【创新设计】届高考数学一轮总复习 小题专项集训十三 立体几何二增分特色训练 理 湘教版.doc
- 格式:doc
- 大小:294.00 KB
- 文档页数:7
高考数学一轮复习提高题专题复习立体几何多选题练习题含答案一、立体几何多选题1.如图,在棱长为2的正方体ABCD A B C D ''''-中,M 为BC 边的中点,下列结论正确的有( )A .AM 与DB ''10 B .过三点A 、M 、D 的正方体ABCD A BCD ''''-的截面面积为92C .四面体A C BD ''的内切球的表面积为3π D .正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是椭圆 【答案】AB 【分析】构建空间直角坐标系,由异面直线方向向量的夹角cos ,||||AM D B AM D B AM D B ''⋅''<>=''为AM 与D B ''所成角的余弦值判断A 的正误;同样设(,,0)P x y 结合向量夹角的坐标表示,2221543x y =++⨯P 的轨迹知D 的正误;由立方体的截面为梯形,分别求,,,MN AD AM D N '',进而得到梯形的高即可求面积,判断B 的正误;由四面体的体积与内切球半径及侧面面积的关系求内切球半径r ,进而求内切球表面积,判断C 的正误. 【详解】A :构建如下图所示的空间直角坐标系:则有:(0,0,2),(1,2,2),(0,2,0),(2,0,0)A M B D '', ∴(1,2,0),(2,2,0)AM D B ''==-,10cos ,10||||58AM D B AM D B AM D B ''⋅''<>===''⨯,故正确.B :若N 为CC '的中点,连接MN ,则有//MN AD ',如下图示,∴梯形AMND’为过三点A 、M 、D 的正方体ABCD A B C D ''''-的截面, 而2,2,5MN AD AM D N ''====322, ∴梯形的面积为132932222S =⨯=,故正确. C :如下图知:四面体A C BD ''的体积为正方体体积减去四个直棱锥的体积,∴118848323V =-⨯⨯⨯=,而四面体的棱长都为22,有表面积为142222sin 8323S π=⨯⨯⨯⨯=,∴若其内切圆半径为r ,则有188333r ⨯⋅=,即33r =,所以内切球的表面积为2443r ππ=.故错误. D :正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动且MAC PAC ''∠=∠,即P 的轨迹为面A B C D ''''截以AM 、AP 为母线,AC’为轴的圆锥体侧面所得曲线,如下图曲线GPK ,构建如下空间直角坐标系,232(0,0,2),(2),(0,22,0)22A M C '-,若(,,0)P x y ,则232(,,0),(0,22,2),(,,2)22AM AC AP x y '=-=-=-,∴15cos ||||512AM AC MAC AM AC '⋅'∠==='⨯222cos ||||43AP AC PAC AP AC x y '⋅'∠=='++⨯22215543x y =++⨯,整理得22(102)9216(0)y x y +-=>,即轨迹为双曲线的一支,故错误.故选:AB 【点睛】关键点点睛:应用向量的坐标表示求异面直线的夹角,并结合等角的余弦值相等及向量数量积的坐标表示求动点的轨迹,综合立方体的性质求截面面积,分割几何体应用等体积法求内切球半径,进而求内切球的表面积.2.在正三棱柱111ABC A B C -中,2AC =11CC =,点D 为BC 中点,则以下结论正确的是( ) A .111122A D AB AC AA =+- B .三棱锥11D AB C -3C .1AB BC ⊥且1//AB 平面11AC DD .ABC 内到直线AC 、1BB 的距离相等的点的轨迹为抛物线的一部分 【答案】ABD 【分析】A .根据空间向量的加减运算进行计算并判断;B .根据1111D ABC A DB C V V --=,然后计算出对应三棱锥的高AD 和底面积11DB C S,由此求解出三棱锥的体积;C .先假设1AB BC ⊥,然后推出矛盾;取AB 中点E ,根据四点共面判断1AB //平面11AC D 是否成立;D .将问题转化为“ABC 内到直线AC 和点B 的距离相等的点”的轨迹,然后利用抛物线的定义进行判断. 【详解】A .()11111111222A D A A AD AD AA AB AC AA AB AC AA =+=-=+-=+-,故正确; B .1111D AB C A DB C V V --=,因为D 为BC 中点且AB AC =,所以AD BC ⊥, 又因为1BB ⊥平面ABC ,所以1BB AD ⊥且1BB BC B =,所以AD ⊥平面11DB C ,又因为363AD BD BC ===,11111122DB C S BB B C =⨯⨯=, 所以1111111162333226D AB C A DB C DB C V V AD S --==⨯⨯=⋅⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.3.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯ 又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124DS BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而332333328A S ⎛⎫=⨯⨯=> ⎪ ⎪⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系. 设(),,M x y z ,则(),,AM x y z =,222AM x y z =++,(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.4.如图所示,正三角形ABC 中,D ,E 分别为边AB ,AC 的中点,其中AB =8,把△ADE 沿着DE 翻折至A 'DE 位置,使得二面角A '-DE -B 为60°,则下列选项中正确的是( )A .点A '到平面BCED 的距离为3B .直线A 'D 与直线CE 所成的角的余弦值为58C .A 'D ⊥BDD .四棱锥A '-BCED 237【答案】ABD 【分析】作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N .利用线面垂直的判定定理判定CD ⊥平面A'MN ,利用面面垂直的判定定理与性质定理得到'A 到平面面BCED 的高A'H ,并根据二面角的平面角,在直角三角形中计算求得A'H 的值,从而判定A;根据异面直线所成角的定义找到∠A'DN 就是直线A'D 与CE 所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N ,在利用外接球的球心的性质进行得到四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,经过计算求解可得半径从而判定D. 【详解】如图所示,作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N . 则A'M ⊥DE ,MN ⊥DE , ,∵'A M ∩MN =M ,∴CD ⊥平面A'MN , 又∵CD ⊂平面ABDC ,∴平面A'MN ⊥平面ABDC , 在平面A'MN 中作A'H ⊥MN ,则A'H ⊥平面BCED , ∵二面角A'-DE -B 为60°,∴∠A'EF =60°,∵正三角形ABC 中,AB =8,∴AN =43∴A'M 3,∴A'H =A'M sin60°=3,故A 正确; 连接DN ,易得DN ‖EC ,DN =EC =4, ∠A'DN 就是直线A'D 与CE 所成的角, DN =DA'=4,A'N =A'M 3,cos ∠A'DN =22441252448+-=⨯⨯,故B 正确;A'D =DB =4,22121627A N BN +=+=',∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()()22222433x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P , 则HP =x ,易得()()22222433x x R +=++=, 解得23x =, ∴244371699R ⨯=+=,2373R ∴=,故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.5.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故2252OD OG GD =+=,由矩形的性质知:152OB OE OF OB ====,令四棱锥1D BB FE -的外接球半径为R ,则52R =,所以四棱锥1D BB FE -的外接球体积为35435V R ππ==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.6.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得1CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -外接球的体积是43π 【答案】BD 【分析】对于A ,取AD 中点E ,连接EC 交MD 与F ,可得到EN NF ⊥,又EN CN ⊥,且三线,,NE NF NC 共面共点,不可能;对于B ,可得由1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值),由余弦定理可得NC 是定值.对于C ,取AM 中点O ,连接1,B O DO ,假设1AM B D ⊥,易得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,显然不一定成立.对于D ,当平面B 1AM ⊥平面AMD 时,三棱锥B 1﹣AMD 的体积最大,可得球半径为1,体积是43π. 【详解】对于A 选项:如图1,取AD 中点E ,连接EC 交MD 与F , 则11////NE AB NF MB ,,又11AB MB ⊥,所以EN NF ⊥, 如果1CN AB ⊥,可得EN CN ⊥,且三线,,NE NF NC 共面共点, 不可能,故A 选项不正确;对于B 选项:如图1,由A 选项可得1AMB EFN ≈△△,故1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值), 故在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 选项正确.对于C 选项:如图,取AM 中点O ,连接1,B O DO , 由AB BM =,得1B O AM ⊥,假设1AM B D ⊥,111B D B O B =,所以AM ⊥面1ODB ,所以OD AM ⊥,从而AD MD =,显然不恒成立,所以假设不成立,可得C 选项不正确.对于D 选项:由题易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,体积是43π.故D 选项正确. 故答案为:BD . 【点睛】本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,属于难题.本题C 选项的解题的关键在于采用反证法证明,进而推出矛盾解题,D 选项求解的关键在于把握平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大.7.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26角形,底面ABCD 为矩形,23CD =Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A ,(0,0,32),6,23,0),(6,23,0)P C B ,因为点Q 是PD 的中点,所以632)2Q , 平面PAD 的一个法向量为(0,1,0)m =,632(23,22QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,23,0)22PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则360260n AQ x zn AC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos θ=,所以B 正确; 三棱锥B ACQ -的体积为1132BACQ Q ABC ABCV V SOP --==⋅ 1116322=⨯⨯⨯=, 所以C不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD=,所以2222222a a⎛⎫++-=++ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x,所以22362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为244x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.8.如图所示,在棱长为1的正方体1111ABCD A B C D 中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D D D .四边形1BFD E 面积的最小值为62【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 6【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为16232⨯⨯=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.。
基础巩固题组 (建议用时:40分钟)一、选择题1.(2016·景德镇模拟)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010B.15C.31010D.35解析 以D 为坐标原点,建立空间直角坐标系,如图, 设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),E (1,0,1),D 1(0,0,2).所以BE →=(0,-1,1),CD 1→=(0,-1,2), 所以cos 〈BE →,CD 1→〉=BE →·CD 1→|BE →|·|CD 1→|=32×5=31010. 答案 C2.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC →1,N 为B 1B的中点,则|MN →|为( )A.216aB.66aC.156aD.153a解析 以D 为原点建立如图所示的空间直角坐标系D -xyz ,则A ( a ,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ), ∵点M 在AC 1上且AM →=12MC →1,(x -a ,y ,z )=12(-x ,a -y ,a -z )∴x =23a ,y =a 3,z =a 3.得M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216 a . 答案 A3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22解析 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1, 则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=⎝ ⎛⎭⎪⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有⎩⎨⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎨⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧ y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23. 答案 B4.在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且 SO =OD ,则直线BC 与平面P AC 所成的角是( ) A.30°B.45°C.60°D.90°解析 如图,以O 为原点建立空间直角坐标系O -xyz . 设OD =SO =OA =OB =OC =a .则A (a ,0,0),B (0,a ,0),C (-a ,0,0),P ⎝ ⎛⎭⎪⎫0,-a 2,a 2.则CA→=(2a ,0,0),AP →=⎝ ⎛⎭⎪⎫-a ,-a 2,a 2, CB→=(a ,a ,0),设平面P AC 的一个法向量为n ,设n =(x ,y ,z ),则⎩⎨⎧n ·CA →=0,n ·AP →=0,解得⎩⎪⎨⎪⎧x =0,y =z ,可取n =(0,1,1),则 cos 〈CB →,n 〉=CB →·n |CB →|·|n |=a 2a 2·2=12, ∴〈CB →,n 〉=60°,∴直线BC 与平面P AC 所成的角为90°-60°=30°. 答案 A5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32B.22C.223D.233解析 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0), 设平面A 1BD 的法向量 n =(x ,y ,z ),则⎩⎨⎧n ·DA 1→=0,n ·DB →=0,∴⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ∴D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.答案 D 二、填空题6.(2016·郑州模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为__________.解析 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设n =(x ,y ,z )为平面A 1BC 1的法向量.则n ·A 1B →=0,n ·A 1C 1→=0,即⎩⎪⎨⎪⎧2y -z =0,-x +2y =0,令z =2,则y =1,x =2,于是n =(2,1,2),D 1C 1→=(0,2,0)设所求线面角为α,则sin α=| cos 〈n ,D 1C 1→〉|=13. 答案 137.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为________. 解析 取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝⎛⎭⎪⎫0,0,32,B ⎝ ⎛⎭⎪⎫0,-12,0, D ⎝ ⎛⎭⎪⎫32,0,0.∴OA →=⎝ ⎛⎭⎪⎫0,0,32,BA →=⎝⎛⎭⎪⎫0,12,32,BD→=⎝ ⎛⎭⎪⎫32,12,0. 设平面ABD 的法向量为n =(x 0,y 0,z 0),则BA→·n =0,且BD →·n =0,∴y 02+32z 0=0,且32x 0+y 02=0,因此⎩⎪⎨⎪⎧y 0=-3z 0,y 0=-3x 0,取x 0=1,得平面ABD 的一个法向量n =(1,-3,1), 由于OA→=⎝⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量, ∴ cos 〈n ,OA →〉=55,∴ sin 〈n ,OA →〉=255.答案 25 58.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是__________.解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°. 答案 60° 三、解答题9.(2015·安徽卷)如图所示,在多面体A 1B 1D 1-DCBA ,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D -B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D 面A 1DE ,B 1C 面A 1DE ,于是B 1C ∥面A 1DE .又B 1C面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →.n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.10.如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE , ∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2. (1)证明:DE ⊥平面ACD ; (2)求二面角B -AD -E 的大小.(1)证明 在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC , 又平面ABC ⊥平面BCDE ,平面ABC ∩平面BCDE =BC ,AC 平面ABC ,从而AC ⊥平面BCDE ,又DE 平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,DC ∩AC =C ,从而DE ⊥平面ACD . (2)解 以D 为原点,分别以射线DE ,DC 为x 轴,y 轴的正半轴,建立空间直角坐标系D -xyz ,如图所示. 由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2), B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1), 平面ABD 的法向量为n =(x 2,y 2,z 2),可算得AD→=(0,-2,-2),AE →=(1,-2,-2),DB →=(1,1,0),由⎩⎪⎨⎪⎧m ·AD →=0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).由⎩⎪⎨⎪⎧n ·AD →=0,n ·BD →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0,可取n = (1,-1,2).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33·2=32,由题意可知,所求二面角是锐角,故二面角B -AD -E 的大小是π6.能力提升题组 (建议用时:20分钟)11.(2016·西安质检)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.55B.53C.255D.35解析 不妨令CB =1,则CA =CC 1=2,可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC 1→=(0,2,-1),AB 1→=(-2,2,1), ∴cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0.∴BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. 答案 A12.在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( ) A.15B.255C.55D.25解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴, z 轴建立如图所示的空间直角坐标系,由AB =AC =1,P A =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝ ⎛⎭⎪⎫0,12,1. ∴P A →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1. 设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎨⎧n ·DE →=0,n ·DF →=0得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线P A 与平面DEF 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=55,∴直线P A 与平面DEF 所成角的正弦值为55. 答案 C13.(北师大选修2-1P47习题改编)如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为__________. 解析 ∵CD →=CA →+AB →+BD →, ∴|CD →|=(CA→+AB →+BD →)2=36+16+64+2CA →·BD→=116+2CA →·BD→=217.∴CA →·BD →=|CA →|·|BD →|· cos 〈CA→,BD →〉=-24. ∴ cos 〈CA→,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补, ∴所求的二面角为60 °. 答案 60 °14.(2015·广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且AF =2FB ,CG =2GB . (1)证明:PE ⊥FG ;(2)求二面角P -AD -C 的正切值; (3)求直线P A 与直线FG 所成角的余弦值.解 在△PCD 中,∵E 为CD 的中点,且PC =PD ,∴PE ⊥CD .又∵平面PCD ⊥平面ABCD ,且平面PCD ∩平面ABCD =CD ,PE 平面PCD ,∴PE ⊥平面ABCD ,取AB 的中点H ,连接EH , ∵四边形ABCD 是长方形,则EH ⊥CD ,如图所示,以E 为原点,EH ,EC ,EP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,∵PD =PC =4,AB =6,BC =3,AF =2FB ,CG =2GB ,∴E (0,0,0),P (0,0,7),F (3,1,0),G (2,3,0),A (3,-3,0),D (0,-3,0),C (0,3,0). (1)证明 ∵EP→=(0,0,7),FG →=(-1,2,0), 且EP →·FG →=(0,0,7)·(-1,2,0)=0, ∴EP→⊥FG →,即EP ⊥FG . (2)∵PE ⊥平面ABCD ,∴平面ABCD 的法向量为EP →=(0,0,7).设平面ADP 的一个法向量为n =(x 1,y 1,z 1), AP→=(-3,3,7),DP →=(0,3,7), 由于⎩⎪⎨⎪⎧AP →·n =0,DP →·n =0,即⎩⎨⎧-3x 1+3y 1+7z 1=0,3y 1+7z 1=0,令z 1=3,则x 1=0,y 1=-7,∴n =(0,-7,3).由图可知二面角P -AD -C 是锐角,设为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪n ·EP →|n ||EP →|=3747=34,∴sin α=74,tan α=73.(3)∵AP →=(-3,3,7),FG →=(-1,2,0),设直线P A 与直线FG 所成角为θ, 则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪AP →·FG →|AP →||FG →|=3+69+9+7×5=9525,95∴直线P A与FG所成角的余弦值为25.。
专题33:空间几何体精讲温故知新一.空间几何体的结构1.多面体一般地,由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
2.旋转体一条平面曲线,包括直线,绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面。
封闭的旋转面围成的几何体叫做旋转体。
这条定直线叫做旋转体的轴。
3.棱柱一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形,其余各面叫做棱柱的侧面,它们都是平行四边形,相邻两边的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点。
棱柱的底面可以是三角形、四边形、五边形,我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱。
一般地,我们把侧面垂直于底面的棱柱叫做直棱柱,侧面不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的,直棱柱叫做正棱柱,底面是平行四边形的四棱柱,也叫做平行六面体。
4.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
这个多边形面叫做棱锥的底面,有公共顶点的各个三角形面叫做棱锥的侧面,相邻两边的公共边叫做棱锥的侧棱,这侧面的公共顶点叫做棱锥的顶点。
棱锥,用表示顶点和各面各顶点的字母来表示,其中三棱锥又叫四面体,底面是正多边形并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥。
5.棱台用一个平行于圆锥底面的平面去截棱锥,我们把底面和截面之间那部分多面体叫做棱台。
在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面面,类似于棱柱、棱锥,棱台也有侧面、侧棱和顶点。
6.圆柱与矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱。
旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面,叫做圆柱的底面,平行的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱侧面的母线。
立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。
考点7 空间向量与立体几何—高考数学一轮复习考点创新题训练1.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD 的夹角的正切值均为,则该五面体的所有棱长之和为( )A. B. C. D.2.中和殿是故宫外朝三大殿之一,位于紫禁城太和殿与保和殿之间,中和殿建筑的亮点是屋顶为单檐四角攒(cuán )尖顶,体现天圆地方的理念,其屋顶部分的轮廓可近似看作一个正四棱锥.已知此正四棱锥的侧棱长为,这个角接近30°,若取,则下列结论正确的是( )A.正四棱锥的底面边长为48mB.正四棱锥的高为4mC.正四棱锥的体积为D.正四棱锥的侧面积为3.两个相交平面构成四个二面角,其中较小的二面角称为这两个相交平面的夹角.由正方体的四个顶点所确定的平面统称为该正方体的“表截面”.则在正方体中,两个不重合的“表截面”的夹角大小不可能为( )A. B. C. D.25m AB =10m BC AD ==102m 112m 117m 125m30θ=︒2230︒45︒60︒90︒4.海口钟楼的历史悠久,最早是为适应对外通商而建立,已成为海口的最重要的标志性与象征性建筑物之一,如图所示,海口钟楼的主体结构可以看成一个长方体,四个侧面各有一个大钟,则从8:00到10:00这段时间内,相邻两面钟的分针所成角为的次数为( )A.2B.4C.6D.85.在空间直角坐标系Oxyz 中,,,若直线AB 与平面xOy 交于点,( )6.在空间直角坐标系中,经过点且一个法向量为的平面的方程为,经过点P 且一个方向向量为的直的方程为的距离为( )7.阅读材料:空间直角坐标系中,过点且一个法向量为的平面的方程为,阅读上面材料,解决下面问题:已知平面的方程为,点,则点Q 到平面距离为( )8.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》60︒()1,,2A m (),0,1B n (),,0P x y 2y +=O xyz -()000,,P x y z (),,m a b c = α()()()0000a x x b y y c z z -+-+-=()(),,0n v v μωμω=≠ 0y y v -==3541x y z -++=5y ==O xyz -()000,,P x y z (),,n a b c = α()()()0000a x x b y y c z z -+-+-=α21x y z -+=()3,1,1Q -α中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图是阳马,平面,,,.则该阳马的外接球的表面积为( )C.9.(多选)如图所示的空间几何体是由高度相等的半个圆柱和直三棱柱组合而成,,,G 是上的动点.则( )A.平面平面B.G 为的中点时,C.存在点G ,使得直线与的距离为D.存在点G ,使得直线与平面所成的角为10.(多选)布达佩斯的伊帕姆维泽蒂博物馆收藏的达芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1)把三片这样的达芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则( )P ABCD -PA ⊥ABCD 5PA =3AB =4BC =π100ABF DCE -AB AF ⊥4AB AD AF ===»CDADG ⊥BCG»CD//BF DG EF AG CF BCG 60︒··A.B.异面直线与C.点P 到直线D.M 为线段上的一个动点,则的最大值为311.有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长都相等的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.已知点为线段上一点且,,则______.12.如图,在棱长为8的正方体中,E 是棱上的一个动点,给出下列三个结论:①若F 为上的动点,则EF 的最小值为到平面③M 为BC 的中点,P 为空间中一点,且与平面ABCD 所成的角为,PM 与平面ABCD122QC AD AB AA =++ CQ AD CQ ME MC ⋅ E BC BE BC λ= λ=1111ABCD A B C D -1AA 1BD D BED PD 30︒所成的角为,则P 在平面ABCD 上射影的轨迹长度为,其中所有正确结论的序号是___________.13.六氟化硫,化学式为,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫结构为正八面体结构(正八面体每个面都是正三角形,可以看作是将两个棱长均相等的正四棱锥将底面粘接在一起的几何体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点,若相邻两个氟原子之①该八面体的表面积为③若点P 为棱上一动点,存在点P ,使得;④若点P 为棱上的动点,则三棱锥的体积为定值..若为空间向量与232323a ab bc c =123231312321213132a b c a b c a b c a b c a b c a b c ++---1122a b x y x j i y ⨯= b ⨯ a 60︒6SF EC AP BE ⊥EC F ABP -b的叉乘,其中,,为单位正交基底.以O 为坐标原点,分别以的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,已知A ,B 是空间直角坐标系中异于O 的不同两点.(1)①若,求;②证明:.(2)记的面积为,证明:(3)问:的几何意义表示以15.在①,②这三个条件中任选一个,补充在下面的横线中,并完成问题.问题:如图,在正方体中,以D 为坐标原点,建立空间直角坐标系.已知点的坐标为,E 为棱上的动点,F 为棱上的动点,_________,试问是否存在点E ,F 满足?若存在,求出的值;若不存在,请说明理由.()()DE CF DE CF +⊥- ||DE = cos ,1EF DB <〈〉< 1111ABCD A B C D -D xyz -1D (0,0,2)11D C 11B C 1EF A C ⊥AE BF ⋅ ()111111,,a x y z x y i j k z =++∈R ()222222,,b x i y j z k x y z =++∈R {},,i j k ,,i j k ()()0,2,1,1,3,2A B -OA OB ⨯ 0OA OB OB OA ⨯+⨯= AOB △AOB S △12AOB S OA =⨯ △2()OA OB ⨯ △⨯答案以及解析1.答案:C解析:如图,过E 作平面ABCD ,垂足为O ,过E 分别作,,垂足分别为G ,M ,连接OG ,OM ,由题意得等腰梯形所在的平面、等腰三角形所在的平面与底面夹角分别为和,所以.因为平面,平面ABCD ,所以.因为,,平面,,所以平面EOG .因为平面EOG ,所以.同理,.又,故四边形OMBG 是正方形,所以由得,所以,所以,所以在直角三角形EOG 中,,在直角三角形EBG 中,,,又因为,所有棱长之和为.故选C.2.答案:C解析:如图,在正四棱锥中,O为正方形的中心,,则H为的中点,连接,,,则平面,,则为侧面与底面所成的锐二面角,EO ⊥EG BC⊥EM AB ⊥EMO ∠EGO∠tan tan EMO EGO ∠=∠=MO CO =EO ⊥ABCD BC ⊂EO BC ⊥EG BC ⊥EO EG ⊂EOG EO EG E = BC ⊥OG ⊂BC OG ⊥OM BM ⊥BM BG ⊥10BC =5OM =EO =5OG =EG ===5BG OM ==8EB ===55255515EF AB =--=--=2252101548117(m)⨯+⨯++⨯=S ABCD -ABCD SH AB ⊥AB SO OH AO SO ⊥ABCD OH AB ⊥SHO ∠设底面边长为.正四棱谁的则面与底两所成的䌼二面但为,这个角接近,取,,则,,.在中,,解得,故底面边长为,正四棱锥的高为,侧面积为,体积.故选C 3.答案:A 解析:在正方体中,平面ABCD 和平面的夹角为,D 选项错误.平面和平面的夹角为,B 选项错误.设正方体的棱长为1,建立如图所示的空间直角坐标系,则,,,,,,,设平面的法向量为,则令,可得.设平面的法向量为,则令,可得,设平面与平面的夹角为,则由于,所以,所以C 选项错误.平面ABCD 与平面的夹角为.由图可知两个不重合的“表截面”的夹角的大小不可能为.故选A.2a θ30︒30θ=︒30SHO ∴∠=︒OH a =OS =SH =Rt SAH △222a ⎫+=⎪⎪⎭12a =24()m 12=21424122S =⨯⨯=3124243V =⨯⨯⨯=1111ABCD A B C D -11ADD A 90︒11BDD B 11ADD A 45︒1111ABCD A B C D -(1,0,0)A (1,1,0)B 1(0,0,1)D (0,1,0)C (0,1,0)AB ∴= 1(1,1,1)BD =-- (1,0,0)CB = 11ABC D 111,)(,x y z =m 111110,0,AB y BD x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩ m m 11x =(1,0,1)=m 11A BCD 222,)(,x y z =n 212220,0,CB x BD x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩ n n 21y =(0,1,1)=n 11ABC D 11A BCD θcos ||||θ⋅===m n m n 090θ︒≤≤︒60θ=︒1111A B C D 0︒30︒4.答案:D 解析:在长方体中,以点A 为原点,,,所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.设矩形的对角线的交点为E ,矩形的对角线的交点为F ,分针长为a .考查到这个时间段,设t 时刻,侧面和侧面内的钟的分针的位置分别为M ,N ,,其中,则,所以.由题意得.因为,所以的取值为,,,,即在到这个时间段,相邻两面钟的分针所成角为的次数为4,因此,从到这段时间内,相邻两面钟的分针所成角为的次数为8.故选D.5.答案:B解析:依题意,,显然,解得,即,6.答案:C解析:由题可知点在直线l 上,取平面内一点根据题设材料可知平面一个法向量为,所以的距离为11AA B B 11AA D D 8:009:0011AA B B 11AA D D (sin ,0,cos )EM a a θθ= 3600θ-︒≤≤︒(0,sin ,cos )FN a a θθ=- EM FN ⋅=22cos a θ2|||cos ,|cos ||||EM FN EM FN EM FN θ⋅〈〉=== θ=3600θ-︒≤≤︒1111ABCD A B C D -AB AD 1AA θ45-︒135-︒225-︒315-︒8:009:0060︒8:0010:0060︒(1,,1),(,,1)BA n m BP x n y =-=-- //BP 11y m -==2x n y m=-⎧⎨=-⎩2()1m -=22(1)1n m -+==(0,0,0)O α(0,0,P α()3,5,4m =- (0,0,OP = cos ,OP m OP m OP m ⋅<>===7.答案:A解析:平面的法向量,在平面上任取一点,则,8.答案:B解析:因,平面,平面,则,,又因四边形为矩形,则.则阳马的外接球与以,,为长宽高的长方体的外接球相同.又,,.则外接球的直径为长方体体对角线,故外接球半径为:.故选:B 9.答案:AB解析:对于选项A ,由题意知,,平面,因为平面,所以,又,、平面,所以平面,因为平面,所以平面平面,即选项A 正确;对于选项B ,当G 为的中点时,取的中点H ,连接,,则,,所以四边形是平行四边形,所以,因为和都是等腰直角三角形,所以,所以,所以,即选项B 正确;对于选项C ,因为,且平面,平面,所以平面,所以直线与的距离等价于直线到平面的距离,也等价于点F 到平面的距离,以A 为坐标原点,,,所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则 ,,,设点,其中,,由射影定理知,,即,所以,,,1cos ,4OP OP m <>== α()1,1,2n =- α()1,0,1A -()4,1,0QA =- QA n d n⋅=== PA ABCD ⊥平面AB ⊂ABCD AD ⊂ABCD PA AB ⊥PA AD ⊥ABCD AB AD ⊥PA AB AD 5PA =3AB =4AD BC ==R ===2504π4π50π4S R ==⋅=DG CG ⊥AD ⊥CDG CG ⊂CDG AD CG ⊥DG AD D = DG AD ⊂ADG CG ⊥ADG CG ⊂BCG ADG ⊥BCG »CD »AB AH GH //AD GH AD GH =ADGH //DG AH ABF △ABH △45ABF HAB ∠=∠=︒//AH BF //BF DG //EF AD EF ⊂/ADG AD ⊂ADG //EF ADG EF AG EF ADG ADG AF AB AD ()4,0,0F ()0,0,0A ()0,0,4D (),,4G m n -04m <≤04n <≤2(4)m n n =-224m n n +=()4,0,0AF = ()0,0,4AD = (),,4AG m n =-设平面的法向量为,则,取,则,,所以,若直线与的距离为到平面的距离为而点F 到平面的距离G ,使得直线与的距离为对于选项D ,,,所以,,,设平面的法向量为,则,取,则,,所以,若直线与平面所成的角为,则由,知,此方程无解,所以不存在点G ,使得直线与平面所成的角为,即选项D 错误.故选:AB.10.答案:BD解析:如图建立空间直角坐标系:ADG (),,n x y z = 4040n AD z n AG mx ny z ⎧⋅==⎪⎨⋅=-++=⎪⎩ x n =y m =0z =(),,0n n m = EF AG F ADG ADG 4AF n d n ⋅====≤=< EF AG ()0,4,4C ()0,4,0B ()0,0,4BC = (),4,0CG m n =-- ()4,4,4CF =-- BCG (),,m a b c = 40(4)0m BC c m CG ma n b ⎧⋅==⎪⎨⋅=-+-=⎪⎩ b m =4a n =-0c =()4,,0m n m =- CF BCG 60︒sin 60cos ,CF m CF m CF m ⋅︒====⋅ ()24m n n =-4n -=2850m m n n ⎛⎫⋅-⋅+= ⎪⎝⎭CF BCG 60︒则,,,,,,,,故,,,,,,,,对于A ,所以,A 错误;对于C ,记同向的单位向量为,则点P 到直线的距离,故C 错误;对于D ,设点,使,,,,,则,故,则因,则时,即点M 与点Q 重合时,取得最大值3,故D 项正确.故选:BD.122,,333||QC a QC ⎛⎫==-- ⎪⎝⎭ d ==QM tQC = (1,0,2)Q (0,2,0)C (1,2,22)M t t t -+-+(1,2,22)(1,22,22)ME MC t t t t t t ⋅=+--⋅--- 2229123913t t t ⎛⎫=-+=-- ⎪⎝⎭01t ≤≤0t =ME MC ⋅ (1,0,2)Q (0,2,0)C (1,1,0)A (1,2,0)B (0,1,0)D 1(1,1,1)A 1(0,1,1)D (2,0,1)P (1,2,2)QC =-- (1,0,0)AD =- (0,1,0)AB = 1(0,0,1)AA = (0,2,2)BC =- (1,1,0)BD =-- (1,0,1)QP =- 1(1,0,1)AD =- 122(1,0,0)2(0,1,0)2(0,0,1)(1,2,2)AD AB AA QC ++=-++=-≠ (1,2,2)QC =-- CQ (,,)M x y z 01t ≤≤(2,0,0)E (1,,2)(1,2,2)x y z t --=--解析:将半正多面体补成正方体,建立如图所示的空间直角坐标系.,,,,,,,所以,,则,.设直线DE 与直线AF 所成角为,则即,解得12.答案:①②③解析:①平面,EF 取最小值即为E到平面的距离,为分别为,的中点.故①正确.②由①知,三角形到平面的距离为,③建立如图所示的空间直角坐标系,()2,1,0A ()2,2,1F ()1,0,2B ()0,1,2C ()1,2,2D ()0,1,1AF = ()1,1,0BC =- (),,0BE BC λλλ==- []0,1λ∈()1,,2E λλ-(),2,0DE λλ=-- θcos cos ,AF DE AF DE AF DE θ⋅==== 2610λλ+-=λ==1//AA 11BB D D 11BB D D 1AA 1BD BED =1BED h 18883h =⨯⨯⨯=则,作平面ABCD 于点H ,由题意及几何关系得,设点,则,即点H 的轨迹方程为迹长度为.故③正确.13.答案:①③④八面体的表面积为②连接,相交于点O ,连接,在八面体中,平面是正方形,且平面,,在中,,所以该八面体的体积为③若点P 为棱上一动点,当点P 与点重合时,因为在正方形中,,且平面,平面,所以,又因为,是平面内两条相交直线,所以平面,平面可得,③正确;④在正八面体中,,平面,平面所以平面,若点P 为棱上的动点,则点P 到平面的距离与直线到平面的距离相等且是一个定值,三棱锥的体积为是定值,④正确;14.答案:(1)①;()4,8,0M PH ⊥3DH MH =(),y,0H x 22229(4)(8)x y x y ⎡⎤+=-+-⎣⎦229(9)2x y ⎛⎫-+-= ⎪⎝⎭2π=182⨯=AC BD OE ABCD OE ⊥ABCD 2AC BD ==DBE △1OE ===1213⨯=EC C ABCD AC BD ⊥EO ⊥ABCD AC ⊂ABCD AC EO ⊥BD EO BED AC ⊥BED BE ⊂BED AP BE ⊥//EC AF EC ⊄ABF AF ⊂ABF //EC ABF EC ABF EC ABF F ABP -13FAB F ABP P ABF V V S h --==⨯⨯△()1,1,2-②证明见解析(2)证明见解析(3)6解析:(1)①因为,,则.②证明:设,,则,与互换,与互换,与互换,可得,故.(2)证明:因为故.由(1),,,()0,2,1A ()1,3,2B -()021*******,1,2132i j k OA OB i j k i i j k ⨯==-++--=-+=-- ()111,,A x y z ()222,,B x y z 121212212121OA OB y z i z x j x y k x y k z x j y z i⨯=++---()122112211221,,y z y z z x z x x y x y =---2x 1x 2y 1y 2z 1z ()211221122112,,OB OA y z y z z x z x x y x y ⨯=--- ()0,0,00OA OB OB OA ⨯+⨯== sin AOB ∠===1sin 2AOB S OA OB AOB =⋅∠= △AOB ⨯2222()OB OA OB OA OB ⨯-⋅= ()111,,OA x y z = ()222,,OB x y z =()122112211221,,OA OB y z y z z x z x x y x y ⨯=--- ()()()2222122112211221OB y z y z z x z x x y x y ⨯=-+-+-,成立,故,故的几何意义表示:以15.答案:选择①:存在点,,满足;选择②:存在点,,满足;选择③:不存在点E ,F 满足,理由见解析解析:由题意知,正方体的棱长为2,则,,,,,设,,则,,,,所以,.选择①:因为,所以,即,得,若,则,则,故存在点,,满足,142()EF AC a b ⋅=-+ 82AE BF b ⋅=- ()()DE CF DE CF +⊥- ()()0DE CF DE CF +⋅-= 22DE CF = a b =10EF AC ⋅= 42()0a b -+=1a b ==(0,1,2)E 22111x y z ++222222x y z ++()22121212()OA OB x x y y z z ⋅=++2()OA OB ⋅ ⨯1222AOB OA OB OA OB S OA =⨯⋅⨯=⋅⨯ △21()63AOB OA OB S OA OB ⨯=⋅⨯⨯ △2()OA OB ⨯ △⨯(0,1,2)E (1,2,2)F 1EF A C ⊥6AE BF ⋅= 10,,22E ⎛⎫ ⎪⎝⎭3,2,22F ⎛⎫ ⎪⎝⎭1EF A C ⊥5AE BF ⋅= 1EF A C ⊥1111ABCD A B C D -(2,0,0)A (2,2,0)B 1(2,0,2)A (0,0,0)D (0,2,0)C (0,,2)(02)E a a ≤≤(,2,2)(02)F b b ≤≤(,2,0)EF b a =- 1(2,2,2)AC =-- (2,,2)AE a =- (2,0,2)BF b =- (1,2,2)F 1EF A C ⊥此时.选择②:因为,若,则,得故存在点,,满足,此时.选择③:因为,所以与不共线,又,所以,即,则,故不存在点E ,F 满足.826AE BF b ⋅=-= ||DE = (0,,2)DE a = ==10EF AC ⋅= 42()0a b -+=b =10,,22E ⎛⎫ ⎪⎝⎭3,2,22F ⎛⎫ ⎪⎝⎭1EF A C ⊥825AE BF b ⋅=-= 0cos ,1EF DB <〈〉< EF DB (2,2,0)DB = 2b a ≠-2a b +≠142()0EF AC a b ⋅=-+≠ 1EF A C ⊥。
高考数学一轮复习提高题专题复习立体几何多选题练习题附解析一、立体几何多选题1.已知球O 为正方体1111ABCD A B C D -的内切球,平面11A C B 截球O 的面积为24π,下列命题中正确的有( )A .异面直线AC 与1BC 所成的角为60°B .1BD ⊥平面11AC B C .球O 的表面积为36πD .三棱锥111B AC B -的体积为288 【答案】AD 【分析】连接11A C ,1A B ,通过平移将AC 与1BC 所成角转化为11A C 与1BC 所成角可判断A ;通过反证法证明B ;由已知平面11A C B 截球O 的面积为24π求出正方体棱长,进而求出内切球的表面积可判断C ;利用等体积法可求得三棱锥111B AC B -的体积可判断D. 【详解】对于A ,连接11A C ,1A B ,由正方体1111ABCD A B C D -,可知11//A C AC ,11AC B ∴∠为异面直线AC 与1BC 所成的角,设正方体边长为a,则1111AC A B BC ==,由等边三角形知1160A C B ∠=,即异面直线AC 与1BC 所成的角为60,故A 正确; 对于B ,假设1BD ⊥平面11A C B ,又1A B ⊂平面11A C B ,则11BD B A ⊥,设正方体边长为a ,则11A D a =,1A B =,1BD =,由勾股定理知111A D B A ⊥,与假设矛盾,假设不成立,故1BD 不垂直于平面11A C B ,故B 错误; 对于C ,设正方体边长为a,则11AC =,内切球半径为2a,设内切球的球心O 在面11A C B 上的投影为O ',由等边三角形性质可知O '为等边11A C B △的重心,则11123233O A AC a ='=⨯=,又12OA a =,∴球心O 到面11A C B 的距离6a ==,又球心与截面圆心的连线垂直于截面,∴=,又截面圆的面积2246S a ππ⎛⎫= ⎪ ⎪⎝⎭=,解得12a =,则内切球半径为6,内切球表面积214644S ππ==⨯,故C 错误;对于D ,由等体积法知111111111111212122812383B A C B B A C B A C B V V S a --==⨯⨯=⨯⨯=,故D 正确; 故选:AD【点睛】关键点点睛:本题考查了正方体和它的内切球的几何结构特征,关键是想象出截面图的形状,从而求出正方体的棱长,进而求出内切球的表面积及三棱锥的体积,考查了空间想象能力,数形结合的思想,属于较难题.2.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 3C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.3.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD 【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,PA ===同理可得PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,EM ∴==过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin d EM θθ==≤ 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为R '==,所以,截面圆的半径2r =≥=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.4.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短,即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.5.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD ,因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD的中点,所以Q , 平面PAD 的一个法向量为(0,1,0)m =,6(2QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,2PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则360260n AQ x z nAC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos 3θ=,所以B 正确; 三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V SOP --==⋅ 1116322=⨯⨯⨯=, 所以C不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD=,所以222222a a⎛++-=++ ⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x ,所以222362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为234243x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.6.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||10A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE ,则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确; 对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-= ⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC.故选:ABC.【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.7.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π【答案】BD【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可.【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =, 对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =,故22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确.故选:BD.【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3【答案】ABD【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可.【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1; 当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S所以四边形MENF 的面积最小值与最大值之比为2C 不正确.对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。
2018高考数学大一轮复习升级增分训练立体几何文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学大一轮复习升级增分训练立体几何文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学大一轮复习升级增分训练立体几何文的全部内容。
升级增分训练立体几何1.某四面体的三视图如图,则其四个面中最大的面积是()A.2 B.2错误!C. 3 D.2错误!解析:选D 在正方体ABCDA 1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1.BCB1,如图所示,其四个面的面积分别为2,2错误!,2错误!,2错误!,故选D.2.(2016·广东茂名二模)若几何体的三视图如图所示,则该几何体的外接球的表面积为()A.34π B.35πC.36π D.17π解析:选A 由几何体的三视图知它是底面为正方形且有一条侧棱垂直于底面的四棱锥,可把它补成一个长、宽、高分别为3,3,4的长方体,该长方体的外接球即为原四棱锥的外接球,所以4R2=32+32+42=34(其中R为外接球的半径),外接球表面积为S=4πR2=34π.3.(2017·湖南长沙三校联考)已知点E,F,G分别是正方体ABCD。
A1B1C1D1的棱AA1,CC1,DD的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上.以M,N,Q,P为顶点的三棱锥P。
MNQ 1的俯视图不可能是()解析:选C 当M与F重合、N与G重合、Q与E重合、P与B1重合时,三棱锥P。
MNQ的俯视图为A;当M,N,Q,P是所在线段的中点时,三棱锥P。
专题12 立体几何专题(新定义)一、单选题1.(2022秋·内蒙古赤峰·高二赤峰二中校考阶段练习)已知体积公式3V kD =中的常数k 称为“立圆率”.对于等边圆柱(轴截面是正方形的圆柱),正方体,球也可利用公式3V kD =求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长,在球中,D 表示直径).假设运用此体积公式求得等边圆柱(底面圆的直径为a ),正方体(棱长为a ),球(直径为a )的“立圆率”分别为1k ,2k ,3k ,则123::k k k =( ) A .:1:46ππB .:2:46ππC .3:2:2πD .111::64π【答案】A【分析】根据体积公式分别求出“立圆率”即可得出.【详解】因为231=2a V a k a π⎛⎫⨯⨯= ⎪⎝⎭圆柱,所以14k π=,因为332V a k a ==正方体,所以21k =,因为333432a V k a π⎛⎫=⨯= ⎪⎝⎭球,所以36k π=,所以123::k k k =:1:46ππ.故选:A.2.(2022秋·江苏南京·高二统考期中)我们把所有顶点都在两个平行平面内的多面体叫做拟柱体,在这两个平行平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高,过高的中点且平行于底面的平面截拟柱体所得的截面称为中截面.已知拟柱体的体积公式为V =16h(S +4S 0+S'),其中S ,S'分别是上、下底面的面积,S 0是中截面的面积,h 为拟柱体的高.一堆形为拟柱体的建筑材料,其两底面是矩形且对应边平行(如图),下底面长20米,宽10米,堆高1米,上底长、宽比下底长、宽各少2米.现在要彻底运走这堆建筑材料,若用最大装载量为4吨的卡车装运,则至少需要运( ) (注:1立方米该建筑材料约重1.5吨)A .63车B .65车C .67车D .69车【答案】B【分析】根据所给条件先计算上底面和中截面的长、宽,进而求出各个面的面积、体积以及重量,进一法求出所需要的车次.【详解】解:由条件可知:上底长为18米,宽为8米;中截面长19米,宽9米;则上底面积188S =⨯,中截面积0199S =⨯,下底面积12010S =⨯,所以该建筑材料的体积为V =()1514114468420063⨯⨯++=立方米,所以建筑材料重约514325732⨯=(吨), 需要的卡车次为257464.25÷=,所以至少需要运65车. 故选:B3.(2022·全国·高三专题练习)胡夫金字塔的形状为四棱锥,1859年,英国作家约翰·泰勒(JohnTaylor ,1781-1846)在其《大金字塔》一书中提出:古埃及人在建造胡夫金字塔时利用黄金比例1 1.6182⎛⎫⎝≈ +⎪⎪⎭,胡夫金字塔的每一个侧面的面积都等于金字塔高的平方.如图,若2h as =,则由勾股定理,22as s a =−,即210s sa a⎛⎫−−= ⎪⎝⎭,因此可求得s a 为黄金数,已知四棱锥底面是边长约为856英尺的正方形(2856)a =,顶点P 的投影在底面中心O ,H 为BC 中点,根据以上信息,PH 的长度(单位:英尺)约为( ).A .611.6B .481.4C .692.5D .512.4【答案】C【解析】由2856a =和PH s ==可得【详解】解:12PH s a ==,2856a =8566922.5PH s ==≈ 故选:C【点睛】读懂实际问题,把实际问题转化为数学问题进行计算;基础题.4.(2023·辽宁沈阳·统考一模)刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.则正八面体(八个面均为正三角形)的总曲率为( )A .2πB .4πC .6πD .8π【答案】B【分析】利用正八面体的面积和减去六个顶点的曲率和可得结果.【详解】正八面体每个面均为等比三角形,且每个面的面角和为π,该正面体共6个顶点, 因此,该正八面体的总曲率为62π8π4π⨯−=. 故选:B.5.(2023·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈−︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒【答案】D【解析】首先根据题意理解太阳高度角、该地纬度、太阳直射纬度的概念,然后由太阳高度角()9039542745θδ'''=︒−︒−=︒可得结果.【详解】由题可知,天安门广场的太阳高度角()9039542750533θδδ''''''=︒−︒−=︒+, 由华表的高和影长相等可知45θ=︒,所以45505335533δ''''''=︒−︒=−︒. 所以该天太阳直射纬度为南纬5533'''︒, 故选:D.6.(2023秋·广东深圳·高二校考期末)图1中的机械设备叫做“转子发动机”,其核心零部件之一的转子形状是“曲侧面三棱柱”,图2是一个曲侧面三棱柱,它的侧棱垂直于底面,底面是“莱洛三角形”,莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,如图3.若曲侧面三棱柱的高为5,底面任意两顶点之间的距离为20,则其侧面积为( )A .100πB .600πC .200πD .300π【答案】A【分析】由莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,结合已知可得半径为20,由弧长公式求得底面周长,进而可求得结果.【详解】莱洛三角形由三段半径为20,圆心角为π3的圆弧构成,所以该零件底面周长为π32020π3⨯⨯=,故其侧面积为20π5=100π⨯. 故选:A.7.(2023·全国·高三专题练习)设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π−∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>【答案】B【分析】根据题意给的定义,结合图形,分别求出a 、b 、c 、d 的值即可比较大小. 【详解】对于正四面体,其离散曲率为111(3)232a ππ=−⨯=, 对于正八面体,其离散曲率为111(4)233b ππ=−⨯=, 对于正十二面体,其离散曲率为1311(3)2510c ππ=−⨯=, 对于正二十面体,其离散曲率为111(5)236d ππ=−⨯=, 则111123610>>>, 所以a b d c >>>. 故选:B.8.(重庆市2023届高三第七次质量检测数学试题)如图,生活中有很多球缺状的建筑.球被平面截下的部分叫做球缺,截面叫做球缺的底面,球缺的曲面部分叫做球冠,垂直于截面的直径被截后的线段叫做球缺的高.球冠面积公式为2πS RH =,球缺的体积公式为()21π33V R H H =−,其中R 为球的半径,H 为球缺的高.现有一个球被一平面所截形成两个球缺,若两个球冠的面积之比为1:2,则这两个球缺的体积之比为( ).A .19B .1120C .720D .310【答案】C【分析】根据已知条件求得123R h =,243R h =,代入体积公式计算即可.【详解】设小球缺的高为1h ,大球缺的高为2h ,则122h h R +=,① 由题意可得:122π12π2Rh Rh =,即:212h h =,② 所以由①②得:123R h =,243R h =,所以小球缺的体积23112228ππ333381R R R V R ⎛⎫⎛⎫=−⨯=⎪ ⎪⎝⎭⎝⎭, 大球缺的体积2321480ππ333381R R V R ⎛⎫=−⨯=⎪⎝⎭, 所以小球缺与大球缺体积之比为313228π78180π2081R V R V ==.故选:C.9.(2021秋·江苏南通·高三统考阶段练习)碳60(Co )是一种非金属单质,它是由60个碳原子构成,形似足球,又称为足球烯,其结构是由五元环(正五边形面)和六元环(正六边形面)组成的封闭的凸多面体,共32个面,且满足:顶点数-棱数+面数=2,则其六元环的个数为( ).A .12B .20C .32D .60【答案】B【分析】根据顶点数-棱数+面数=2求出棱数,设正五边形有x 个,正六边形有y 个,根据面数和棱数即可得关于,x y 的方程组,解得y 的值,即可求解.【详解】根据题意, 碳60(Co )由60个顶点,有32个面, 由顶点数-棱数+面数=2可得:棱数为6032290+−=, 设正五边形有x 个,正六边形有y 个,则3256902x y x y +=⎧⎨+=⨯⎩,解得:1220x y =⎧⎨=⎩,所以六元环的个数为20个,故选:B.10.(2018春·四川成都·高三成都七中校考阶段练习)设b a >,定义区间[,)a b 、(,]a b 、(,)a b 、[,]a b 的长度均为b a −.在三棱锥A BCD −中,2AB BC CA ===,AD BD ⊥,则CD 长的取值区间的长度为AB .2C .D .4【答案】B【解析】由题意画出图形,得到三棱锥A - BCD 存在时CD 的范围,则答案可求. 【详解】如图,△ABC 是边长为2的等边三角形,取AB 中点O ,连接CO ,DO ,可得CO因为AD ⊥BD ,当AD =BD 时,OD 最长为1,则当等腰直角三角形ABD 在平面ABC 上时,CD1,则要使三棱锥A - BCD 存在,CD ∈所以CD 长的取值区间的长度为-1)=2. 故选:B【点睛】本题考查由立体几何图形成立限制边长范围问题,属于较难题.二、多选题11.(2022·全国·高三专题练习)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是( )A B.侧面积为C .在该斜圆柱内半径最大的球的表面积为36π D.底面积为 【答案】ABD【分析】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,作出过斜圆柱底面椭圆长轴的截面,截斜圆柱得平行四边形,截圆柱得矩形,如图,由此截面可得椭圆面与圆柱底面间所成的二面角的平面角,从而求得椭圆长短轴之间的关系,得离心率,并求得椭圆的长短轴长,得椭圆面积,利用椭圆的侧面积公式可求得斜椭圆的侧面积,由斜圆柱的高比圆柱的底面直径大,可知斜圆柱内半径最大的球的直径与圆柱底面直径相等,从而得其表面积,从而可关键各选项.【详解】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,如图,矩形ABCD BFDE 是斜圆柱的过底面椭圆的长轴的截面, 由圆柱的性质知45ABF ∠=︒,则BF ,设椭圆的长轴长为2a ,短轴长为2b ,则22a b ,a =,2c ==,所以离心率为c e a ==A 正确; EG BF ⊥,垂足为G ,则EG 6=,易知45EBG ∠=︒,BE =4CE AF AB ===,所以斜圆柱侧面积为22(4224S ππ=⨯⨯+−⨯⨯=,B 正确;24b =,2b =,2a =,a =椭圆面积为ab π=,D 正确;由于斜圆锥的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球表面积为24216ππ⨯=,C 错. 故选:ABD .12.(2022春·黑龙江哈尔滨·高一哈九中校考期末)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ−⨯=,故其总曲率为4π.给出下列四个结论,其中,所有正确结论的有( )A .正方体在每个顶点的曲率均为2π B .任意四棱锥的总曲率均为4π;C .若一个多面体满足顶点数V =6,棱数E =8,面数F =12,则该类多面体的总曲率是3π;D .若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F −+=,则该类多面体的总曲率是常数 【答案】ABD【分析】根据曲率的定义依次判断即可.【详解】对于A ,根据曲率的定义可得正方体在每个顶点的曲率为2322πππ−⨯=,故A 正确;对于B ,由定义可得多面体的总曲率2π=⨯顶点数−各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为()254214ππππ⨯−⨯+⨯=,故B 正确;对于C ,由多面体顶点数、面数、棱数的关系有2V E F −+=,而选项C 中所给的多面体的顶点数、面数、棱数不满足此关系式,故不能构能多面体,故C 不正确; 对于D ,设每个面记为[]()1,i n i F ∈边形,则所有的面角和为()()1122222FFi i i i n n F E F E F ππππππ==−=−=⋅−=−∑∑,根据定义可得该类多面体的总曲率()224V E F πππ−−=为常数,故D 正确. 故选:ABD.13.(2020秋·山东济南·高三统考期末)给定两个不共线的空间向量a 与b ,定义叉乘运算:a b ⨯.规定:①a b ⨯为同时与a ,b 垂直的向量;②a ,b ,a b ⨯三个向量构成右手系(如图1);③ sin a b a b a b ⨯=〈〉,.如图2,在长方体1111ABCD A B C D −中,124AB AD AA ===,,则下列结论正确的是( ) A .1AB AD AA ⨯= B .AB AD AD AB ⨯=⨯C .111()AB AD AA AB AA AD AA +⨯=⨯+⨯ D .11111()ABCD A B C D V AB AD CC −=⨯⋅ 【答案】ACD【分析】根据新定义空间向量的叉乘运算依次判断选项即可. 【详解】在长方体1111ABCD A B C D −中,AB =AD =2,14AA =,A :1AA 同时与AB AD ,垂直,sin =22sin 904AB AD AB AD AB AD ︒⨯=⨯⨯=,, 又因为1=4AA ,所以AB AD ⨯=1AA ,且AB AD ,,1AA 构成右手系,故1=AB AD AA ⨯成立,故A 正确;B :根据a b a b ⨯,,三个向量构成右手系,可知1=AB AD AA ⨯,1=-AD AB AA ⨯, 则AB AD ⨯≠AD AB ⨯,故B 错误;C :11()224sin 90AB AD AA AC AA ︒+⨯=⨯==1AC AA ⨯与DB 同向共线,124sin 908AB AA ︒⨯=⨯=,且1AB AA ⨯与DA 同向共线,又124sin 908AD AA ︒⨯=⨯=,且1AD AA ⨯与AB 同向共线,即1AD AA ⨯与DC 同向共线,所以1182AB AA AD AA ⨯+⨯=11AB AA AD AA ⨯+⨯与DB 同向共线, 所以1()AB AD AA +⨯=11AB AA AD AA ⨯+⨯,故C 正确; D :长方体1111ABCD A B C D −的体积22416V =创=,2111()416AB AD CC AA CC ⨯⋅=⋅==,所以1111ABCD A B C D V −=1()AB AD CC ⨯⋅,故D 正确.故选:ACD14.(2022春·全国·高一期末)数学中有许多形状优美、寓意独特的几何体,“等腰四面体”就是其中之一,所谓等腰四面体,就是指三组对棱分别相等的四面体.关于“等腰四面体”,以下结论正确的是( ) A .长方体中含有两个相同的等腰四面体B .“等腰四面体”C .“等腰四面体”可由锐角三角形沿着它的三条中位线折叠得到D .三组对棱长度分别为a ,b ,c 的“等腰四面体”【答案】ABC【分析】作出长方体,根据等腰四面体的定义得出图形,根据长方体的性质判断各选项. 【详解】如图,长方体1111ABCD A B C D −有两个相同的等腰四面体:11ACB D 和11A C BD ,A 正确;如等腰四面体11A C BD 中,每个面可能看作是从长方体截一个角得出的, 如图,设11111,,A D A B AA 的长分别为,,x y z ,不妨设x y z ≥≥,则11B D =1AD =1AB =1BD 最大,其所对角的余弦值为222222211cos 0B AD ∠==>,最大角11B AD ∠为锐角,三角形为锐角三角形,同理其它三个面都是锐角三角形,各个面的三条边分别相等,为全等三角形,面积相等,B 正确;把一个等腰四面体沿一个顶点出发的三条棱剪开摊平,则得一个锐角三角形,还有三条棱是这个三角形的三条中位线,如等腰四面体11ACB D ,沿11,,AB AD AC 剪开摊平,11,ND PD 共线,同理可得,CM DP 共线,11,B M B N 共线,MNP △11ACB D 的面相似),且1111,,B C B D CD 是这个三角形的中位线,因此C正确;如上等腰四面体11A C BD 中三条棱长分别是长方体的三条面对角线长,由长方体性质知长方体对角线是其外D 错。
2019-2020年高考数学大一轮复习升级增分训练立体几何文1 •某四面体的三视图如图,则其四个面中最大的面积是 ( )A. 34 nA. 2C• 一3B. 2 2 D 2 3解析:选D 在正方体ABCDA i BGD 中还原出三视图的直观图,其是 一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D -BCR 如图所示,其四个面的面积分别为 2,2羽,2羽,2护,故选D.2 . (xx •广东茂名二模)若几何体的三视图如图所示,则该几何体的 外接球的表面积为(B. 35 n D. 17 n/i州视图C. 36 n解析:选A由几何体的三视图知它是底面为正方形且有一条侧棱垂直于底面的四棱锥,可把它补成一个长、宽、高分别为3,3,4的长方体,该长方体的外接球即为原四棱锥的外接球,所以4戌=32+ 32+ 42= 34(其中R为外接球的半径),外接球表面积为S= 4n R2=34 n .3 . (xx •湖南长沙三校联考)已知点E F, G分别是正方体ABCDABCD的棱AA, CC,DD的中点,点M N Q P分别在线段DF, AG BE CB上.以M N, Q P为顶点的三棱锥RMNQ勺俯视图不可能是()解析:选C 当M 与F 重合、N 与G 重合、Q 与E 重合、P 与Bl 重合时,三棱锥 F -MNQ的俯视图为A ;当M N, Q F 是所在线段的中点时,三棱锥Q F 位于所在线段的非端点位置时,存在三棱锥F -MNQ 使其俯视图为D.4. (xx •河南中原名校联考)如图,四棱柱ABCDABCD 是棱长为1的正方体,四棱锥S -ABCD 是高为1的正四棱锥,RMN 的俯视图为B;当M N,11解得x = 7,所以球的半径R= OB = 98若点S, A , B , C , D 在同一个球面上, 则该球的表面积为 A._9 16n25B. ^nC.49 'n1 681解析:选D 作如图所示的辅助线, 其中O 为球心,设 OG = x , 贝V 0B = SO= 2 — x ,由正方体的性质知 BG =¥2则在Rt △即(2 — x ) 2= x 2 +2 81所以球的表面积为 S = 4 n R = 16 n .2俯视图AB .C. D .2( ) 止视① 5 t 3 3 4.33 11.365. (xx •湖南长沙四校一模)某几何体的三视图如图所示,则该几何体的体积为 ()解析:选D 由点A 经正方体的表面, 按最短路线爬行到达顶点 C 的位置,共有6种路 线(对应6种不同的展开方式),若把平面ABEA i 和平面BCCB 展到同一个平面内, 连接AC , 则AC 是最短路线,且 AC 会经过BB 的中点,此时对应的正视图为②;若把平面 ABC [和平 面CD 6C 展到同一个平面内,连接 AC ,则AC 是最短路线,且 AC 会经过CD 的中点,此时 对应的正视图为④•而其他几种展开方式对应的正视图在题中没有出现. 7. (xx •福建省质检)在三棱锥 P -ABC 中,PA= 2 3, PC = 2, AB= 7, BC = 3,/ ABC n="2,则三棱锥 RABC 外接球的表面积为( )—耗一侧视图A.①②B.①③C.③④D.②④ △ PAD 为正三角形,四棱锥的底面是直角梯形, 四棱锥的高为_3,二所求 6. (xx •湖南郴州模拟)一只蚂蚁从正方体 ABCDA i BGD 的顶点A 出 发,经正方体的表面,按最短路线爬行到顶点 C 的位置,则下列图形中可 解析:选B 由三视图知该几何体是一个四棱锥, 其直观图如图所示, 体积V = 6x 以表示正方体及蚂蚁最短爬行路线的正视图的是2解析:选D 设三棱锥P -ABC 勺外接球的半径为 R 在厶ABC 中,因为AB= 7, BO 3,/ABC=^,所以 AC= AW + BC = 4.在△ PAC K 因为 PA= 2 3, PC= 2, AC= 4,所以 PA + P C = A C ,所以/ APC=才,所以AC 为三棱锥P -ABC 的外接球的直径,所以 R= 2,所以此 三棱锥的外接球的表面积S = 4 n R = 4 n x2= 16 n .8. (xx •南宁模拟)设点A , B, C 为球0的球面上三点,0为球心.球0的表面积为100 n , 且厶ABC 是边长为4 3的正三角形,则三棱锥 OABO 的体积为()A. 12B. 12 3A. 4 n B.16C. 32 y nD. 16nOH= O A — A H =冷兮—4 = 3,•••三棱锥 OABC 的体积为V = 1x3X (4 3)2x 3= 12 3.9.如图,三棱锥 V -ABC 的底面为正三角形,侧面 VAC 与底面垂直且视图的面积为|,则其侧视图的面积为 _____________ .3解析:设三棱锥 VABC 的底面边长为a ,侧面VAC 的边AC 上的高为h ,4 __则ah = 3,其侧视图是由底面三角形 ABC 边AC 上的高与侧面三角形 VAC 边AC 上的高组成的直角三角 1x h =—xx4=二 23 3其面积为1xC. 24 3D. 36 32解析:选B :•球O的表面积为100 n = 4 n r ,•.球O的半径为5.如图,取△ ABC的中心H 连接OH连接并延长AH交BC于点M贝U AM=答案:三310. (xx •南昌一模)正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的2距离为寸2,此时四面体ABC D7卜接球的表面积为 _________ .解析:由题知,求四面体ABCD勺外接球的表面积可转化为求长、宽、高分别为1,1 , 3的长方体的外接球的表面积,其半径R= 2 1 + 1 + ■. 3 2 = _2,所以S= 4 n R = 5 n .答案:5 n11. (xx •江西师大附中模拟)已知边长为2 .3的菱形ABCDL / BAD= 60°,沿对角线BD折成二面角ABDC的大小为120°的四面体,则四面体的外接球的表面积为 ________________________ .解析:如图1,取BD的中点E,连接AE CE由已知条件可知,平面ACEL平面BCD易知外接球球心在平面ACE内,如图2,在CE上取点G,使CG= 2GE过点G作I 1垂直于CE 过点E作I 2垂直于AC设I1与I 2交于点Q连接OA OC则OA= OC易知O即为球心•分别解△ OCG △ EGO^得R= OC=7 , A外接球的表面积为28 n .答案:28 n12. (xx •贵州适应性考试)已知正三棱柱(底面是正三角形,侧棱与底面垂直)的体积为3yj3 cm3,其所有顶点都在球O的球面上,则球O的表面积的最小值为____________________ cm2.解析:球O的表面积最小等价于球O的半径R最小.设正三棱柱的底面边长为 a ,高为b,则正三棱柱的体积V= ~43a2b= 3 3 ,所以a2b= 12.底面正三角形所在截面圆的半径r=專,则R=r 2+ 目卜讐a)+ 号=3X ¥+ b= b+ b,令f(b)= 4+ 4,* b v 2R,则f,(b) b3—8="2了 .令f '(b) = 0,解得b= 2,当0v b v 2时f '(b) v 0,函数f(b)单调递减,当b >2时,f '(b) >0,函数f(b)单调递增,所以当b= 2时,f(b)取得最小值3,即(氏加=3, 故球O的表面积的最小值为4 n ( R) min= 12 n .答案:12nn13.如图1,在直角梯形ABCD中, AD// BC / BAD=~2, AB= BC= 1, AD= 2, E 是AD的中点,O是AC与BE的交点.将△ ABE沿BE折起到△ ABE的位置,如图2.⑴证明:CDL 平面AOC(2)若平面ABE!平面BCDE 求平面 ABC 与平面AQD 的夹角的余弦值.n解:⑴ 证明:在题图1中,因为AB= BC= 1, AD= 2, E 是AD 的中点,/ BA*/, 所以BEL AC即在题图2中,BE! OA, BE L OC 从而BEL 平面AOC 又 BOI DE DE= 1= BC所以四边形BCD 为平行四边形,所以 CD/ BE 所以CDL 平面AOC⑵由已知,平面 ABE L 平面BCDE 又由(1)知,BEL OA , BE!OC所以/ AOC 为二面角 A-BEC 的平面角,n所以/ AOC =~2 .如图,以O 为原点,建立空间直角坐标系, 因为 AB = AE = BC= ED= 1,BC/ ED所以 B j 于,0,0,E —孑,0,0,AO ,0,子,C O ,孑,0,得—BC 十乎,申,0j, ;AC =、,普,-乎]"C D ="B E = ( — 2, 0,0).设平面ABC 的法向量为n 1 = (X 1, y 1, Z 1), 平面AQD 的法向量为n 2= (X 2, y 2, Z 2), 平面ABC 与平面A CD 的夹角为0 ,取 y 1= 1,则f 1 BC = 0,AC = 0,—X 1 + y 1 = 0,y 1 —乙=0,得平面ABC的一个法向量为n i= (1,1,1);n2 • CD= 0, 由?一『2 • AC= 0,X2= 0,得fy2—z2= 0,3 ,3 ,取y 2= 1,得平面A i CD 的一个法向量为n 2= (0,1,1)即平面ABC 与平面AQD 的夹角的余弦值为~3 -2019-2020年高考数学大一轮复习升级增分训练简化解析几何运算的5个技巧文1. (xx •四川高考)设0为坐标原点,P 是以F 为焦点的抛物线y 2 = 2px (p >0)上任意一 点,M 是线段PF 上的点,且|PM = 2|MF ,则直线0M 勺斜率的最大值为(A.B . C.D. 1解析:选C 如图所示,设 P (x o , y o )( y o > 0), 则 y 0= 2px o , 即X o =2p-设 Mx ', y '), -- > ---- > 由 PM = 2 MF ,—x o = 2§ — x ', —yo=? C 1—y.1I x化简可得l yP + X oy3.从而COS 0 = I :■:朋3 y 0•••直线0M 的斜率为k = =」^P ±Xf p+聖3 2p所以双曲线的焦点在 y 轴上.因为双曲线的一条渐近线为 y =— 2x ,所以设双曲线的方程为 y 2—4X 2=入(入〉0), 2 2即 -x - = 1,入 A~4所以双曲线的方程为|y 2— 5X 2= 1,故选D.2八 y3.已知双曲线 g —話=1(a >0, b >0)的左、右焦点分别为 F 1( — c , 0), F 2(c, 0), P为且P 己• "PE 2最小值的取值范围是 —扌c 2, — 2c 2,则该双曲线的离心率的取值范围为(A (1 , . 2]则 P F • "P F F = ( — c —X 0,- y °) •( c — X 0,- y °)b 丿—c 2+y 0,上式当y °= 0时取得最小值a 2— c 2,31P 孑2pw -------- =空 + y 0 2 3 y 。
小题专项集训(十三) 立体几何(二)(时间:40分钟 满分:75分)一、选择题(每小题5分,共50分)1.已知点M 在平面ABC 内,并且对空间任一点O ,OM →=xOA →+12OB →+13OC →,则x 的值为( ).A.16B.13 C.12D .0解析 由四点共面的充要条件,知x +12+13=1,因此x =16.答案 A2. (2011·辽宁)如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( ). A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角解析 易证AC ⊥平面SBD ,因而AC ⊥SB ,A 正确;AB ∥DC ,DC ⊂平面SCD ,故AB ∥平面SCD ,B 正确;由于SA ,SC 与平面SBD 的相对位置一样,因而所成的角相同.答案 D3.点M 在z 轴上,它与经过坐标原点且方向向量为s =(1,-1,1)的直线l 的距离为6,则点M 的坐标是( ).A .(0,0,±2)B .(0,0,±3)C .(0,0,±3)D .(0,0,±1)解析 设M 为(0,0,z ),直线l 的一个单位方向向量为s 0=⎝ ⎛⎭⎪⎫33,-33,33,故点M到直线l 的距离d = |OM →|2-|OM →·s 0|2= z 2-13z 2=6,解得z =±3.答案 B4.在如图所示的正方体A 1B 1C 1D 1ABCD 中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为( ). A .-1010B .-120C.120D.1010解析 如图建立直角坐标系D -xyz ,设DA =1,A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫0,12,1.则AC →=(-1,1,0),DE →=⎝ ⎛⎭⎪⎫0,12,1,若异面直线DE 与AC 所成的角为θ,cos θ=|cos 〈AC →,DE →〉|=1010. 答案 D5.(2011·全国)已知二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于 ( ). A.23 B.33 C.63D .1 解析 ∵AB →=AC →+CD →+DB →,∴|AB →|2=|AC →|2+|CD →|2+|DB →|2,∴|CD →|2=2.在Rt △BDC 中,BC = 3.∵面ABC ⊥面BCD ,过D 作DH ⊥BC 于H ,则DH ⊥面ABC , ∴DH 的长即为D 到平面ABC 的距离, ∴DH =DB ·DC BC =1×23=63.故选C. 答案 C6.如图所示,直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,P 是A 1B 1的中点,则直线PQ 与AM 所成的角为( ).A.π6 B.π4 C.π3D.π2 解析 以A 为坐标原点,AB 、AC 、AA 1所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,设AA 1=AB=AC =2,则AM →=(0,2,1),Q (1,1,0),P (1,0,2),QP→=(0,-1,2),所以QP →·AM →=0,所以QP 与AM 所成角为π2.答案 D7.如图,在四棱锥P ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC ,则点M 在正方形ABCD 内的轨迹为 ( ).解析 以D 为原点,DA 、DC 所在直线分别为x 、y 轴建系如图:设M (x ,y,0),设正方形边长为a ,则 P ⎝ ⎛⎭⎪⎫a2,0,32a ,C (0,a,0),则|MC |=x 2+y -a 2,|MP |=⎝ ⎛⎭⎪⎫x -a 22+y 2+⎝ ⎛⎭⎪⎫32a 2. 由|MP |=|MC |得x =2y ,所以点M 在正方形ABCD 内的轨迹为直线y =12x 的一部分.答案 A8.如图所示,在四面体P -ABC 中,PC ⊥面ABC ,AB =BC =CA =PC ,那么二面角B -AP -C 的余弦值为 ( ). A.22B.33C .-77D.57解析 如图所示,作BD ⊥AP 于D ,作CE ⊥AP 于E .设AB =1,则易得CE =22,EP =22,PA =PB =2,可以求得BD =144,ED =24.因为BC →=BD →+DE→+EC →,所以BC →2=BD →2+DE →2+EC →2+2BD →·DE →+2DE →·EC →+2EC →·BD →,所以EC →·BD →=-14,所以cos 〈BD →,EC →〉=-77.故选C.答案 C9.(2013·南通一模)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别在A 1D 、AC 上,且A 1E =23A 1D ,AF =13AC ,则( ).A .EF 至多与A 1D 、AC 之一垂直B .EF 与A 1D 、AC 都垂直 C .EF 与BD 1相交 D .EF 与BD 1异面解析 设AB =1,以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴建立空间直角坐标系,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫13,0,13,F ⎝ ⎛⎭⎪⎫23,13,0,B (1,1,0),D 1(0,0,1),A 1D →=(-1,0,-1),AC →=(-1,1,0),EF →=⎝ ⎛⎭⎪⎫13,13,-13,BD 1→=(-1,-1,1),EF →=-13BD 1→,A 1D →·EF →=AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC ,故选B.答案 B10.P 是二面角α-AB -β棱上的一点,分别在α,β平面上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为( ).A .60°B .70°C .80°D .90°解析 不妨设PM =a ,PN =b ,如图所示,作ME ⊥AB 于E ,NF ⊥AB于F ,因为∠BPM =∠BPN =45°,所以PE =22a ,PF =22b ,所以EM →·FN →=(PM →-PE →)·(PN→-PF →)=PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0,所以EM →⊥FN →,所以二面角α-AB -β的大小为90°. 答案 D二、填空题(每小题5分,共25分)11.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.解析 ∵a =(1,1,x ),b =(1,2,1),c =(1,1,1),∴(c -a )·(2b )=(0,0,1-x )·(2,4,2)=2(1-x )=-2,解得x =2. 答案 212.(2013·徐州模拟)已知正方体ABCD -A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为________. 解析 如图建立直角坐标系D -xyz ,设DA =1,由已知条件A (1,0,0),E ⎝ ⎛⎭⎪⎫0,12,1,B (1,1,0),C (0,1,0),AE →=⎝ ⎛⎭⎪⎫-1,12,1,BC →=(-1,0,0)设异面直线AE 与BC 所成角为θ.cos θ=|cos 〈AE →,BC →〉|=|AE →·BC →||AE →||BC →|=23.答案 2313.如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2.则直线PA 与平面DEF 所成角的正弦值为________.解析 如图,以点A 为原点,AB ,AC ,AP 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系A -xyz .AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1. ∴AP →=(0,0,2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ).则⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,即⎩⎪⎨⎪⎧x ,y ,z ·⎝⎛⎭⎪⎫0,12,0=0,x ,y ,z ·⎝ ⎛⎭⎪⎫-12,12,1=0.解得⎩⎪⎨⎪⎧x =2z ,y =0.取z =1,则平面DEF 的一个法向量为n =(2,0,1).设PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈PA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪PA →·n PA →||n |=55,故直线PA 与平面DEF 所成角的正弦值为55.答案5514.已知:如图,△ABC 是以∠B 为直角的直角三角形,SA ⊥平面ABC ,SA =BC =2,AB =4,M 、N 、D 分别是SC 、AB 、BC 的中点,则A 到平面SND 的距离为________.解析 建立如图的空间直角坐标系,则N (0,2,0),S (0,0,2),D (-1,4,0),∴NS →=(0,-2,2),SD →=(-1,4,-2).设平面SND 的法向量为n =(x ,y,1),∵n ·NS→=0,n ·SD →=0,∴⎩⎪⎨⎪⎧-2y +2=0-x +4y -2=0,∴⎩⎪⎨⎪⎧x =2y =1,∴n =(2,1,1).∵AS →=(0,0,2).。