠ACB =90°,AD ⊥l∴∠ACB =∠ADC∵∠ACE =∠ADC+∠CAD ,∠ACE =∠ACB+∠BCE∴∠CAD =∠BCE ,∵∠ADC =∠CEB =90°,AC =BC∴△ACD ≌△CBE ,∴AD =CE ,CD =BE ,(2)解:如图2,过点M 作MF ⊥y 轴,垂足为F ,过点N 作NG ⊥MF ,交FM 的延长线于G ,由已知得OM =ON ,且∠OMN =90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.3.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS≅△△,根据全等三角形的性质得到BD CE=;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABCADCES S BC AH∆==⋅=四边形,∴DCE ADEADCES S S∆∆=-四边形,当ADES∆最小时,DCES∆最大,∴当AD BC⊥2AD=,时最小,2122ADES AD∆==,422DCES∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.4.(1)443y x=-+;(2)612(,)55M;(3)23(0,)7G或(0,-1)G【解析】【分析】(1)求出点B,C坐标,再利用待定系数法即可解决问题;(2)结合图形,由S△AMB=S△AOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组求得交点M的坐标;(3)分两种情形:①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x 轴,过点F,Q作该直线的垂线,垂足分别为M,N.求出Q(n-2,n-1).②当n<2时,如图2-2中,同法可得Q(2-n,n+1),代入直线BC的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(-2,0),B(0,4),,又∵OC=3,∴C(3,0),设直线BC的解析式为y=kx+b,将B、C的坐标代入得:304k bb+=⎧⎨=⎩,解得:434kb⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为443y x=-+;(2)连接OM,∵S △AMB =S △AOB ,∴直线OM 平行于直线AB ,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组2443y x y x =⎧⎪⎨=-+⎪⎩, 解得:65125x y ⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M ; (3)∵FA=FB ,A (-2,0),B (0,4),∴F (-1,2),设G (0,n ),①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,易证△FMG ≌△GNQ ,∴MG=NQ=1,FM=GN=n-2,∴Q (n-2,n-1),∵点Q 在直线443y x =-+上,∴41(2)43n n -=--+, ∴23=7n , ∴23(0,)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+, ∴n=-1,∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.5.(1)证明见解析;(2)①CM =8t -,CN =63t -;②t =3.5或5或6.5.【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)①由折叠的性质可得出答案;②动点N 沿F→C 路径运动,点N 沿C→B 路径运动,点N 沿B→C 路径运动,点N 沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.【详解】(1)∵AD ⊥直线l ,BE ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE (AAS );(2)①由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ;故答案为:8-t ;6-3t ;②由折叠的性质可知,∠BCE=∠FCE ,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD ,∴当CM=CN 时,△MDC 与△CEN 全等,当点N 沿F→C 路径运动时,8-t=6-3t ,解得,t=-1(不合题意),当点N 沿C→B 路径运动时,CN=3t-6,则8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC 与△CEN 全等.【点睛】本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.6.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠,11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119;由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.7.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ; (3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC ,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.8.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠==∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECD DF CDADF EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()ADF EDC ASA ∆∆≌∴AD =DE ;(2)结论:AD =DE .证明:如下图,过点D 作DF ∥AC ,交AB于F∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF∥AC∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD=∴AC CD=∵CE平分ACD∠∴CE垂直平分AD∴AE=DE∵60ADE∠=︒∴ADE∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.9.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E的位置见解析,E(43-,0);②D点的坐标为(-1,3)或(45,125) 【解析】【分析】 (1)先利用一次函数图象上点的坐标特点求得点A 、B 的坐标;然后把B 点坐标代入y=−2x +b 求出b 的值,确定此函数解析式,然后再求C 点坐标;(2)①根据轴对称—最短路径问题画出点E 的位置,由待定系数法确定直线DB 1的解析式为y=−3x−4,易得点E 的坐标;②分两种情况:当点D 在AB 上时,当点D 在BC 上时.当点D 在AB 上时,由等腰直角三角形的性质求得D 点的坐标为(−1,3);当点D 在BC 上时,设AD 交y 轴于点F ,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =+,与y=−2x +4组成方程组,求得交点D 的坐标为(45,125). 【详解】 (1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4)把B(0,4)代入y=-2x+b ,得b =4,∴直线BC 为:y=-2x+4在y=-2x +4中,令y =0,得x=2,∴C 点的坐标为(2,0);(2)①如图∵点D 是AB 的中点∴D (-2,2)点B 关于x 轴的对称点B 1的坐标为(0,-4),设直线DB 1的解析式为y kx b =+,把D (-2,2),B 1(0,-4)代入,得224k b b -+=⎧⎨=-⎩, 解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=43 -,∴E点的坐标为(43-,0).②存在,D点的坐标为(-1,3)或(45,125).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为421 2,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为y mx n=+,将A(-4,0)与F(0,2)代入得402m nn-+=⎧⎨=⎩,解得1,22m n==,∴122y x=+,联立12224y xy x⎧=+⎪⎨⎪=-+⎩,解得:45125xy⎧=⎪⎪⎨⎪=⎪⎩,∴D的坐标为(45,125).综上所述:D点的坐标为(-1,3)或(45,125)【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.10.(1)P(﹣1,﹣1);(2)32;(3)T(1,0)或(﹣2,0).【解析】【分析】(1)解析式联立构成方程组,该方程组的解就是交点坐标;(2)利用三角形的面积公式解答;(3)求得C的坐标,因为S△ATP=S△APB,S△ATP=S△ATC+S△PTC=|x+12|,所以|x+12|=32,解得即可.【详解】解:(1)由212y xy x=+⎧⎨=--⎩,解得11xy=-⎧⎨=-⎩,所以P(﹣1,﹣1);(2)令x=0,得y1=1,y2=﹣2∴A(0,1),B(0,﹣2),则S△APB=12×(1+2)×1=32;(3)在直线l1:y1=2x+1中,令y=0,解得x=﹣12,∴C(﹣12,0),设T(x,0),∴CT=|x+12 |,∵S△ATP=S△APB,S△ATP=S△ATC+S△PTC=12•|x+12|•(1+1)=|x+12|,∴|x+12|=32,解得x=1或﹣2,∴T(1,0)或(﹣2,0).【点睛】本题考查一次函数与二元一次方程组,解题的关键是准确将条件转化为二元一次方程组,并求出各点的坐标.11.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADC AFH CADAF AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AFH CAD AAS ∴∆≅∆,(2)由(1)得AFH CAD ∆≅∆,FH AD ∴=,作FK AG ⊥,交AG 延长线于点K ,如图;同理得到AEK ABD ∆≅∆,EK AD ∴=,FH EK ∴=,在EKG ∆和FHG ∆中,90EKG FHG EGK FGHEK FH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()EKG FHG AAS ∴∆≅∆,EG FG ∴=.即点G 是EF 的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K 字形全等进行证明是解本题的关键.12.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC 与△ACD 是偏差三角形,理由见解析;(3)272【解析】【分析】(1)根据偏差三角形的定义,即可得到C 的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;(2)在AD 上取一点H ,使得AH=AB ,易证△CAH ≌△CAB ,进而可得∠D=∠CHD ,根据偏差三角形的定义,即可得到结论;(3)延长CA 至点E ,使AE=BD ,连接BE ,由SAS 可证∆BDC ≅∆EAB ,得EA=BD ,点B 到直线EA 的距离是3,根据三角形的面积公式,即可求解.【详解】(1)∵当AC=AB 时,△OAB 与△OAC 是偏差三角形,A (3,2),B (4,0),∴点C 的坐标为(2,0),如图1,∵AC=AB ,∴∠ACB=∠ABC ,∵∠OCA+∠ACB=180°,∴∠OBA+∠OCA=180°,故答案为:(2,0),∠OBA+∠OCA=180°;(2)△ABC 与△ACD 是偏差三角形,理由如下:如图2中,在AD 上取一点H ,使得AH=AB .∵AC 平分∠BAD ,∴∠CAH=∠CAB ,又∵ AC=AC ,∴△CAH ≌△CAB (SAS ),∴CH=CB ,∠B=∠AHC ,∵∠B+∠D=180°,∠AHC+∠CHD=180°,∴∠D=∠CHD ,∴CH=CD ,∴CB=CD ,∵△ACD 和△ABC 中,AC=AC ,∠CAD=∠CAB ,BC=CD ,△ADC 与△ABC 不全等, ∴△ABC 与△ACD 是偏差三角形;(3)如图3中,延长CA至点E,使AE=BD,连接BE,∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,∴∠BDC=∠BAE,又∵AB=CD,∴∆BDC≅∆EAB(SAS),∴EA=BD,∵点C到直线BD的距离是3,∴点B到直线EA的距离是3,∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=12∙(AC+EA)×3 =12∙(AC+BD)×3 =12×9×3=272.【点睛】本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键.。
福建初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.27的立方根是()A.3;B.-3;C.±3 ;D.±9.2.计算的结果是()A.;B.;C.;D..3.在△ABC中,已知AB=3,AC=4,BC=5,则该三角形为().A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形.4.把多项式分解因式,下列结果正确的是()A.;B.;C.;D..5.已知□ABCD的周长为32,AB=4,则BC的长为()A.4 ;B.12 ;C.24 ;D.28.6.下面的图形中,既是轴对称图形又是中心对称图形的是()7.如图,方格图中小正方形的边长为1.将方格图中阴影部分图形剪下来,再把剪下的阴影部分重新剪拼成一个正方形(不重叠无缝隙),那么所拼成的这个正方形的边长等于().A.;B.2;C.;D..二、填空题1.9的平方根是.2.计算:= .3.分解因式:= .4.在□ABCD中,若∠A=60°,则∠C= °.5.比较大小:4 (填入“>”或“<”号).6.已知:△ABC≌△A′B′C′,∠A=50°,∠B=70°,则∠C′= °.7.若,,则.8.边长为13的菱形,一条对角线长是10,则另一条对角线的长是.9.如下图,△ADC是等边三角形,以点A为中心,把△ABD顺时针旋转60°得到△ACE.连结BE,则△ABE是什么特殊三角形 .10.在△ABC纸片中,已知AB=AC,按图中所示方法可折成一个四边形,其中,点A与点B重合,点C与点D重合.则原△ABC中的∠B= °.三、解答题1.计算:2.计算:3.因式分解:4.因式分解:5.先化简,再求值:,其中.6.如图,在8×8的正方形网格中,每个小正方形的边长均为1.(1)在网格中画出△ABC向下平移3个单位得到的△A′B′C′;(2)在网格中画出△ABC绕点B顺时针方向旋转90°得到的△A″B″C″.(不写作法,保留作图痕迹)7.已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.8.如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF,(1)求DB的长;(2)求此时梯形CAEF的面积.9.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F.(1)求DC的长和旋转的角度;(2)求图中阴影部分的面积.10.如图,长为2,宽为的矩形纸片(),剪去一个边长等于矩形宽度的正方形(称为第一次操作);(1)第一次操作后剩下的矩形长为,宽为;(2)再把第一次操作后剩下的矩形剪去一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.①求第二次操作后剩下的矩形的面积;②若在第3次操作后,剩下的图形恰好是正方形,求的值.11.如图,矩形ABCD中,AB=8,AD=10.(1)求矩形ABCD的周长;(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.①求DE的长;②点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处, 求线段CT长度的最大值与最小值之和。
2015-2016学年福建省漳州市龙海市八年级(下)期中数学试卷一、选择题(共12小题,每小题2分,满分24分)1.下列各式中是分式的是()A.B.C.D.2.在平面直角坐标系中,点A(3,﹣2)所在的象限是()A.一B.二C.三D.四3.生物学家发现一种病毒长约为0.000043mm,用科学记数法表示的结果是()A.0.43×10﹣4mmB.0.43×104mmC.4.3×10﹣5mmD.4.3×105mm4.在下列性质中,平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.内角和为360°5.把直线y=3x向下平移2个单位,得到的直线是()A.y=3x﹣2B.y=3(x﹣2)C.y=3x+2D.y=3(x+2)6.已知一个平行四边形两邻边的长分别为6和10,那么它的周长为()A.16B.30C.32D.607.下列图形中的图象不表示y是x的函数的是()A.B.C.D.8.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米9.化简﹣的结果是()A.a+bB.a﹣bC.a2+b2D.110.下列四个点中,在函数y=﹣图象上的点是()A.(﹣1,2)B.(﹣0.5,1)C.(﹣1,﹣2)D.(2,1)11.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°12.已知a﹣=1,则a2+的值等于()A.B.C.2D.3二、填空题(共8小题,每小题3分,满分24分,请把答案填在横线上)13.化简=.14.在平行四边形ABCD中,如果∠A=68°,那么∠B=.15.若点P(1,m﹣3)在函数y=2x+3的图象上,则m=.16.已知﹣=5﹣1,则=.17.平行四边形的两条对角线长分别是8和16,若平行四边形的一边长为x,则x的取值范围是.18.某道路需要铺设一条长1200米的管道,为了尽量减少施工对交通造成的影响,施工时,工作效率比原计划提高了25%,结果提前了6天完成任务,设原计划每天铺设管道x米,根据题意列出方程为.19.如图,在▱ABCD中,∠A的平分线交BC于E,若AB=10cm,AD=12cm,则EC=.20.如图,点A在反比例函数y=(x>0)的图象上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E.若△ABC的面积为6,则k的值为.三、解答题(共7小题,共52分)21.计算(1)(﹣2016)0﹣(﹣)2+2﹣2+(2)(+1)÷.22.如图,平行四边形ABCD中,点P是AB的中点,延长DP交CB的延长线于点E,求证:BE=AD.23.解方程:.24.关于x的一次函数y=mx﹣2n与反比例函数的图象的一个交点A(1,﹣4),求一次函数和反比例函数的解析式.25.某文化用品店用1975元购进一批学生书包,面市后发现供不应求,该店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果购进第二批用了6225元.(1)求第一批书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是118元,则全部售出后,商店共盈利多少元?26.已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点(2,1).(1)分别求出这两个函数的解析式;(2)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.27.如图,一次函数y=kx﹣3的图象与反比例函数y=(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C和点D,若点C是OA的中点,且△PBD的面积等于15.(1)点D的坐标是;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值大于反比例函数的值.2015-2016学年福建省漳州市龙海市八年级(下)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.下列各式中是分式的是()A.B.C.D.【考点】分式的定义.【分析】根据分母中含有字母的式子是分式,可得答案.【解答】解:是分式,故选:C.2.在平面直角坐标系中,点A(3,﹣2)所在的象限是()A.一B.二C.三D.四【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点A(3,﹣2)所在的象限是第四象限.故选D.3.生物学家发现一种病毒长约为0.000043mm,用科学记数法表示的结果是()A.0.43×10﹣4mmB.0.43×104mmC.4.3×10﹣5mmD.4.3×105mm【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000043mm=4.3×10﹣5mm.故选:C.4.在下列性质中,平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.内角和为360°【考点】平行四边形的性质;多边形内角与外角.【分析】由平行四边形的性质容易得出结论.【解答】解:∵平行四边形的对边相等,对角相等,内角和为360°,∴平行四边形不一定具有的性质是对角线相等;故选:C.5.把直线y=3x向下平移2个单位,得到的直线是()A.y=3x﹣2B.y=3(x﹣2)C.y=3x+2D.y=3(x+2)【考点】一次函数图象与几何变换.【分析】平移时k的值不变,只有b发生变化.【解答】解:原直线的k=3,b=0;向下平移2个单位长度得到了新直线,那么新直线的k=3,b=0﹣2=﹣2.所以新直线的解析式为y=3x﹣2.故选:A.6.已知一个平行四边形两邻边的长分别为6和10,那么它的周长为()A.16B.30C.32D.60【考点】平行四边形的性质.【分析】根据平行四边形的对边相等的性质即可求出答案.【解答】解:∵平行四边形的对边相等,∴平行四边形的周长=2(10+6)=32.故选C.7.下列图形中的图象不表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】运用函数的定义,x取一个值,y有唯一值对应,可直接得出答案.【解答】解:A、根据图象知给自变量一个值,有且只有一个函数值与其对应,故A是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B是函数,C、根据图象知给自变量一个值,有的有3个函数值与其对应,故C不是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D是函数,故选C.8.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米【考点】函数的图象;分段函数.【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断.【解答】解:由图可知,修车时间为15﹣10=5分钟,可知A错误;B、C、D三种说法都符合题意.故选A.9.化简﹣的结果是()A.a+bB.a﹣bC.a2+b2D.1【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式===a+b.故选A10.下列四个点中,在函数y=﹣图象上的点是()A.(﹣1,2)B.(﹣0.5,1)C.(﹣1,﹣2)D.(2,1)【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质对各选项进行逐一判断即可.【解答】解:A、∵(﹣1)×2=﹣2,∴此点在反比例函数的图象上,故本选项正确;B、∵(﹣0.5)×1=﹣0.5≠﹣2,∴此点不在反比例函数的图象上,故本选项错误;C、∵(﹣1)×(﹣2)=2≠﹣2,∴此点在反比例函数的图象上,故本选项错误;D、∵2×1=2≠﹣2,∴此点不在反比例函数的图象上,故本选项错误.故选:A.11.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,A、B、C正确,因为平行四边形的两组对角分别相等,所以∠2+∠4=180°不一定正确,只有当四边形是矩形时才正确.【解答】解:由▱ABCD的性质及图形可知:A、∠1和∠2是邻补角,故∠1+∠2=180°,正确;B、因为AD∥BC,所以∠2+∠3=180°,正确;C、因为AB∥CD,所以∠3+∠4=180°,正确;D、根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确;故选D.12.已知a﹣=1,则a2+的值等于()A.B.C.2D.3【考点】分式的化简求值.【分析】把等式a﹣=1两边平方,即可解决问题,注意完全平方公式的正确应用.【解答】解:∵a﹣=1,∴a2﹣2+=1,∴a2+=3,故选D.二、填空题(共8小题,每小题3分,满分24分,请把答案填在横线上)13.化简=1.【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算即可.【解答】解:原式==1,故答案为:114.在平行四边形ABCD中,如果∠A=68°,那么∠B=112°.【考点】平行四边形的性质.【分析】根据平行四边形的一组邻角互补解答即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∵∠A=68°,∴∠B=112°.故答案为:112°.15.若点P(1,m﹣3)在函数y=2x+3的图象上,则m=8.【考点】一次函数图象上点的坐标特征.【分析】直接把(1,m﹣3)代入函数y=2x+3中可得关于m的方程,再解即可.【解答】解:∵P(1,m﹣3)在函数y=2x+3的图象上,∴m﹣3=2×1+3,m=8,故答案为:8.16.已知﹣=5﹣1,则=﹣5.【考点】分式的化简求值;负整数指数幂.【分析】先根据题意用a﹣b表示出ab的值,代入代数式进行计算即可.【解答】解:∵﹣=5﹣1,∴=,∴ab=﹣5(a﹣b),∴原式==﹣5.故答案为:﹣5.17.平行四边形的两条对角线长分别是8和16,若平行四边形的一边长为x,则x的取值范围是4<x<12.【考点】平行四边形的性质.【分析】首先根据题意画出图形,然后由平行四边形的两条对角线长分别为8和16,即可得OA=4,OB=8,利用三角形的三边关系,即可求得答案.【解答】解:如图,∵平行四边形的两条对角线长分别为8和10,∴OA=4,OB=8,∴4<AB<12,即其中每一边长x的取值范围是:4<x<12.故答案为:4<x<12.18.某道路需要铺设一条长1200米的管道,为了尽量减少施工对交通造成的影响,施工时,工作效率比原计划提高了25%,结果提前了6天完成任务,设原计划每天铺设管道x米,根据题意列出方程为\frac{1200}{x}﹣\frac{1200}{(1+25%)x}=6..【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设管道x米,根据工作效率比原计划提高25%,结果提前了6天完成任务,列方程即可.【解答】解:设原计划每天铺设管道x米,由题意得,.故答案为:.19.如图,在▱ABCD中,∠A的平分线交BC于E,若AB=10cm,AD=12cm,则EC=2cm.【考点】平行四边形的性质.【分析】由在▱ABCD中,∠A的平分线交BC于E,易得△ABE是等腰三角形,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=12cm,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=10cm,∴EC=BC﹣BE=12﹣10=2(cm).故答案为:2cm.20.如图,点A在反比例函数y=(x>0)的图象上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E.若△ABC的面积为6,则k的值为12.【考点】反比例函数系数k的几何意义.【分析】设点A的坐标为(x,y),根据反比例函数y=中k的几何意义得到xy=,根据三角形的面积公式计算即可.【解答】解:设点A的坐标为(x,y),则xy=,∵CD=AD,∴△ABC的面积=×2x×y==6,解得,k=12,故答案为:12.三、解答题(共7小题,共52分)21.计算(1)(﹣2016)0﹣(﹣)2+2﹣2+(2)(+1)÷.【考点】分式的混合运算;实数的运算;零指数幂;负整数指数幂.【分析】(1)分别根据0指数幂及负整数指数幂的计算法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法即可.【解答】解:(1)原式=1﹣++3=4;(2)原式=•=•=.22.如图,平行四边形ABCD中,点P是AB的中点,延长DP交CB的延长线于点E,求证:BE=AD.【考点】平行四边形的性质.【分析】由平行四边形的性质和已知条件易证△ADP≌△BEP,进而可得BE=AD.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAP=∠EBP,∵点P是AB的中点,∴AP=BP,在△ADP和△BEP中,∴△ADP≌△BEP(AAS),∴BE=AD.23.解方程:.【考点】解分式方程.【分析】由于x2﹣4=(x+2)(x﹣2),本题的最简公分母是(x+2)(x﹣2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边同乘(x﹣2)(x+2),得:x(x+2)﹣(x2﹣4)=1,化简,得2x=﹣3,∴x=,检验:当x=时,(x﹣2)(x+2)≠0,∴x=是原方程的根.24.关于x的一次函数y=mx﹣2n与反比例函数的图象的一个交点A(1,﹣4),求一次函数和反比例函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】先把A点坐标代入反比例函数解析式求出m的值,然后把A点坐标和m的值代入一次函数确定n的值,从而得到两个函数的解析式.【解答】解:把A(1,﹣4)代入y=得2m=1×(﹣4),解得m=﹣2,所以反比例函数的解析式为y=﹣,把A(1,﹣4)和m=﹣2代入y=mx﹣2n得﹣4=﹣2﹣2n,解得n=1,所以一次函数的解析式为y=﹣2x﹣2.25.某文化用品店用1975元购进一批学生书包,面市后发现供不应求,该店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果购进第二批用了6225元.(1)求第一批书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是118元,则全部售出后,商店共盈利多少元?【考点】分式方程的应用.【分析】(1)本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:用6225元购进学生书包的数量=用1975元购进学生书包的数量×3.(2)根据盈利=总售价﹣总进价列式计算即可.【解答】解:(1)设第一批书包的单价是x元,则第二批书包的单价是(x+4)元.由题意得:=×3.解得:x=79.经检验:x=79是原方程的根.答:第一批书包的单价是79元.(2)×+×=3600(元).答:商店共盈利3600元.26.已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点(2,1).(1)分别求出这两个函数的解析式;(2)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点的坐标代入反比例函数和一次函数的一般式即可求出函数解析式.(2)首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,求出点P(﹣1,5)关于x轴的对称点P′的坐标,再代入一次函数解析式,看看是否满足解析式,满足则在一次函数y=kx+m的图象上,反之则不在.【解答】解:(1)∵点(2,1)在反比例函数y=的图象上,∴1=,解得k=2.∴y=为所求反比例函数的解析式.又∵点(2,1)在一次函数y=kx+b的图象上,∴1=2×2+b,解得b=﹣3,∴y=2x﹣3为所求的一次函数解析式.综上所述,反比例函数为y=,一次函数为y=2x﹣3;(2)点P(﹣1,5)关于x轴的对称点P′的坐标是(﹣1,﹣5),把(﹣1,﹣5)代入y=2x﹣3中,﹣5=2×(﹣1)﹣3,∴点P′在一次函数y=2x﹣3的图象上.27.如图,一次函数y=kx﹣3的图象与反比例函数y=(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C和点D,若点C是OA的中点,且△PBD的面积等于15.(1)点D的坐标是(0,﹣3);(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值大于反比例函数的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)令x=0,求出y值,即可得出结论;(2)由PA⊥x轴,PB⊥y轴可得出四边形OAPB是平行四边形,从而得出AP=OB;根据相似三角形的判定定理可得出△ACP≌△OCD,从而得出AP=OD=3,即BD=6;根据△PBD 的面积等于15结合三角形的面积公式可算出PB的长度,由此得出P点的坐标,将P点的坐标分别代入一次函数和反比例函数解析式中即可得出结论;(3)根据P点的坐标,结合两函数图象即可得出不等式的解集.【解答】解:(1)令x=0,则y=﹣3,即点D的坐标为(0,﹣3).故答案为:(0,﹣3).(2)∵PA⊥x轴,PB⊥y轴,∴PA∥y轴,PB∥x轴,∴四边形OAPB是平行四边形,∴AP=OB.∵点C是OA的中点,∴AC=OC.在△ACP和△OCD中,有,∴△ACP≌△OCD(AAS).∴AP=OD=3,∴BD=6.∵△PBD的面积等于15,∴PB=5,∴点P坐标为(5,3),∴,解得.∴一次函数解析式为y=x﹣3,反比例函数解析式为y=.(3)∵点P坐标为(5,3),∴结合函数图象可知:当x>5时,一次函数的值大于反比例函数的值.2016年7月16日。
八年级上册漳州数学期末试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.2.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF与BD的位置关系.【答案】(1)①CF⊥BD,证明见解析;②成立,理由见解析;(2)CF⊥BD,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF⊥BD.【详解】解:(1)①∵∠BAC=90°,△ADF是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF⊥BD;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF ⊥BD ;(2)如图3,过点A 作AE ⊥AC 交BC 于E ,∵∠BCA=45°,∴△ACE 是等腰直角三角形,∴AC=AE ,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD ,在△ACF 和△AED 中,∵AC=AE ,∠CAF=∠EAD ,AD=AF ,∴△ACF ≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF ⊥BD .【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.3.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t=⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键. 5.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF',连接AF、BF',探究AF、BF'与AB有何数量关系?并证明.②如图(d)所示,当动点D在等边ABC边BA的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .(2)通过证明BCD ACF △≌△,即可证明AF BD =.(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD = 证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.6.已知点P 是线段MN 上一动点,分别以PM ,PN 为一边,在MN 的同侧作△APM ,△BPN ,并连接BM ,AN .(Ⅰ)如图1,当PM =AP ,PN =BP 且∠APM =∠BPN =90°时,试猜想BM ,AN 之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM ,△BPN 都是等边三角形时,(Ⅰ)中BM ,AN 之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB 得到图3,当PN =2PM 时,求∠PAB 度数.【答案】(1)BM =AN ,BM ⊥AN .(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP ≌△ANP ,得出MB =AN ,∠PAN =∠PMB ,再延长MB 交AN 于点C ,得出MCN 90∠=︒,因此有BM ⊥AN ;(2)根据所给条件可证△MPB ≌△APN ,得出结论BM =AN ;(3) 取PB 的中点C ,连接AC ,AB ,通过已知条件推出△APC 为等边三角形,∠PAC =∠PCA =60°,再由CA =CB ,进一步得出∠PAB 的度数.【详解】解:(Ⅰ)结论:BM =AN ,BM ⊥AN .理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.7.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.8.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)【答案】(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC , 在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩,∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°,∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.9.已知:在ABC ∆中,,90AB AC BAC =∠=︒,PQ 为过点A 的一条直线,分别过B C 、两点作,BM PQ CN PQ ⊥⊥,垂足分别为M N 、.(1)如图①所示,当PQ 与BC 边有交点时,求证:MN CN BM =-;(2)如图②所示,当PQ 与BC 边不相交时,请写出线段BM CN 、和MN 之间的数量关系,并说明理由.【答案】(1)见解析;(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-),理由见解析【解析】【分析】(1)根据已知条件先证AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可证得MN CN BM =-;(2)由(1)知AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可确定MN BM CN =+.【详解】证明:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠)∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∵MN AM AN =-,∴MN CN BM =-.(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-).理由:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM∠+∠=∠+∠),∴BAM ACN∠=∠,在AMB∆和CNA∆中,∵AMB CNABAM ACNAB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS≌∆∆,∴,AM CN BM AN==,∴MN AN AM BM CN=+=+.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到BM CN、和MN之间的关系式.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.二、八年级数学轴对称解答题压轴题(难)11.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.12.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=12∠ABE.(1)求证:BF=AC;(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.【答案】(1)答案见详解;(2)45°,(3)4.【解析】【分析】(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.【详解】(1)设∠CAD=x,∵∠CAD=12∠ABE,∠BAC=90º,∴∠ABE=2x,∠BAF=90°-x,∵∠ABE+∠BAF+∠AFB=180°,∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,∴BF=AB;∵AB =AC ,∴BF =AC ;(2)由(1)可知:∠CAD=x ,∠ABE=2x ,∠BAC =90º,∴∠AEB=90°-2x ,∵EF =EC ,∴∠EFC=∠ECF ,∵∠EFC+∠ECF=∠AEB=90°-2x ,∴∠EFC=(90°-2x )÷2=45°-x ,∵BF =AB ,∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,∴∠EFD=∠BFA=90°-x ,∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;(3)由(2)可知:EF =EC ,∴设EF =EC =x ,则AC=AE+EC=3+x ,∴AB=BF=AC=3+x ,∴BE=BF+EF=3+x+x=3+2x ,∵∠BAC =90º,∴222AB AE BE +=,∴222(3)3(32)x x ++=+,解得:11x =,23x =-(不合题意,舍去)∴BF=3+x=3+1=4.【点睛】本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.13.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时,∵2x+x=27°+27°,∴x=18°;②当AD=DE 时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C 为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.15.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC ,∴∠ABC=∠C ,∵BD 平分∠ABC ,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.16.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C 为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒。
2015-2016学年福建省漳州市龙海市八年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分)1.(2分)下列实数中属于无理数的是()A.πB.C.3.14D.2.(2分)记录一天中气温的变化情况,选用比较合适的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.以上三种都可以3.(2分)的值等于()A.﹣3B.C.3D.±34.(2分)下列计算结果正确的是()A.a3•a2=a6B.(ab)3=a3b3C.(a5)3=a8D.a6÷a2=a3 5.(2分)计算频率时不可能得到的数值是()A.0B.0.5C.1D.1.26.(2分)设三角形的三边长分别等于下列各组数,能构成直角三角形的是()A.1,2,3B.4,5,6C.6,8,9D.7,24,25 7.(2分)如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80°B.60°C.40°D.20°8.(2分)下列命题中,属于假命题的是()A.等角的余角相等B.相等的角是对顶角C.同位角相等,两直线平行D.有一个角是60°的等腰三角形是等边三角形9.(2分)若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于()A.2B.1C.0D.﹣110.(2分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17 11.(2分)如图,∠1=∠2,若要使△ABD≌△ACD,则要添加的一个条件不能是()A.AB=AC B.BD=CD C.∠BAD=∠CAD D.∠B=∠C 12.(2分)分解因式2x3﹣18x结果正确的是()A.2x(x+3)2B.2x(x﹣3)2C.2x(x2﹣9)D.2x(x+3)(x﹣3)二、填空题(共8小题,每小题3分,共24分)13.(3分)化简:═.14.(3分)命题“直角都相等”的逆命题是,它是命题.(填“真”或“假”).15.(3分)因式分解:3ab+6a=.16.(3分)若△OAB≌△OCD,且∠B=58°.则∠D=°.17.(3分)计算:(x2﹣4xy)÷x=.18.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.19.(3分)在投掷一枚硬币的试验中,共投掷了100次,其中“正面朝上”的频数为55,则“反面朝上”的频率为.20.(3分)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=13厘米,BC=12厘米,则点D到直线AB的距离是厘米.三、解答题.(共7小题,满分52分)21.(8分)计算:(1)+﹣(2)(﹣2ab)2•(﹣3ab2)22.(8分)因式分解:(1)25x2﹣16y2(2)2a2+4ab+2b2.23.(6分)先化简,再求值:(x+2)2﹣(x+2)(x﹣2),其中x=﹣2.24.(6分)某校为进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)把图1补充完整;(2)在这次问卷调查中,喜欢“科普书籍”出现的频率为;(3)在扇形统计图中,喜欢“文艺书籍”的所占的圆心角度数.25.(7分)如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE⊥AD 于点E,CF⊥AD交AD的延长线于点F,求证:DE=DF.26.(8分)如图,在△ABC中,∠B=90°,AB=BC=4,点D在BC上,将△ABC沿AD折叠,使点B落在AC边上的点E处.(1)判断△CDE是什么特殊三角形,并说明理由;(2)求线段BD的长.27.(9分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠ADB=115°时,∠BAD=°,∠DEC=°;(2)线段DC的值为多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠ADB的度数;若不可以,请说明理由.2015-2016学年福建省漳州市龙海市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.(2分)下列实数中属于无理数的是()A.πB.C.3.14D.【解答】解:A、π是无理数,故A正确;B、是有理数,故B错误;C、3.14是有理数,故C错误;D、是有理数,故D错误;故选:A.2.(2分)记录一天中气温的变化情况,选用比较合适的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.以上三种都可以【解答】解:记录一天中气温的变化情况,选用比较合适的统计图是折线统计图,故选:B.3.(2分)的值等于()A.﹣3B.C.3D.±3【解答】解:==3,故选:C.4.(2分)下列计算结果正确的是()A.a3•a2=a6B.(ab)3=a3b3C.(a5)3=a8D.a6÷a2=a3【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、积的乘方等于乘方的积,故B正确;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D错误;故选:B.5.(2分)计算频率时不可能得到的数值是()A.0B.0.5C.1D.1.2【解答】解:∵频率是指每个对象出现的次数与总次数的比值,∴频率≤1.故选:D.6.(2分)设三角形的三边长分别等于下列各组数,能构成直角三角形的是()A.1,2,3B.4,5,6C.6,8,9D.7,24,25【解答】解:A、12+22≠32,不是直角三角形,故此选项错误;B、42+52≠62,不是直角三角形,故此选项错误;C、62+82≠92,不是直角三角形,故此选项错误;D、72+242=252,是直角三角形,故此选项正确.故选:D.7.(2分)如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80°B.60°C.40°D.20°【解答】解:∵△ABC≌△DCB,∴∠ACB=∠DBC,∠ABC=∠DCB,△ABC中,∠A=80°,∠ACB=40°,∴∠ABC=180°﹣80°﹣40°=60°,∴∠BCD=∠ABC=60°,故选:B.8.(2分)下列命题中,属于假命题的是()A.等角的余角相等B.相等的角是对顶角C.同位角相等,两直线平行D.有一个角是60°的等腰三角形是等边三角形【解答】解:A、等角的余角相等,正确,为真命题;B、相等的角不一定是对顶角,错误,为假命题;C、同位角相等,两直线平行,正确,为真命题;D、有一个角是60°的等腰三角形是等边三角形,正确,为真命题,故选:B.9.(2分)若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于()A.2B.1C.0D.﹣1【解答】解:∵x+y=3,xy=1,∴(2﹣x)(2﹣y)=4﹣2y﹣2x+xy=4﹣2(x+y)+xy=4﹣2×3+1=﹣1,故选:D.10.(2分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.11.(2分)如图,∠1=∠2,若要使△ABD≌△ACD,则要添加的一个条件不能是()A.AB=AC B.BD=CD C.∠BAD=∠CAD D.∠B=∠C【解答】解:A、添加AB=AC,不能判定△ABD≌△ACD,故此选项符合题意;B、添加BD=CD,可利用SAS判定△ABD≌△ACD,故此选项不符合题意;C、添加∠BAD=∠CAD,可利用ASA判定△ABD≌△ACD,故此选项不符合题意;D、添加∠B=∠C,可利用AAS判定△ABD≌△ACD,故此选项不符合题意;故选:A.12.(2分)分解因式2x3﹣18x结果正确的是()A.2x(x+3)2B.2x(x﹣3)2C.2x(x2﹣9)D.2x(x+3)(x﹣3)【解答】解:原式=2x(x2﹣9)=2x(x+3)(x﹣3),故选:D.二、填空题(共8小题,每小题3分,共24分)13.(3分)化简:═2.【解答】解:∵23=8∴=2.故填2.14.(3分)命题“直角都相等”的逆命题是相等的角都是直角,它是假命题.(填“真”或“假”).【解答】解:命题“直角都相等”的逆命题是:相等的角都是直角,∵相等的角不一定都是直角,∴命题是假命题,故答案为:相等的角都是直角,假.15.(3分)因式分解:3ab+6a=3a(b+2).【解答】解:3ab+6a=3a(b+2).故答案为:3a(b+2).16.(3分)若△OAB≌△OCD,且∠B=58°.则∠D=58°.【解答】解:∵△OAB≌△OCD,∴∠D=∠B=58°,故答案为:58.17.(3分)计算:(x2﹣4xy)÷x=x﹣4y.【解答】解:(x2﹣4xy)÷x=x﹣4y,故答案为:x﹣4y.18.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.19.(3分)在投掷一枚硬币的试验中,共投掷了100次,其中“正面朝上”的频数为55,则“反面朝上”的频率为0.45.【解答】解:由题意得:“反面朝上”的频数为45,则频率为:45÷100=0.45.故答案为:0.45.20.(3分)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=13厘米,BC=12厘米,则点D到直线AB的距离是5厘米.【解答】解:∵BD=13厘米,BC=12厘米,∠C=90°,∴DC=5厘米,由角平分线定理得点D到直线AB的距离等于DC的长度,故点D到直线AB的距离是5厘米;故答案为:5.三、解答题.(共7小题,满分52分)21.(8分)计算:(1)+﹣(2)(﹣2ab)2•(﹣3ab2)【解答】解:(1)原式=﹣2+4﹣=1;(2)原式=4a2b2•(﹣3ab2)=﹣12a3b4.22.(8分)因式分解:(1)25x2﹣16y2(2)2a2+4ab+2b2.【解答】解:(1)原式=(5x+4y)(5x﹣4y);(2)原式=2(a2+2ab+b2)=2(a+b)2.23.(6分)先化简,再求值:(x+2)2﹣(x+2)(x﹣2),其中x=﹣2.【解答】解:(x+2)2﹣(x+2)(x﹣2)=x2+4x+4﹣x2+4=4x+8,当x=﹣2时,原式=4×(﹣2)+8=0.24.(6分)某校为进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)把图1补充完整;(2)在这次问卷调查中,喜欢“科普书籍”出现的频率为0.25;(3)在扇形统计图中,喜欢“文艺书籍”的所占的圆心角度数144°.【解答】解:(1)调查的总人数是:80÷40%=200(人),则喜欢科普类书籍的人数是:200﹣80﹣30﹣40=50(人).;(2)喜欢“科普书籍”出现的频率为=0.25;(3)喜欢“文艺书籍”的所占的圆心角度数是:360×40%=144°.25.(7分)如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE⊥AD 于点E,CF⊥AD交AD的延长线于点F,求证:DE=DF.【解答】证明:∵AD是△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF26.(8分)如图,在△ABC中,∠B=90°,AB=BC=4,点D在BC上,将△ABC沿AD折叠,使点B落在AC边上的点E处.(1)判断△CDE是什么特殊三角形,并说明理由;(2)求线段BD的长.【解答】解:(1)∵AB=BC,∠B=90°,∴∠C=45°,由折叠可知∠CED=90°,∴∠CED=∠C=45°,∴△CDE是等腰直角三角形.(2)设BD=x,则DE=CD=x,由勾股定理得到CD=x,∵BC=4,∴x+x=4,∴x==4﹣4,即BD=4﹣4.27.(9分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠ADB=115°时,∠BAD=25°,∠DEC=115°;(2)线段DC的值为多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠ADB的度数;若不可以,请说明理由.【解答】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣115°﹣40°=25°,∵AB=AC,∴∠C=∠B=40°,∵∠EDC=180°﹣∠ADB﹣∠ADE=25°,∴∠DEC=180°﹣∠EDC﹣∠C=115°,故答案为:25°,115°;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.。