【历届诺贝尔奖得主(六)】1973年物理学奖得主
- 格式:docx
- 大小:18.09 KB
- 文档页数:3
诺贝尔奖的评选诺贝尔(Noble,Alfred Bernhard),瑞典化学家。
1833年10月21日生于斯德哥尔摩,1896年12月10日卒于意大利圣雷莫。
诺贝尔1842年随家去俄国圣彼得堡居住。
1850年去巴黎学习化学一年,后又在美国J.埃里克森手下工作过4年。
回圣彼得堡后,在他父亲的工厂里工作。
1859年诺贝尔开始研究硝化甘油,但在1864年工厂爆炸。
为了防止以后再发生意外,诺贝尔将硝化甘油吸收在惰性物质中,使用比较安全。
诺贝尔称它为达纳炸药,并于1867年获得专利。
1875年诺贝尔将火棉(纤维素六硝酸酯)与硝化甘油混合起来,得到胶状物质,称为炸胶,比达纳炸药有更强的爆炸力,于1876年获得专利,1887年诺贝尔发展了无烟炸药。
他还有许多其他的发明,在橡胶合成、皮革及人造丝的制造商都获有专利。
诺贝尔经营油田和炸药生产,积累了巨大财富。
他逝世时将遗产大部分作为基金,每年以其利息(约20万美元)奖给前一年在物理学、化学、生理学或医学、文学及和平方面对人类作出巨大贡献的人士的奖金,即诺贝尔奖,于1901年第一次颁发。
1968年起,增设诺贝尔经济学奖金,由瑞典国家银行提供资金。
诺贝尔奖是根据A-B-诺贝尔遗嘱所设基金提供的奖项(1969年起由5个奖项增加到6个),每年由4个机构(瑞典3个,挪威1个)颁发。
1901年12月10日即诺贝尔逝世5周年时首次颁发。
诺贝尔在其遗瞩中规定,该奖应每年授予在物理学、化学、生理学或医学、文学与和平领域内“在前一年中对人类作出最大贡献的人”,瑞典银行在1968年增设一项经济科学奖,1969年第一次颁奖。
诺贝尔在其遗嘱中所提及的颁奖机构是:位于斯德哥尔摩的瑞典皇家科学院(物理学奖和化学奖)、皇家卡罗林外科医学研究院(生理学或医学奖)和瑞典文学院(文学奖),以及位于奥斯陆的、由挪威议会任命的诺贝尔奖评定委员会(和平奖),瑞典科学院还监督经济学的颁奖事宜。
为实行遗嘱的条款而设立的诺贝尔基金会,是基金的合法所有人和实际的管理者,并为颁奖机构的联合管理机构,但不参与奖的审议或决定,其审议完全由上述4个机构负责。
⽇本历年诺贝尔奖、菲尔兹获得者名单第⼀位:汤川秀树,1949年获诺贝尔物理学奖。
他发现了在阳质⼦与中性⼦之间作为媒介作⽤的核⼒,预⾔了介⼦的存在。
第⼆位:朝永振⼀郎,1965年获诺贝尔物理学奖。
他以“超多时间理论“和“鱼贯⽽⼊理论“⽽闻名,在量⼦电磁⼒学领域有重⼤贡献。
第三位:川端康成,1968年获诺贝尔⽂学奖。
他的作品《雪国》被称为⽇本现代抒情⽂学的经典。
第四位:江崎玲於奈,1973年获诺贝尔物理学奖。
他研究关于半导体、超导体隧道式效果,发明了隧道⼆极管。
第五位:佐藤荣作,1974年获诺贝尔和平奖。
他作为⽇本⾸相,坚决反对核武器的存在。
第六位:福井谦⼀,1981年获诺贝尔化学奖。
他开拓了“新领域的电⼦轨道理论“,对有关化学反应过程理论的发展有重⼤贡献。
第七位:利根川进,1988年获诺贝尔医学、⽣理学奖。
他提出了“多种抗体培养的遗传原理“,这项成果受到⾼度评价。
第⼋位:⼤江健三郎,1994年获诺贝尔⽂学奖。
第九位:⽩川英树,2000年获诺贝尔化学奖。
其研制的聚⼄炔类导电聚合物做出了开创性的贡献。
第⼗位:野依良治,2001年获诺贝尔化学奖。
其成就为在不对称合成⽅⾯所取得的成绩。
第⼗⼀位:⼩柴昌俊,2002年获诺贝尔物理学奖。
他的“神冈中微⼦观测”获得⾼度评价。
第⼗⼆位:⽥中耕⼀,2002年获诺贝尔化学奖。
得奖成果是“蛋⽩质解析技术开发”,他还是诺贝尔化学奖创设以来最年轻得主。
⾮常巧合,他们获奖是从1949年开始的,这算不算帝国主义亡中国之⼼不死的⼀种表现呢?呵呵从2000年起,⽇本连续四⼈获得诺贝尔化学、物理奖。
这让⽇本的官员欢欣雀跃,雄⼼勃勃地制定什么今后50年要拿30块诺贝尔奖的计划。
还采取了⼀些⼩动作(请瑞典⼈免费旅游)。
但这却遭到⽇本国内与国外舆论的谴责跟讽刺,要求愚蠢地官员们闭嘴,因为诺贝尔奖从来不是计划出来的。
⽇本数学⽅⾯菲尔兹奖获得者名单1.⼩平邦彦(Kodaira Kunihiko)2.⼴中平佑(Hironaka Heisu-ke)3.森重⽂(Shigffumi Mori)今年(2006年)⼜有⼀位⽇本数学家获得了⾸届⾼斯奖。
历届诺贝尔物理学奖
诺贝尔物理学奖是由瑞典诺贝尔奖委员会每年颁发的最高物理学奖,
以纪念诺贝尔的科学发明而得名。
该奖是为了表彰在物理学、物理学相关
学科及其它交叉学科领域取得伟大成就的个人。
从1901年首次颁发至今,经历了几十年,共有116位先后获得诺贝尔物理学奖。
其中,马尔科夫、
爱因斯坦、福布斯、卢瑟福、阿尔伯特尔、贝尔、斯文格勒等历届获奖者
的成就,使得诺贝尔物理学奖的声望高涨。
今年的诺贝尔物理学奖由瑞典皇家科学院授予美国科学家安德鲁·斯
普拉特、特里·特里森和安东尼·穆达拉斯,以表彰他们在准分子显微镜
上的杰出贡献。
自1901年以来,诺贝尔物理学奖一直都是各类科学成就最高荣誉,
受到全世界人民的尊敬。
诺贝尔奖委员会以及获奖者都在为科学空间里进
行深刻的研究和应用,挑战着一部分被认为难以解决的物理学问题,改善
着人类的生活,开拓着新的物理学领域,这是一条不断推进的路径,也是
一种回馈。
历年诺贝尔物理学奖得主(1901-2016) 年份 获奖者 国籍 获奖原因 1901年 威廉·康拉德·伦琴 德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹 荷兰“关于磁场对辐射现象影响的研究”(即塞曼效应) 彼得·塞曼 荷兰1903年 亨利·贝克勒 法国“发现天然放射性” 皮埃尔·居里 法国“他们对亨利·贝克勒教授所发现的放射性现象的共同研究” 玛丽·居里 法国1904年 约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年 菲利普·爱德华·安东·冯·莱纳德德国“关于阴极射线的研究” 1906年 约瑟夫·汤姆孙 英国"对气体导电的理论和实验研究" 1907年 阿尔伯特·迈克耳孙 美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年 加布里埃尔·李普曼 法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年 古列尔莫·马可尼 意大利“他们对无线电报的发展的贡献” 卡尔·费迪南德·布劳恩德国1910年 范德华 荷兰“关于气体和液体的状态方程的研究” 1911年 威廉·维恩 德国“发现那些影响热辐射的定律” 1912年 尼尔斯·古斯塔夫·达伦 瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀”1913年 海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年 马克斯·冯·劳厄 德国“发现晶体中的X 射线衍射现象” 1915年 威廉·亨利·布拉格 英国“用X 射线对晶体结构的研究” 威廉·劳伦斯·布拉格英国1917年 查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年 马克斯·普朗克 德国“因他的对量子的发现而推动物理学的发展” 1919年 约翰尼斯·斯塔克 德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年 夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年 阿尔伯特·爱因斯坦 德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年 尼尔斯·玻尔 丹麦“他对原子结构以及由原子发射出的辐射的研究” 1923年 罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年 卡尔·曼内·乔奇·塞格巴恩瑞典“他在X 射线光谱学领域的发现和研究”[3] 1925年詹姆斯·弗兰克 德国“发现那些支配原子和电子碰撞的定律” 古斯塔夫·赫兹 德国1926年 让·佩兰 法国“研究物质不连续结构和发现沉积平衡” 1927年 阿瑟·康普顿 美国 “发现以他命名的效应”查尔斯·威耳逊英国“通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法”1928年欧文·理查森英国“他对热离子现象的研究,特别是发现以他命名的定律”1929年路易·德布罗意公爵法国“发现电子的波动性”1930年钱德拉塞卡拉·文卡塔·拉曼印度“他对光散射的研究,以及发现以他命名的效应”1932年维尔纳·海森堡德国“创立量子力学,以及由此导致的氢的同素异形体的发现”1933年埃尔温·薛定谔奥地利“发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程)保罗·狄拉克英国1935年詹姆斯·查德威克英国“发现中子”1936年维克托·弗朗西斯·赫斯奥地利“发现宇宙辐射”卡尔·戴维·安德森美国“发现正电子”1937年克林顿·约瑟夫·戴维孙美国“他们有关电子被晶体衍射的现象的实验发现”乔治·汤姆孙英国1938年恩里科·费米意大利“证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现”1939年欧内斯特·劳伦斯美国“对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果”1943年奥托·施特恩美国“他对分子束方法的发展以及有关质子磁矩的研究发现”1944年伊西多·艾萨克·拉比美国“他用共振方法记录原子核的磁属性”1945年 沃尔夫冈·泡利 奥地利 “发现不相容原理,也称泡利原理”1946年 珀西·威廉斯·布里奇曼美国“发明获得超高压的装置,并在高压物理学领域作出发现” 1947年 爱德华·维克托·阿普尔顿英国“对高层大气的物理学的研究,特别是对所谓阿普顿层的发现” 1948年 帕特里克·梅纳德·斯图尔特·布莱克特英国“改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现” 1949年 汤川秀树 日本“他以核作用力的理论为基础预言了介子的存在” 1950年 塞西尔·弗兰克·鲍威尔英国“发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现” 1951年 约翰·道格拉斯·考克饶夫英国“他们在用人工加速原子产生原子核嬗变方面的开创性工作” 欧内斯特·沃吞 爱尔兰1952年费利克斯·布洛赫 美国“发展出用于核磁精密测量的新方法,并凭此所得的研究成果” 爱德华·珀塞尔 美国1953年 弗里茨·塞尔尼克 荷兰“他对相衬法的证实,特别是发明相衬显微镜” 1954年马克斯·玻恩 英国“在量子力学领域的基础研究,特别是他对波函数的统计解释” 瓦尔特·博特 德国“符合法,以及以此方法所获得的研究成果” 1955年威利斯·尤金·兰姆 美国“他的有关氢光谱的精细结构的研究成果” 波利卡普·库施 美国“精确地测定出电子磁矩” 1956年 威廉·布拉德福德·肖克利美国“他们对半导体的研究和发现晶体管效应” 约翰·巴丁 美国沃尔特·豪泽·布喇顿美国1957年杨振宁中国“他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现”李政道中国1958年帕维尔·阿列克谢耶维奇·切连科夫苏联“发现并解释切连科夫效应”伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔姆苏联1959年埃米利奥·吉诺·塞格雷美国“发现反质子”欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国“发明气泡室”1961年罗伯特·霍夫施塔特美国“关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现”鲁道夫·路德维希·穆斯堡尔德国“他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现”1962年列夫·达维多维奇·朗道苏联“关于凝聚态物质的开创性理论,特别是液氦”1963年耶诺·帕尔·维格纳美国“他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用”玛丽亚·格佩特-梅耶美国“发现原子核的壳层结构”J·汉斯·D·延森德国1964年查尔斯·汤斯美国“在量子电子学领域的基础研究成果,该成果导致尼古拉·根纳季耶维奇·巴索夫苏联了基于激微波-激光原理建造的振荡器和放大器" 亚历山大·普罗霍罗夫苏联1965年朝永振一郎 日本“他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响” 朱利安·施温格 美国理查德·菲利普·费曼美国1966年 阿尔弗雷德·卡斯特勒法国“发现和发展了研究原子中赫兹共振的光学方法” 1967年 汉斯·阿尔布雷希特·贝特美国“他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现” 1968年 路易斯·沃尔特·阿尔瓦雷茨美国“他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态” 1969年 默里·盖尔曼 美国“对基本粒子的分类及其相互作用的研究发现” 1970年汉尼斯·奥洛夫·哥斯达·阿尔文瑞典“磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用” 路易·奈耳 法国“关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用” 1971年 伽博·丹尼斯 英国“发明并发展全息照相法” 1972年约翰·巴丁 美国“他们联合创立了超导微观理论,即常说的BCS 理论” 利昂·库珀 美国约翰·罗伯特·施里弗美国1973年 江崎玲于奈 日本 “发现半导体和超导体的隧道效应”伊瓦尔·贾埃弗挪威布赖恩·戴维·约瑟夫森英国“他理论上预测出通过隧道势垒的超电流的性质,特别是那些通常被称为约瑟夫森效应的现象”1974年马丁·赖尔英国“他们在射电天体物理学的开创性研究:赖尔的发明和观测,特别是合成孔径技术;休伊什在发现脉冲星方面的关键性角色”安东尼·休伊什英国1975年奥格·尼尔斯·玻尔丹麦“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”本·罗伊·莫特森丹麦利奥·詹姆斯·雷恩沃特美国1976年伯顿·里克特美国“他们在发现新的重基本粒子方面的开创性工作”丁肇中美国1977年菲利普·沃伦·安德森美国“对磁性和无序体系电子结构的基础性理论研究”内维尔·莫特英国约翰·凡扶累克美国1978年彼得·列昂尼多维奇·卡皮查苏联“低温物理领域的基本发明和发现”阿尔诺·艾伦·彭齐亚斯美国“发现宇宙微波背景辐射”罗伯特·伍德罗·威尔逊美国1979年谢尔登·李·格拉肖美国“关于基本粒子间弱相互作用和电磁相互作用的统一理论的,包括对弱中性流的预言在内的贡献”阿卜杜勒·萨拉姆巴基斯坦史蒂文·温伯格美国1980年詹姆斯·沃森·克罗宁美国“发现中性K介子衰变时存在对称破坏”瓦尔·洛格斯登·菲奇美国1981年凯·西格巴恩瑞典“对开发高分辨率电子光谱仪的贡献”尼古拉斯·布隆伯根美国“对开发激光光谱仪的贡献”阿瑟·肖洛美国1982年肯尼斯·威尔逊美国“对与相转变有关的临界现象理论的贡献”1983年苏布拉马尼扬·钱德拉塞卡美国“有关恒星结构及其演化的重要物理过程的理论研究”威廉·福勒美国“对宇宙中形成化学元素的核反应的理论和实验研究”1984年卡洛·鲁比亚意大利“对导致发现弱相互作用传递者,场粒子W和Z的大型项目的决定性贡献”西蒙·范德梅尔荷兰1985年克劳斯·冯·克利青德国“发现量子霍尔效应”1986年恩斯特·鲁斯卡德国“电子光学的基础工作和设计了第一台电子显微镜”格尔德·宾宁德国“研制扫描隧道显微镜”海因里希·罗雷尔瑞士1987年约翰内斯·贝德诺尔茨德国“在发现陶瓷材料的超导性方面的突破”卡尔·米勒瑞士1988年利昂·莱德曼美国“中微子束方式,以及通过发现梅尔文·施瓦茨美国子中微子证明了轻子的对偶结构”1989年诺曼·拉姆齐美国“发明分离振荡场方法及其在氢激微波和其他原子钟中的应用”汉斯·德默尔特美国“发展离子陷阱技术”沃尔夫冈·保罗德国1990年杰尔姆·弗里德曼美国“他们有关电子在质子和被绑定的中子上的深度非弹性散射的开创性研究,这些研究对粒子物理学的夸克模型的发展有必不可少的重要性”亨利·肯德尔美国理查·泰勒加拿大1991年皮埃尔-吉勒·德热纳法国“发现研究简单系统中有序现象的方法可以被推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中”1992年乔治·夏帕克法国“发明并发展了粒子探测器,特别是多丝正比室”1993年拉塞尔·赫尔斯美国“发现新一类脉冲星,该发现开发了研究引力的新的可能性”约瑟夫·泰勒美国1994年伯特伦·布罗克豪斯加拿大“对中子频谱学的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”克利福德·沙尔美国“对中子衍射技术的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”1995年马丁·佩尔美国“发现τ轻子”,以及对轻子物理学的开创性实验研究弗雷德里克·莱因斯美国“发现中微子,以及对轻子物理学的开创性实验研”1996年戴维·李美国“发现了在氦-3里的超流动性”道格拉斯·奥谢罗夫美国罗伯特·理查森美国1997年朱棣文美国“发展了用激光冷却和捕获原子的方法”克洛德·科昂-唐努德日法国威廉·菲利普斯美国1998年罗伯特·劳夫林美国“发现一种带有分数带电激发的新的量子流体形式”霍斯特·施特默德国崔琦美国1999年杰拉德·特·胡夫特荷兰“阐明物理学中弱电相互作用的量子结构”马丁纽斯·韦尔特曼荷兰2000年若雷斯·阿尔费罗夫俄罗斯“发展了用于高速电子学和光电子学的半导体异质结构”赫伯特·克勒默德国杰克·基尔比美国“在发明集成电路中所做的贡献”2001年埃里克·康奈尔美国“在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究”卡尔·威曼美国沃尔夫冈·克特勒德国2002年雷蒙德·戴维斯美国“在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子”小柴昌俊日本里卡尔多·贾科尼美国“在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X射线源的发现”2003年阿列克谢·阿布里科索夫俄罗斯“对超导体和超流体理论做出的先驱性贡献”维塔利·金兹堡俄罗斯安东尼·莱格特美国2004年戴维·格娄斯美国“发现强相互作用理论中的渐近自由”休·波利策美国弗朗克·韦尔切克美国2005年罗伊·格劳伯美国“对光学相干的量子理论的贡献”约翰·霍尔美国“对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,”特奥多尔·亨施德国2006年约翰·马瑟美国“发现宇宙微波背景辐射的黑体形式和各向异乔治·斯穆特美国性”2007年艾尔伯·费尔法国“发现巨磁阻效应”彼得·格林贝格德国2008年小林诚日本“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在”益川敏英日本南部阳一郎美国“发现亚原子物理学的自发对称性破缺机制”2009年高锟英国“在光学通信领域光在纤维中传输方面的突破性成就”威拉德·博伊尔美国“发明半导体成像器件电荷耦合器件”乔治·史密斯美国2010年安德烈·海姆俄罗斯“在二维石墨烯材料的开创性实验”康斯坦丁·诺沃肖洛夫俄罗斯2011年布莱恩·施密特澳大利亚“透过观测遥距超新星而发现宇宙加速膨胀”亚当·里斯美国索尔·珀尔马特美国2012年塞尔日·阿罗什法国“能够量度和操控个体量子系统的突破性实验手法”大卫·维因兰德美国2013年彼得·W·希格斯英国对希格斯玻色子的预测[1][4-6]弗朗索瓦·恩格勒比利时2014年赤崎勇日本“发明一种新型高效节能光源,即蓝色发光二极管(LED)”天野浩日本中村修二美国2015年梶田隆章日本“通过中微子振荡发现中微子有质量。
历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位)1902年亨得里克·洛仑兹荷兰“关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰1903年亨利·贝克勒法国“发现天然放射性”皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的共同研究”玛丽·居里法国1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩)1905年菲利普·爱德华·安东·冯·莱纳德德国“关于阴极射线的研究”1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究"1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究”1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法”1909年古列尔莫·马可尼意大利“他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律”1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀”1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成”1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象”1915年威廉·亨利·布拉格英国“用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射”1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展”1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象”1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现”1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现”1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作”1924年卡尔·曼内·乔奇·塞格巴恩瑞典“他在X射线光谱学领域的发现和研究”[3]1925年詹姆斯·弗兰克德国“发现那些支配原子和电子碰撞的定律”古斯塔夫·赫兹德国1926年让·佩兰法国“研究物质不连续结构和发现沉积平衡”1927年阿瑟·康普顿美国“发现以他命名的效应”查尔斯·威耳逊英国“通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法”1928年欧文·理查森英国“他对热离子现象的研究,特别是发现以他命名的定律”1929年路易·德布罗意公爵法国“发现电子的波动性”1930年钱德拉塞卡拉·文卡塔·拉曼印度“他对光散射的研究,以及发现以他命名的效应”1932年维尔纳·海森堡德国“创立量子力学,以及由此导致的氢的同素异形体的发现”1933年埃尔温·薛定谔奥地利“发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程)保罗·狄拉克英国1935年詹姆斯·查德威克英国“发现中子”1936年维克托·弗朗西斯·赫斯奥地利“发现宇宙辐射”卡尔·戴维·安德森美国“发现正电子”1937年克林顿·约瑟夫·戴维孙美国“他们有关电子被晶体衍射的现象的实验发现”乔治·汤姆孙英国1938年恩里科·费米意大利“证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现”1939年欧内斯特·劳伦斯美国“对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果”1943年奥托·施特恩美国“他对分子束方法的发展以及有关质子磁矩的研究发现”1944年伊西多·艾萨克·拉比美国“他用共振方法记录原子核的磁属性”1945年沃尔夫冈·泡利奥地利“发现不相容原理,也称泡利原理”1946年珀西·威廉斯·布里奇曼美国“发明获得超高压的装置,并在高压物理学领域作出发现”1947年爱德华·维克托·阿普尔顿英国“对高层大气的物理学的研究,特别是对所谓阿普顿层的发现”1948年帕特里克·梅纳德·斯图尔特·布莱克特英国“改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现”1949年汤川秀树日本“他以核作用力的理论为基础预言了介子的存在”1950年塞西尔·弗兰克·鲍威尔英国“发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现”1951年约翰·道格拉斯·考克饶夫英国“他们在用人工加速原子产生原子核嬗变方面的开创性工作”欧内斯特·沃吞爱尔兰1952年费利克斯·布洛赫美国“发展出用于核磁精密测量的新方法,并凭此所得的研究成果”爱德华·珀塞尔美国1953年弗里茨·塞尔尼克荷兰“他对相衬法的证实,特别是发明相衬显微镜”1954年马克斯·玻恩英国“在量子力学领域的基础研究,特别是他对波函数的统计解释”瓦尔特·博特德国“符合法,以及以此方法所获得的研究成果”1955年威利斯·尤金·兰姆美国“他的有关氢光谱的精细结构的研究成果”波利卡普·库施美国“精确地测定出电子磁矩”1956年威廉·布拉德福德·肖克利美国“他们对半导体的研究和发现晶体管效应”约翰·巴丁美国沃尔特·豪泽·布喇顿美国1957年杨振宁中国“他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现”李政道中国1958年帕维尔·阿列克谢耶维奇·切连科夫苏联“发现并解释切连科夫效应”伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔姆苏联1959年埃米利奥·吉诺·塞格雷美国“发现反质子”欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国“发明气泡室”1961年罗伯特·霍夫施塔特美国“关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现”鲁道夫·路德维希·穆斯堡尔德国“他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现”1962年列夫·达维多维奇·朗道苏联“关于凝聚态物质的开创性理论,特别是液氦”1963年耶诺·帕尔·维格纳美国“他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用”玛丽亚·格佩特-梅耶美国“发现原子核的壳层结构”J·汉斯·D·延森德国1964年查尔斯·汤斯美国“在量子电子学领域的基础研究成果,该成果导致了基于激微波-激光原理建造的振荡器和放大器"尼古拉·根纳季耶维奇·巴索夫苏联亚历山大·普罗霍罗夫苏联1965年朝永振一郎日本“他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响”朱利安·施温格美国理查德·菲利普·费曼美国1966年阿尔弗雷德·卡斯特勒法国“发现和发展了研究原子中赫兹共振的光学方法”1967年汉斯·阿尔布雷希特·贝特美国“他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现”1968年路易斯·沃尔特·阿尔瓦雷茨美国“他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态”1969年默里·盖尔曼美国“对基本粒子的分类及其相互作用的研究发现”1970年汉尼斯·奥洛夫·哥斯达·阿尔文瑞典“磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用”路易·奈耳法国“关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用”1971年伽博·丹尼斯英国“发明并发展全息照相法”1972年约翰·巴丁美国“他们联合创立了超导微观理论,即常说的BCS理论”利昂·库珀美国约翰·罗伯特·施里弗美国1973年江崎玲于奈日本“发现半导体和超导体的隧道效应”伊瓦尔·贾埃弗挪威布赖恩·戴维·约瑟夫森英国“他理论上预测出通过隧道势垒的超电流的性质,特别是那些通常被称为约瑟夫森效应的现象”1974年马丁·赖尔英国“他们在射电天体物理学的开创性研究:赖尔的发明和观测,特别是合成孔径技术;休伊什在发现脉冲星方面的关键性角色”安东尼·休伊什英国1975年奥格·尼尔斯·玻尔丹麦“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”本·罗伊·莫特森丹麦利奥·詹姆斯·雷恩沃特美国1976年伯顿·里克特美国“他们在发现新的重基本粒子方面的开创性工作”丁肇中美国1977年菲利普·沃伦·安德森美国“对磁性和无序体系电子结构的基础性理论研究”内维尔·莫特英国约翰·凡扶累克美国1978年彼得·列昂尼多维奇·卡皮查苏联“低温物理领域的基本发明和发现”阿尔诺·艾伦·彭齐亚斯美国“发现宇宙微波背景辐射”罗伯特·伍德罗·威尔逊美国1979年谢尔登·李·格拉肖美国“关于基本粒子间弱相互作用和电磁相互作用的统一理论的,包括对弱中性流的预言在内的贡献”阿卜杜勒·萨拉姆巴基斯坦史蒂文·温伯格美国1980年詹姆斯·沃森·克罗宁美国“发现中性K介子衰变时存在对称破坏”瓦尔·洛格斯登·菲奇美国1981年凯·西格巴恩瑞典“对开发高分辨率电子光谱仪的贡献”尼古拉斯·布隆伯根美国“对开发激光光谱仪的贡献”阿瑟·肖洛美国1982年肯尼斯·威尔逊美国“对与相转变有关的临界现象理论的贡献”1983年苏布拉马尼扬·钱德拉塞卡美国“有关恒星结构及其演化的重要物理过程的理论研究”威廉·福勒美国“对宇宙中形成化学元素的核反应的理论和实验研究”1984年卡洛·鲁比亚意大利“对导致发现弱相互作用传递者,场粒子W和Z的大型项目的决定性贡献”西蒙·范德梅尔荷兰1985年克劳斯·冯·克利青德国“发现量子霍尔效应”1986年恩斯特·鲁斯卡德国“电子光学的基础工作和设计了第一台电子显微镜”格尔德·宾宁德国“研制扫描隧道显微镜”海因里希·罗雷尔瑞士1987年约翰内斯·贝德诺尔茨德国“在发现陶瓷材料的超导性方面的突破”卡尔·米勒瑞士1988年利昂·莱德曼美国“中微子束方式,以及通过发现梅尔文·施瓦茨美国子中微子证明了轻子的对偶结构”1989年诺曼·拉姆齐美国“发明分离振荡场方法及其在氢激微波和其他原子钟中的应用”汉斯·德默尔特美国“发展离子陷阱技术”沃尔夫冈·保罗德国1990年杰尔姆·弗里德曼美国“他们有关电子在质子和被绑定的中子上的深度非弹性散射的开创性研究,这些研究对粒子物理学的夸克模型的发展有必不可少的重要性”亨利·肯德尔美国理查·泰勒加拿大1991年皮埃尔-吉勒·德热纳法国“发现研究简单系统中有序现象的方法可以被推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中”1992年乔治·夏帕克法国“发明并发展了粒子探测器,特别是多丝正比室”1993年拉塞尔·赫尔斯美国“发现新一类脉冲星,该发现开发了研究引力的新的可能性”约瑟夫·泰勒美国1994年伯特伦·布罗克豪斯加拿大“对中子频谱学的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”克利福德·沙尔美国“对中子衍射技术的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”1995年马丁·佩尔美国“发现τ轻子”,以及对轻子物理学的开创性实验研究弗雷德里克·莱因斯美国“发现中微子,以及对轻子物理学的开创性实验研”1996年戴维·李美国“发现了在氦-3里的超流动性”道格拉斯·奥谢罗夫美国罗伯特·理查森美国1997年朱棣文美国“发展了用激光冷却和捕获原子的方法”克洛德·科昂-唐努德日法国威廉·菲利普斯美国1998年罗伯特·劳夫林美国“发现一种带有分数带电激发的新的量子流体形式”霍斯特·施特默德国崔琦美国1999年杰拉德·特·胡夫特荷兰“阐明物理学中弱电相互作用的量子结构”马丁纽斯·韦尔特曼荷兰2000年若雷斯·阿尔费罗夫俄罗斯“发展了用于高速电子学和光电子学的半导体异质结构”赫伯特·克勒默德国杰克·基尔比美国“在发明集成电路中所做的贡献”2001年埃里克·康奈尔美国“在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究”卡尔·威曼美国沃尔夫冈·克特勒德国2002年雷蒙德·戴维斯美国“在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子”小柴昌俊日本里卡尔多·贾科尼美国“在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X射线源的发现”2003年阿列克谢·阿布里科索夫俄罗斯“对超导体和超流体理论做出的先驱性贡献”维塔利·金兹堡俄罗斯安东尼·莱格特美国2004年戴维·格娄斯美国“发现强相互作用理论中的渐近自由”休·波利策美国弗朗克·韦尔切克美国2005年罗伊·格劳伯美国“对光学相干的量子理论的贡献”约翰·霍尔美国“对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,”特奥多尔·亨施德国2006年约翰·马瑟美国“发现宇宙微波背景辐射的黑体形式和各向异性”乔治·斯穆特美国2007年艾尔伯·费尔法国“发现巨磁阻效应”彼得·格林贝格德国2008年小林诚日本“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在”益川敏英日本南部阳一郎美国“发现亚原子物理学的自发对称性破缺机制”2009年高锟英国“在光学通信领域光在纤维中传输方面的突破性成就”威拉德·博伊尔美国“发明半导体成像器件电荷耦合器件”乔治·史密斯美国2010年安德烈·海姆俄罗斯“在二维石墨烯材料的开创性实验”康斯坦丁·诺沃肖洛夫俄罗斯2011年布莱恩·施密特澳大利亚“透过观测遥距超新星而发现宇宙加速膨胀”亚当·里斯美国索尔·珀尔马特美国2012年塞尔日·阿罗什法国“能够量度和操控个体量子系统的突破性实验手法”大卫·维因兰德美国2013年彼得·W·希格斯英国对希格斯玻色子的预测[1][4-6] 弗朗索瓦·恩格勒比利时2014年赤崎勇日本“发明一种新型高效节能光源,即蓝色发光二极管(LED)”天野浩日本中村修二美国2015年梶田隆章日本“通过中微子振荡发现中微子有质量。
历年诺贝尔物理学奖得主(1901-2018)以下是历年诺贝尔物理学奖得主列表(1901-2016):1901年,___(德国)因发现不寻常的射线,即X射线(又称伦琴射线),并将其命名为伦琴射线,同时将其作为辐射量的单位。
1902年,___和___(荷兰)因发现了塞曼效应,即磁场对辐射现象的影响。
1903年,___(法国)因发现了天然放射性。
1904年,___(英国)因对___教授所发现的放射性现象进行了研究。
1905年,___和___(德国)因对阴极射线进行了研究。
1906年,___(英国)因对气体导电的理论和实验进行了研究。
1907年,___耳孙(美国)因发明了用于控制灯塔和浮标中气体蓄积器的自动调节阀。
1908年,___(法国)因发明了精密光学仪器,并借助它们进行了光谱学和计量学研究。
1909年,___和___(意大利和德国)因对气体和液体的状态方程进行了研究。
1910年,___(荷兰)因对氢气、氧气、氮气等气体密度的测量进行了研究,并因测量氮气而发现了氩。
1911年,___(德国)因对热辐射的定律进行了研究。
1912年,___(瑞典)因发现晶体中的X射线衍射现象,并用X射线对晶体结构进行了研究。
1913年,___(荷兰)因发现了元素的特征伦琴辐射。
1914年,___(德国)因推动了量子物理学的发展。
1915年,___和___(英国)因发现了极隧射线的多普勒效应以及电场作用下谱线的分裂现象。
1917年,___(英国)因对镍钢合金的反常现象进行了研究,推动了物理学的精密测量。
1918年,___(德国)因对热辐射的定律进行了研究。
1919年,___(德国)因发现了那些影响热辐射的定律。
1920年,___(瑞士)因发明了利用干涉现象来重现色彩于照片上的方法。
1921年,___(德国)因对量子的发现进行了研究,推动了物理学的发展。
以上是历年诺贝尔物理学奖得主的列表,他们的成就和贡献对物理学的发展产生了重大影响。
历届诺贝尔物理学奖历届诺贝尔物理学奖1901年威尔姆·康拉德·伦琴(德国人)发现X 射线1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的线的多普勒效应以及电场作用下光谱线的分裂现象1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性1921年阿尔伯特·爱因斯坦(美籍犹太人)发现了光电效应定律等1922年尼尔斯·亨利克·大卫·玻尔(丹麦人)从事原子结构和原子辐射的研究1923年R.A.米利肯从事基本电荷和光电效应的研究1924年K.M.G.西格巴恩(瑞典人)发现了X 射线中的光谱线1925年詹姆斯·弗兰克、G.赫兹(德国人)发现原子和电子的碰撞规律1926年J.B.佩兰(法国人)研究物质不连续结构和发现沉积平衡1927年阿瑟·霍利·康普顿(美国人)发现康普顿效应(也称康普顿散射) C.T.R.威尔逊(英国人)发明了云雾室,能显示出电子穿过水蒸气的径迹1928年O.W 理查森(英国人)从事热离子现象的研究,特别是发现理查森定律1929年路易斯·维克多·德布罗意(法国人)发现物质波1930年 C.V.拉曼(印度人)从事光散方面的研究,发现拉曼效应1931年未颁奖1932年维尔纳·K.海森伯(德国人)创建了量子力学1933年埃尔温·薛定谔(奥地利人)、P.A.M.狄拉克(英国人)发现原子理论新的有效形式1934年未颁奖1935年J.查德威克(英国人)发现中子1936年V.F.赫斯(奥地利人)发现宇宙射线; C.D.安德森(美国人)发现正电子1937年 C.J.戴维森(美国人)、G.P.汤姆森(英国人)发现晶体对电子的衍射现象1938年 E.费米(意大利人)发现中子轰击产生的新放射性元素并发现用慢中子实现核反应1939年 E.O.劳伦斯(美国人)发明和发展了回旋加速器并以此取得了有关人工放射性等成果1940年~ 1942年未颁奖1943年O.斯特恩(美国人)开发了分子束方法以及质子磁矩的测量1944年I.I.拉比(美国人)发明了著名气核磁共振法1945年沃尔夫冈·E.泡利(奥地利人)发现不相容原理1946年P.W.布里奇曼(美国人)发明了超高压装置,并在高压物理学方面取得成就1947年 E.V.阿普尔顿(英国人)从事大气层物理学的研究,特别是发现高空无线电短波电离层(阿普尔顿层)1948年P.M.S.布莱克特(英国人)改进了威尔逊云雾室方法,并由此导致了在核物理领域和宇宙射线方面的一系列发现1949年汤川秀树(日本人)提出核子的介子理论,并预言介子的存在1950年 C.F.鲍威尔(英国人)开发了用以研究核破坏过程的照相乳胶记录法并发现各种介子1951年J.D.科克罗夫特(英国人)、E.T.S.沃尔顿(爱尔兰人)通过人工加速的粒子轰击原子,促使其产生核反应(嬗变)1952年 F.布洛赫、E.M.珀塞尔(美国人)从事物质核磁共振现象的研究并创立原子核磁力测量法1953年 F.泽尔尼克(荷兰人)发明了相衬显微镜1954年马克斯·玻恩在量子力学和波函数的统计解释及研究方面作出贡献W. 博特(德国人)发明了符合计数法,用以研究原子核反应和γ射线1955年W.E.拉姆(美国人)发明了微波技术,进而研究氢原子的精细结构P.库什(美国人)用射频束技术精确地测定出电子磁矩,创新了核理论1956年W.H.布拉顿、J.巴丁、W.B.肖克利(美国人)从事半导体研究并发现了晶体管效应1957年李政道、杨振宁(美籍华人)对宇称定律作了深入研究1958年P.A.切伦科夫、I.E.塔姆、I.M.弗兰克(俄国人)发现并解释了切伦科夫效应1959年 E .G. 塞格雷、O. 张伯伦(美国人)发现反质子1960年 D.A.格拉塞(美国人)发明气泡室,取代了威尔逊的云雾室1961年R.霍夫斯塔特(美国人)利用直线加速器从事高能电子散射研究并发现核子R.L.穆斯保尔(德国人)从事γ射线的共振吸收现象研究并发现了穆斯保尔效应1962年列夫·达维多维奇·朗道(俄国人)开创了凝集态物质特别是液氦理论1963年 E. P.威格纳(美国人)发现基本粒子的对称性以及原子核中支配质子与中子相互作用的原理M.G.迈耶(美国人)、J.H.D.延森(德国人)从事原子核壳层模型理论的研究1964年 C.H.汤斯(美国人)、N.G.巴索夫、A.M.普罗霍罗夫(俄国人)发明微波射器和激光器,并从事量子电子学方面的基础研究1965年朝永振一郎(日本人)、J. S . 施温格、R.P.费曼(美国人)在量子电动力学方面进行对基本粒子物理学具有深刻影响的基础研究1966年 A.卡斯特勒(法国人)发现和开发了把光的共振和磁的共振合起来,使光束与射频电磁发生双共振的双共振法1967年H.A.贝蒂(美国人)以核反应理论作出贡献,特别是发现了星球中的能源1968年L.W.阿尔瓦雷斯(美国人)通过发展液态氢气泡和数据分析技术,从而发现许多共振态1969年M.盖尔曼(美国人)发现基本粒子的分类和相互作用1970年L.内尔(法国人)从事铁磁和反铁磁方面的研究H.阿尔文(瑞典人)从事磁流体力学方面的基础研究1971年 D.加博尔(英国人)发明并发展了全息摄影法1972年J. 巴丁、L. N. 库柏、J.R.施里弗(美国人)从理论上解释了超导现象1973年江崎玲于奈(日本人)、I.贾埃弗(美国人)通过实验发现半导体中的“隧道效应”和超导物质 B.D.约瑟夫森(英国人)发现超导电流通过隧道阻挡层的约瑟夫森效应1974年M.赖尔、A.赫威斯(英国人)从事射电天文学方面的开拓性研究1975年 A.N. 玻尔、B.R.莫特尔森(丹麦人)、J.雷恩沃特(美国人)从事原子核内部结构方面的研究1976年 B. 里克特(美国人)、丁肇中(美籍华人)发现很重的中性介子–J /φ粒子1977年P.W. 安德林、J.H. 范弗莱克(美国人)、N.F.莫特(英国人)从事磁性和无序系统电子结构的基础研究1978年P.卡尔察(俄国人)从事低温学方面的研究 A.A.彭齐亚斯、R.W.威尔逊(美国人)发现宇宙微波背景辐射1979年谢尔登·李·格拉肖、史蒂文·温伯格(美国人)、A. 萨拉姆(巴基斯坦)预言存在弱中性流,并对基本粒子之间的弱作用和电磁作用的统一理论作出贡献1980年J.W.克罗宁、V.L.菲奇(美国人)发现中性K介子衰变中的宇称(CP)不守恒1981年K.M.西格巴恩(瑞典人)开发出高分辨率测量仪器N.布洛姆伯根、A.肖洛(美国人)对发展激光光谱学和高分辨率电子光谱做出贡献1982年K.G.威尔逊(美国人)提出与相变有关的临界现象理论1983年S.昌德拉塞卡、W.A.福勒(美国人)从事星体进化的物理过程的研究1984年 C.鲁比亚(意大利人)、S. 范德梅尔(荷兰人)对导致发现弱相互作用的传递者场粒子W±和Z 0的大型工程作出了决定性贡献1985年K. 冯·克里津(德国人)发现量了霍耳效应并开发了测定物理常数的技术1986年 E.鲁斯卡(德国人)在电光学领域做了大量基础研究,开发了第一架电子显微镜G.比尼格(德国人)、H.罗雷尔(瑞士人)设计并研制了新型电子显微镜——扫描隧道显微镜1987年J.G.贝德诺尔斯(德国人)、K.A.米勒(瑞士人)发现氧化物高温超导体1988年L.莱德曼、M.施瓦茨、J.斯坦伯格(美国人)发现μ子型中微子,从而揭示了轻子的内部结构1989年W.保罗(德国人)、H.G.德默尔特、N.F.拉姆齐(美国人)创造了世界上最准确的时间计测方法——原子钟,为物理学测量作出杰出贡献1990年J.I.弗里德曼、H.W.肯德尔(美国人)、理查德·E.泰勒(加拿大人)通过实验首次证明了夸克的存在1991年皮埃尔—吉勒·德·热纳(法国人)从事对液晶、聚合物的理论研究1992年G.夏帕克(法国人)开发了多丝正比计数管1993年R.A.赫尔斯、J.H.泰勒(美国人)发现一对脉冲双星,为有关引力的研究提供了新的机会1994年BN.布罗克豪斯(加拿大人)、C.G.沙尔(美国人)在凝聚态物质的研究中发展了中子散射技术2019年M.L.佩尔、F.莱因斯(美国人)发现了自然界中的亚原子粒子:Υ轻子、中微子2019年 D. M . 李(美国人)、D.D.奥谢罗夫(美国人)、理查德·C.理查森(美国人)发现在低温状态下可以无摩擦流动的氦- 32019年朱棣文(美籍华人)、W.D.菲利普斯(美国人)、C.科昂–塔努吉(法国人)发明了用激光冷却和俘获原子的方法2019年劳克林(美国)、斯特默(美国)、崔琦(美籍华人)发现了分数量子霍尔效应2019年H.霍夫特(荷兰)、M.韦尔特曼(荷兰)阐明了物理中电镀弱交互作用的定量结构. 2019年阿尔费罗夫(俄罗斯人)、基尔比(美国人)、克雷默(美国人)因其研究具有开拓性,奠定资讯技术的基础,分享今年诺贝尔物理奖。
1973年诺贝尔物理学奖1973年物理学奖得主,是英国的布赖恩·约瑟夫森(Brian D.Josephson)(获得奖金的一半)、美国的伊瓦尔·贾埃弗(Ivar Giaever)和日本的江崎玲于奈(Reona Esaki)(二人分享另一半奖金)。
约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应。
江崎玲于奈发现了半导体隧道效应,贾埃弗发现了超导体的隧道效应。
布赖恩·戴维·约瑟夫森(Brian David Josephson,1940—),出生于英国威尔士的加迪夫(Cardiff)。
1960年在剑桥大学三一学院获学士学位。
1962年,约瑟夫森在英国剑桥大学读研究生,1964年获得博士学位。
1962年—1969年任剑桥大学三一学院初级研究员。
1965年—1966年在美国伊利诺伊大学任研究助理教授。
1967年—1972年任剑桥大学研究部副主任。
早在20世纪30年代就有迹象表明超导隧道效应的存在。
例如,霍尔姆(R.Holm)和迈斯纳(W.Meissner)就曾从实验得出如下结论:当两金属变成超导体时,两金属间的接触电阻就会消失。
1952年迈斯纳的学生迪特里希(I.Dietrich)重复作了类似实验。
他在钽(Ta)表面覆以TiO2或CeO2薄层,再以Ta为试探电极接触。
他测量了其间的电流,发现在某温度下电阻消失。
但是,当时人们无法理解这些实验结果的普遍意义。
1958年江崎宣布发明了隧道二极管,这件事大大激励了人们对隧道效应的注意。
正好这时BCS理论提出,一度被搁置的隧道效应到了彻底研究的时候了。
11961年—1962年,约瑟夫森在英国剑桥大学皮帕德(B.Pippard)教授指导下读研究生。
有一次,他去参观安德森(P.W.Anderson)教授的实验室。
安德森对隧道超导电流课题已经作出了重大贡献,其中包括许多未发表的结果。
在安德森的讲座中,介绍了在超导体中“破缺对称性”这个新概念,约瑟夫森被破缺对称性的思想深深地吸引住了,思索如何通过实验对它进行观测。
1973年12月10日第七十三届诺贝尔奖颁发。
物理学奖
日本科学家江崎岭于奈因发现半导休中的隧道效应并发明隧道二极管、美国科学家贾埃沃因发现超导体隧道结单电子隧道效应、英国科学家约瑟夫森因创立超导电流通过的势垒的约瑟夫森效应而共同获得诺贝尔物理学奖。
江崎玲于奈1925年3月12日出生于日本大阪,1940年就读于京都第三高等学校,1947年毕业于东京大学。
后进入川西机械制作所工作,进行由真空管的阴极放出热电子的研究工作。
1956年,转入东京通信工业株式会社(现索尼)。
1973年因在半导体中发现电子的量子穿隧效应获得诺贝尔物理学奖。
基本信息
江崎玲于奈1925年3月12日出生于日本大阪,1940年就读于京都第三高等学校,1944年
进入东京帝国大学,是日本近代著名固体物理学家江,是建筑学家江崎壮一郎的长子。
20世
纪50年代,根据理论分析,人们认为在PN结反向击穿的过程中应当能够观测到隧道效应,但实验上一直未能发现。
1957年,江崎玲于奈在研制新型高频晶体管时,意外地发现了高掺杂、窄PN结的正向伏安特性中存在着异常的负阻现象。
通过理论分析,他认为这种负阻特性是由于电子空穴直接穿透结区而形成的,从而为隧道效应提供了有力的证据。
在随后的研究中,他发明了由隧道结制成的隧道二级管。
隧道二极管的发明,开辟了一个新的研究领域——固体中的隧道效应。
研究历程
1944年,江崎进入日本东京帝国大学专攻实验物理,1947年获得硕士学位(后来于1959由于研究隧道效应获得博士学位),随即服务于神户工业股份有限公司,开始了作为晶体管材料的锗和硅等半导体的研究,1956年成为东京通信工业股份有限公司(现在的索尼)的主任研究员,领高掺杂锗与硅的研究,这一研究的结果导致了隧道二极管的发明。
所谓“隧道现象”是指电子偶然地穿过其运动方向上的从经典理论观点看
来是不可越的能量势垒(不太大)时,会在势垒的另一边发现电子运动的一种波动性的奇怪现象,这在本纪二十年代就已经发现了。
到了三十年代量子力学发展的初期,人们一直试图用隧道效应来分整流现象及接触电阻等问题,然而理论的预见和实验观测结果却屡次出现矛盾。
五十年代随着半导体PN结的出现,又一次唤起人们重视隧道过程的研究。
根据理论分析,在PN结反击穿的过程中,应当能够观测到隧道效应。
但实验却一直无法证实。
1957年,江崎在研制型高频晶体管时;意外地发现高掺杂窄PN结的正向伏安特性中,存在着“异常的”负阻现象,而且只要一增加含有大量杂质的锗为原料的二极管的电压时,就马上可以看到,电流着电压的升高而减小。
他通过分析认为,这种负阻特性是由于电子空穴直接穿透结区而形成,而为隧道效应提供了有力的实验证明。
他还发现,把具有这种性的半导体(具有负电阻的二管)作为新的电子元件,可以应用于开关电路和振荡电路,以及高速电路(如电子计算机等装置),这在当时是轰动世界的发明。
1958年,溪江崎发表了关于“隧道二极管”的论文,这是他获得诺贝尔物理学奖金的开端。
后来人们以他的名字把“隧道二极管”命名为“江崎二极管”。
第二年,他又发表了有关管的发明及其机理方面的文章,因而获得了作为日本物学会最高荣誉的仁科芳雄纪念奖。
接着,1960年又获得出版社的奖励,1961年获得M.N.利布曼纪念奖金及富兰克林研究所授予的巴兰坦奖章。
I965年日本科学院也给予他奖励。
由于在半导体和超导体方面的“隧。