六年级奥数之超越篇
- 格式:doc
- 大小:2.34 MB
- 文档页数:46
六年级奥数训练第7讲几何综合一内容概述复杂的长度、角度计算;复杂的直线形比例关系;具有一定综合性的直线形计算问题.典型问题兴趣篇1.图7-1中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米.已知a=2厘米,b=4厘米,c=5厘米,求图形的面积.2.如图7-2所示,∠l+∠2+∠3+∠4+∠5+∠6等于多少度?3.如图7-3,平行四边形ABCD的周长为75厘米,以BC为底时高是14厘米,以CD为底时高是16厘米.求平行四边形ABCD的面积。
4.如图7-4,一个边长为1米的正方形被分成4个小长方形,它们的面积分别是103平方米、52平方米、51平方米和101平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?5.如图7-5,红、黄、绿三块大小一样的正方形纸片,放在一个正方体盒内,它们之间相互重叠,已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是10.那么,正方体盒子的底面积是多少?6.如图7-6,在三角形ABC 中,IF 和BC 平行,GD 和AB 平行,HE 和AC 平行.已知AG :GF :FC =4:3:2,那么AH: HI: IB 和BD: DE: EC 分别是多少?7.如图7-7,已知三角形ABC的面积为1平方厘米,D、E分别是AB、AC边的中点,求三角形OBC的面积.8.在图7-8的正方形中,A、B、C分别是ED、EG、GF的中点.请问:三角形CDO的面积是三角形ABO面积的几倍?9.如图7-9,ABCD是平行四边形,面积为72平方厘米,E、F分别为边AB、BC的中点,则阴影部分的面积为多少平方厘米?10.如图7-10,在三角形ABC中,CE=2AE,F是AD的中点,三角形ABC的面积是1,那么阴影部分的面积是多少?拓展篇1.如图7-11,A、B是两个大小完全一样的长方形,已知这两个长方形的长比宽长8厘米,图7-11中的字母表示相应部分的长度,问:A、B中阴影部分的周长哪个长?长多少?2.如图7-12.ABCDE是正五边形,CDF是正三角形,∠BFE等于多少度?3.一个各条边分别为5厘米、12厘米、13厘米的直角三角形,将它的短直角边对折到斜边上去与斜边相重合,如图7-13所示,问:图中的阴影部分(即折叠的部分)的面积是多少平方厘米?4.在图7-14中大长方形被分为四个小长方形,面积分别为12、24、36、48.请问:图中阴影部分的面积是多少?5.三个面积都是12的正方形放在一个长方形的盒子里面,如图7-15,盒中空白部分的面积已经标出,求图中大长方形的面积.6.如图7-16,三角形ABC的面积为1.D、E分别为AB、AC的中点.F、G是BC边上的三等分点.请问:三角形DEF的面积是多少?三角形DOE的面积是多少?7.如图7-17,梯形ABCD的上底AD长10厘米,下底BC长15厘米.如果EF与上、下底平行,那么EF的长度为多少?8.如图7-18,正六边形的面积为6,那么阴影部分的面积是多少?9.两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?10.如图7-19,D是长方形ABCD一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影直角三角形的面积是多少?11.如图7-20,在三角形ABC中,AE= ED,D点是BC的四等分点,阴影部分的面积占三角形ABC面积的几分之几?12.如图7-21,在三角形ABC中,三角形AEO的面积是1,三角形ABO 的面积是2,三角形BOD的面积是3,则四边形DCEO的面积是多少?超越篇1.如图7 - 22,长方形的面积是60平方厘米,其内3条长度相等且两两夹角为120°的线段将长方形分成了两个梯形和一个三角形.请问:一个梯形的面积是多少平方厘米?2.如图7-23,P是三角形ABC内一点,DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.请问:三角形ABC的面积是多少?3.如图7 -24所示,正方形ABCD的面积为1.E、F分别是BC和DF 的中点,DE与BF交于M点,DE与AF交于Ⅳ点,那么阴影三角形MFN 的面积为多少?4.如图7 -25,三角形ABC的面积为1,D、E、F分别是三条边上的三等分点,求阴影三角形的面积.5.如图7-26,小悦测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?6.如图7-27,ED垂直于等腰梯形ABCD的上底AD,并交BC于G,AE 平行于BD,∠DCB =45°,且三角形ABD和三角形EDC的面积分别为75、45,那么三角形AED的面积是多少?7.在长方形ABCD中,E、F、G、H分别是边AB、BC、CD、DA上的点,将长方形的四个角分别沿着HE、EF、FG、GH对折后,A点与B点重合,C点与D点重合.已知EH =3,EF =4,求线段AD与AB的长度比.8.如图7-28,在长方形ABCD中,AE: ED= AF:AB= BG: GC.已知△EFC 的面积为20,△FGD的面积为16,那么长方形ABCD的面积是多少?。
一、兴趣篇1.在200克浓度为15%的盐水中加入50克盐,这时盐水浓度变为多少?然后再加入150克水,浓度变为多少?最后又加入200克浓度为8%的盐水,浓度变为多少?2.(1)在120克浓度为20%的盐水中加入多少克水,才能把它稀释成浓度为10%的盐水?(2)在900克浓度为20%的糖水中加入多少克糖,才能将其配成浓度为40%的糖水?3.现有浓度为20%的盐水100克,加入相同质量的盐和水后,变成了浓度为30%的盐水,请问:加了多少克盐?4.在浓度为40%的酒精溶液中加入5千克水,浓度变为30%.再加入多少千克纯酒精,浓度才能变为50%?5.两个杯子里分别装有浓度为40%与10%的盐水,将这两杯盐水倒在一起混合后,盐水浓度变为30%.若再加入300克20%的盐水,浓度变为25%.请问:原有40%的盐水是多少克?6.(1)一部电话的进价是250元,售出价是320元,这部电话的利润率是多少?(2)一个鼠标的进价是108元,定价是180元,实际上打七五折出售,这个鼠标的利润率是多少?(3)一件皮衣的进价是800元,标价是1440元,结果没人来买.店主决定打折出售,但希望利润率不能低于35%,请问:这件皮衣最低可以打几折?7.某商店卖出两件商品,其中一件比进价高10%出售,另一件比进价低10%出售,结果两件的售出价都是990元,试问:这两件商品售出后,商店是赚了还是赔了?8.甲、乙两种商品,甲商品的成本是125元,乙商品的成本比甲商品低16%,现有以下三种销售方案:(1)甲商品按30%的利润率定价,乙商品按40%的利润率定价;(2)甲、乙都以35%的利润率定价;(3)甲、乙的定价都是155元.请问:选择哪种方案最赚钱?这时能盈利多少元?9.一件衣服,第一天按80%的利润率定价,无人来买;第二天在此基础上再打九折,还是无人来买;第三天再降价96元,终于卖出,已知卖出的价格是进价的1.3倍,求这件衣服的进价.10.费叔叔有10000元钱,打算存人银行两年.办法一:存两年期的整存整取定期储蓄,年利率为4.7%,到期后可取出本金和利息一共多少元?办法二:先存一年期的整存整取定期储蓄,年利率为4%;到期后将本金和利息再存一年,最后本金和利息一共多少元?二、拓展篇11.一个瓶子内最初装有25克纯酒精,先倒出5克,再加入5克水后摇匀,这时溶液的深度是多少?接着又倒出5克,加入5克水,此时溶液的深度变为多少?12.阿奇从冰箱里拿出一瓶100%的汇源纯果汁,一口气喝了五分之一后又放回了冰箱.第二天妈妈拿出来喝了剩下的五分之一,觉得太浓,于是就加水兑满,摇匀之后打算明天再喝.第三天阿奇拿出这瓶果汁,一口气喝得只剩一半了.他担心妈妈说他喝得太多,于是就加了些水把果汁兑满.请问:这时果汁的浓度是多少?13.(1)有浓度为20%的糖水500克,另有浓度为56%的糖水625克,将它们混合之后,糖水的浓度是多少?(2)将浓度为75%的糖水32克稀释成浓度为30%的糖水,需加入水多少克?14.有浓度为20%的硫酸溶液450克,要配制成35%的硫酸溶液,需要加入浓度为65%的硫酸溶液多少克?15.有甲、乙、丙三瓶糖水,浓度依次为63%,42%,28%,其中甲瓶有11千克.先将甲、乙两瓶中的糖水混和,浓度变为49%;然后把丙瓶中的糖水全部倒入混合液中,得到浓度为35%的糖水.请问:原来丙瓶有多少千克糖水?16.甲、乙、丙三瓶糖水各有30克、40克、20克,将这三瓶糖水混合后,浓度变为30%.已知甲瓶的浓度比乙瓶和丙瓶混合溶液的浓度高9%,甲瓶的浓度比乙瓶的浓度高8%.请求出丙瓶糖水的浓度.17.如果取40克甲种酒精溶液和60克乙种酒精溶液混合,那么浓度为62%;如果取同样质量的甲种酒精和乙种酒精混合,那么浓度为61%.请问:甲、乙两种酒精溶液的浓度分别是多少?18.某台空调按30%的利润率定价,换季促销时打8折售出后,获得了100元利润.请问:(1)这台空调的成本是多少元?(2)最后的利润率是多少?19.A、B两种商品,A商品成本占定价的80%,B商品按20%的利润率定价.冬冬的妈妈一次性购买了l件A商品和1件日商品,商店给她打了九折后,还获利36元.现在知道B 商品的定价为240元,求A商品的定价.20.大超市和小超市出售同一种商品,大超市的进价比小超市的进价便宜10%.大超市按30%的利润率定价,小超市按28%的利润率定价,大超市的定价比小超市的定价便宜22元.请问:(1)大超市这种商品的进价是多少元?(2)大超市每件商品赚多少元?小超市每件商品赚多少元?21.某玩具厂生产某种款式的变形金刚,如果按原定价销售,每个可获利润48元.现在打八八折促销,结果销售量增加了一倍,获得的利润增加了25%.请问:打折后每个变形金刚的售价是多少元?22.某家商店购人一批苹果,在运输过程中花去100元运费,后来决定将这些苹果的价格降到原定价的70%卖出,这样所得的总利润就只有原计划的13.已知这批苹果的进价是每千克6元4角,原计划可获得利润2700元.问:这批苹果一共有多少千克?三、超越篇23.有一杯盐水,如果加入200克水,它的浓度就变为原来的一半;如果加入25克盐,它的浓度则变为原来的两倍,问:这杯盐水原来的浓度是多少?24.现有甲、乙、丙三种硫酸溶液.如果把甲、乙按照3:4的质量比混合,得到浓度为17.5%的硫酸;如果把甲、乙按照2:5的质量比混合,得到浓度为14.5%的硫酸;如果把甲、乙、丙按照5:9:10的质量比混合,可以得到浓度为21%的硫酸,请求出丙溶液的浓度.25.甲桶中有若干千克纯水,乙桶中有若干千克纯酒精,第一次从甲桶往乙桶倒水,使得乙桶中液体的质量增加2倍;第二次从乙桶往甲桶倒,使乙桶中液体的质量减少四分之一;第三次再从甲桶往乙桶倒,使甲桶中液体的质量减少五分之一.最后甲桶中液体的质量恰好等于最初乙桶中液体的质量,请问:最后甲、乙两桶中液体的浓度分别等于多少?26.有甲、乙、丙3瓶酒精溶液,它们的质量比是3:2:1.如果把两瓶酒精混合后再按原来的质量分配到各自的瓶中,称为一次操作.现在先对甲、乙两瓶酒精进行一次操作,再对乙、丙两瓶酒精进行一次操作,最后对丙、甲两瓶酒精进行一次操作.三次操作后,甲、乙两瓶溶液的浓度分别是67%和61%.求最初丙溶液的浓度.27.水果店进了一批水果,希望卖出去之后得到50%的利润.当售出六成数量的水果时,由于天气原因水果无法保存,于是商店决定打折处理,结果还是有一成数量的水果烂了,最终只得到了所期望利润的34%.请问:商店打折处理时打了几折?28.某商店将甲、乙两种奶糖混合在一起.甲种每份100克,售价1.65元;乙种每份100克,售价1.2元.原来打算将甲种的两份混合在乙种的一份中去,后来改变混合的方式,将甲种的一份混合到乙种的两份中去.问:顾客买10千克这种奶糖能比原来省______元钱.29.有甲、乙、丙三瓶溶液,甲比乙浓度高6%,乙的浓度则是丙的4倍,如果把乙溶液倒入甲中,就会使甲溶液的浓度比原来下降2.4%;如果把丙溶液倒入乙溶液中,就会使乙溶液的浓度比原来下降 2.25%;如果把甲、丙两瓶溶液混合,则混合液的浓度正好等于乙溶液的浓度.请问:甲、乙、丙三瓶溶液的重量比是多少?它们的浓度分别是多少?30.商店进了一批商品,按40%加价出售.在售出八成后,为了尽快销完,决定五折处理剩余商品,而且商品全部出售后,突然被征收了150元的附加税,这使得商店的实际利润率只是预期利润率的一半,那么这批商品的进价是多少元?。
1 小学六年级中高难度奥数题及答案解析(1)“奥数”是奥林匹克数学竞赛的简称。
学习奥数可以锻炼思维,是大有好处的。
学习奥数的年龄根据学生自身特点而定。
的年龄根据学生自身特点而定。
2121世纪小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(高等难度)六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同学比余下的得奖人数的五分之一少三名,得二等奖的占领奖人数的三分之一,得三等奖的人数比二等奖的人数同学多21名,问得奖人数是多少?【答案解析】解答:设获奖人数为x,则所以x=111x=111(人)(人)题2:(中等难度)"迎春杯迎春杯""数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖..甲说:甲说:""如果我能获奖,那么乙也能获奖奖,那么乙也能获奖."."."乙说:乙说:乙说:""如果我能获奖,那么丙也能获奖如果我能获奖,那么丙也能获奖."."."丙说:丙说:丙说:""如果丁没获奖,那么我也不能获奖么我也不能获奖."."."实际上,他们之中只有一个人没有获奖实际上,他们之中只有一个人没有获奖实际上,他们之中只有一个人没有获奖..并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是那么没能获奖的同学是_________。
【答案解析】首先根据丙说的话可以推知,丁必能获奖首先根据丙说的话可以推知,丁必能获奖..否则,假设丁没获奖,那么丙也没获奖,这与否则,假设丁没获奖,那么丙也没获奖,这与""他们之中只有一个人没有获奖他们之中只有一个人没有获奖""矛盾。
其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能个人全都能获奖,不可能..因此,只有甲没有获奖。
四年级高斯数学导引第三讲超越篇(原创实用版)目录1.导引简介2.高斯数学导引的内容3.四年级高斯数学导引第三讲的主要内容4.超越篇的含义和作用5.超越篇的主要知识点6.总结正文一、导引简介《四年级高斯数学导引》是一本针对小学四年级学生的数学辅导教材,以德国数学家高斯的教学理念为基础,结合我国的教育实际,为学生提供系统、全面的数学知识。
本书的内容涵盖了四年级数学课程的全部知识点,旨在帮助学生更好地理解和掌握数学知识,提高学生的数学素养和解题能力。
二、高斯数学导引的内容《四年级高斯数学导引》共分为十讲,内容包括:算术、代数、几何、测量、组合、概率、逻辑、方法、策略、竞赛等。
每讲都按照知识点的难易程度和学生的接受能力进行编排,既有基本概念的讲解,也有综合运用的训练,让学生在掌握知识的同时,也能学会解题的方法和技巧。
三、四年级高斯数学导引第三讲的主要内容第三讲为超越篇,主要介绍了一些基本的超越数及其性质。
超越数是指不能表示为两个整数的比值的实数,例如圆周率π和自然对数的底数 e等。
本讲的主要内容包括:超越数的概念、性质、分类和一些著名的超越数等。
四、超越篇的含义和作用超越篇的含义是指那些不能用有理数表示的实数,它们在数学中有着广泛的应用。
学习超越数,有助于学生更好地理解实数的概念,丰富学生的数学知识,提高学生的数学素养。
同时,超越数的学习也为以后学习更高级的数学知识打下基础。
五、超越篇的主要知识点1.超越数的概念:不能表示为两个整数的比值的实数。
2.超越数的性质:无理数、无限不循环小数、不能表示为整系数方程的根等。
3.超越数的分类:代数无理数、无理代数数、超越代数数等。
4.著名的超越数:圆周率π、自然对数的底数 e、黄金分割比例φ等。
六、总结《四年级高斯数学导引》第三讲超越篇为学生介绍了一些基本的超越数及其性质,让学生了解到超越数的概念、性质、分类和一些著名的超越数等知识。
小学六年级奥数试题(8篇)小学六年级奥数试题(8篇)在学习和工作的日常里,我们都经常看到试题的身影,试题可以帮助参考者清楚地认识自己的知识掌握程度。
你知道什么样的试题才算得上好试题吗?以下是小编整理的小学六年级奥数试题,仅供参考,欢迎大家阅读。
小学六年级奥数试题11、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。
0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的7倍。
15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。
求有多少个学生?有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。
求水果店里原来一共有多少个芒果?5、(置换问题)学校买回6张桌子和6把椅子共用去192元。
已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。
这样不断来回,直到甲和乙相遇为止,狗共行了多少米?小学六年级奥数试题2标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的。
小学六年级奥数题及解答小学六年级奥数题及解答篇一想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]千米,也就是第一组要追赶的路程。
又知第一组每小时比第二组快(4.5-3.5)千米,由此便可求出追赶的时间。
解:第一组追赶第二组的路程:3.5-(4.5-3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组。
2、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。
若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
解:乙仓存粮:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)答:甲仓存粮51吨,乙仓存粮14吨。
3、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。
由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2+10=80+10=90(米)答:两队每天修90米。
4、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
六年级奥数试题
第一题:唐老鸭和米老鼠赛跑
唐老鸭与米老鼠进行了一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭手中掌握一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n次指令,米老鼠就以原来的速度的nx10%倒退一分钟,然后再按原来的速度继续前进。
如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少是多少次。
答:
第二题:兵乓球训练(逻辑)
甲、乙、丙三人用擂台赛形式进行兵乓球训练,每局2人进行比赛,另1人当裁判,每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战,半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局,那么整个训练中的第3局当裁判的是?
答:
第三题:应用题
我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6。
9元外,超过的部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份的煤气费是40。
02元,又知道8月份煤气用量相当于1月份的7/15,那么超过8立方米后,每立方米煤气应收多少元?
答:
第四题:图形面积
直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACDE与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T,问:图中阴影部分(△ANE、△NPD与梯形BTFG)的总面积等于多少?
答:
第五题:图形
如图,长方形ABCD中,E为AD的中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.
答:
最新小学六年级奥数试题答案。
突破繁分数知识框架一、定义:在一个分数的分子和分母里,至少有一个又含有分数,这样形式的分数,叫做繁分数。
繁分数中,把分子部分和分母部分分开的那条分数线,叫做繁分数的主分数线(也叫主分线)。
主分线比其他分数线要长一些,书写位置要取中。
在运算过程中,主分线要对准等号。
如果一个繁分数的分子部分和分母部分又是繁分数,我们就把最长的那条主分线,叫做中主分线,依次向上为上一主分线,上二主分线……;依次向下叫下一主分线,下二主分线……;两端的叫末主分线。
根据分数与除法的关系,分数除法的运算也可以写成繁分数的形式。
二、繁分数化简把繁分数化为最简分数或整数的过程,叫做繁分数的化简。
繁分数化简一般采用以下四种方法:(1)先找出中主分线,确定出分母部分和分子部分,然后这两部分分别进行计算,每部分的计算结果,能约分的要约分,最后写成“分子部分÷分母部分”的形式,再求出最后结果。
此题也可改写成分数除法的运算式,再进行计算。
(2)繁分数化简的另一种方法是:根据分数的基本性质,经繁分数的分子部分、分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。
(3)繁分数的化简一般由下至上,由左到右,逐次进行化简。
繁分数的分子部分和分母部分有时也出现是小数的情况,如果分子部分与分母部分都是小数,可依据分数的基本性质,把它们都化成整数,然后再进行计算。
如果是分数和小数混合出现的形式,可按照分数、小数四则混合运算的方法进行处理。
即:把小数化成分数,或把分数化成小数,再进行化简。
当分子部分和分母部分都统一成小数后,化简的方法是:中间约分时,把小数看成整数,但要注意小数点不要点错位置。
也可以根据分数的基本性质,把繁分数的分子部分和分母部分都变成整数连乘,然后交叉约分算出结果来。
通过观察可以看到:分子部分的各个因数一共有三位小数;分母部分的各个因数一共有两位小数。
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
第1讲 分数数列计算内容概述建立抵消的思想,特别是灵话运用裂项的方法求解一些分数数列的计算问题.典型问题超越篇1.计算:⋅⨯++⨯+++⨯++⨯+201920191918191832322121222222222.计算:.1201201181181414121222222222⋅-++-+++-++-+3.已知算式)19189()17168()542()321(+⨯+⨯⨯+⨯+ 的结果是一个整数,那么它的末两位数字是多少?4.计算:⋅⨯⨯++⨯⨯+⨯⨯+⨯⨯201918375437432532135.计算:!10099!43!32!21++++ (最后结果可以用阶乘表示)6.已知22226411019181,81++++==B A ,请比较A 和B 的大小。
7.计算:1000323100!10233!532!431!3⨯++⨯+⨯+⨯ (结果可以用阶乘和乘方表示)8.计算:⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++⨯⨯⨯⨯+⨯⨯+12959697459899100959697989910096979910097100第2讲比例解应用题内容概述涉及两个或多个量之闻比例的应用题.熟练掌握比的转化和运算;对条件较多的应用题,学会通过列表的方法逐步分析求解;了解正比例与反比例的概念,掌握行程问题和工程问题中的正反比例关系.典型问题超越篇1.甲、乙两人分别同时从A 、B 两地开始,修建一条连接A 、B 两地的公路,并按修路的距离分配240万元工程款.如果按原计划,甲应分得100万元.而在实际施工的时候,乙每天比原计划多修l 千米,结果乙实际分得了150万元,那么乙队实际施工时,每天修多少千米?2.孙悟空有仙桃、机器猫有甜饼、米老鼠有泡泡糖,他们按下面比例互换:仙桃与甜饼为3:5,仙桃与泡泡糖为3:8,甜饼与泡泡糖为5:8.现在孙悟空共拿出39个仙桃分别与其他两位互换,机器猫共拿出甜饼90个与其他两位互换,米老鼠共拿出88个泡泡糖与其他两位互换.请问:米老鼠与孙悟空和机器猫各交换泡泡糖多少个?3.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖.已知: ①第一包糖的粒数是第二包糖的32;②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%; ③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占的百分比的两倍,当两包糖混合在一起时,巧克力糖占28%.求第一包与第二包中水果糖占所有糖的百分比.4.某工地用三种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为3:4:5,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投人工作,又干了15天才完成任务.求甲种车完成的工作量与总工作量之比.5.在一个490米长的圆形跑道上,甲、乙两人从相距50米的A、B两地,相背出发,相遇后,乙返回,甲方向不变,继续前进,甲的速度提高五分之一,乙的速度提高四分之一.当乙回到B地时,甲刚好回到A地,此时他们都按现有速度与方向前进.请问:当甲再次追上乙时,甲(从开始出发算起)一共走了多少米?6.将A、B两种细菌分别放在两个容器里.在光线亮时A细菌需12小时分裂完毕,B细菌需15小时分裂完毕;在光线暗时,A细菌的分裂速度要下降40%,B细菌的分裂速度反而提高10%.现在两种细菌同时开始分裂并同时分裂完毕,试问:在分裂过程中,光线暗的时间有多少小时?7.某大学本科共有四个年级,男生总人数和女生总人数的比为7:5.又已知:①一年级男生和二年级女生的比是3:2,二年级男生和一年级女生的比也是3:2;②三年级和四年级的人数相等,且三年级男生比四年级女生多100人;③三、四年级男生与女生的比为6:5;④二年级的男生占学生总数的24%.请问:一年级男生和女生的人数分别是多少?8.如图2-1所示,A、B、C、D、E、F是六个齿轮.其中A和B相互咬合,B和C相互咬合,D和E、E和F也都相互咬合;而C和D是同轴的两个齿轮,也就是说C和D转动的圈数始终相同.当A转了7圈时,B恰好转了5圈;当E转了8圈时,F恰好转了9圈;当C转了5圈时,B和E恰好共转了28圈.请问:(1)如果A、E转的总圈数总是和B、F转的总圈数相同,那么当A、F共转了100圈时,D转了多少圈?(注:图片只是示意图,并不代表实际齿数)(2)如果A、E的总齿数和B、F的总齿数相等,D的齿数是C的齿数的2倍,那么当A转了210圈时,D 和F分别转了多少圈?第3讲方程解应用题内容概述掌握一元一次方程的解法,多元一次方程组的解法,以及具有对称性的多元一次方程的特殊解法.能从已知条件中寻找出等量关系,列出方程或方程组并求解。
典型问题超越篇1.丙看到甲、乙两人正在解下面这个方程组:⎩⎨⎧=+=+.704 □ □,2536 □ □y x y x 其中未知数前面的系数被甲和乙遮住了.甲计算得出方程的解是x=7,y=3;而乙误把“2536”看作“1536”,得到的解是x=4,y=4.试问:方程组四个被遮住的系数中最小的一个是多少?2.幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人.老师给小孩分枣,甲班每个小孩比乙班每个小孩少分3个枣;乙班每个小孩比丙班每个小孩少分5个枣,结果甲班比乙班总共多分3个枣,乙班比丙班总共多分5个枣.问:三个班总共分了多少个枣?3已知:①冠军钓到15条鱼;②钓到3条或3条以上的选手平均每人钓到了6条鱼;③钓到12条或者12条以下的选手平均每人钓到了5条鱼.请问:一共有多少名选手参赛?这些选手一共钓到了多少条鱼?4.A 、B 两地相距2400米,甲、乙两人分别从A 、B 两地同时出发,相向而行,两人在途中某处相遇后,甲又继续行进18分钟到达B 地,乙又继续行进50分钟到达A 地,请问:甲比乙每分钟多走多少米?5.甲、乙两车运一堆货物,甲车单独运比乙车单独运要少运5次;如果一起运,各运6次就刚好运完.问:甲车单独运要几次运完?6.一个从小到大排列的等差数列,如果把这个数列的首项除以2,末项乘以2,这些数的平均数就增加了7;如果把首项乘以2,末项除以2,平均数就少了2.已知这个等差数列中所有数的和等于245,求这个数列的末项.7.一个水池,顶部有一个进水管,底部有一个出水管.如果只打开进水管,50分钟可以把水池灌满;如果只打开出水管,60分钟可以把一池水放完,现在水池在中间的某个位置出现了一条与池底平行的裂缝,如果只打开进水管,需要80分钟才能放满一池水,而只打开出水管只需46.5分钟即可放完一池水,请问:裂缝出现在离池底几分之几高度的地方?8.“太平洋号”和“北冰洋号”两艘潜艇在海下沿直线同向潜航,“北冰洋号”在前,“太平洋号”在后.在某个时刻,“太平洋号”发出声波,间隔2秒后,再次发出声波,当声波传到“北冰洋号”时,“北冰洋号”会反射声波.已知“太平洋号”的速度是每小时54千米,第一次和第二次探测到“北冰洋号”反射的回波的间隔时间是2.01秒,声波传播的速度是每秒1185米.请问:“北冰洋号”的速度是每小时多少千米?第4讲浓度问题与经济问题内容概述实际生活中与浓度或经济有关的百分数应用题.掌握浓度问题中溶液、溶质、浓度的概念,熟练处理两种溶液混合的问题.掌握经济问题中成本、利润、利润率等概念,熟悉相关问题的计算,体会浓度问题与经济问题的联系和区别.典型问题超越篇1.有一杯盐水,如果加入200克水,它的浓度就变为原来的一半;如果加入25克盐,它的浓度则变为原来的两倍,问:这杯盐水原来的浓度是多少?2.现有甲、乙、丙三种硫酸溶液.如果把甲、乙按照3:4的质量比混合,得到浓度为17.5%的硫酸;如果把甲、乙按照2:5的质量比混合,得到浓度为14.5%的硫酸;如果把甲、乙、丙按照5:9:10的质量比混合,可以得到浓度为21%的硫酸,请求出丙溶液的浓度.3.甲桶中有若干千克纯水,乙桶中有若干千克纯酒精,第一次从甲桶往乙桶倒水,使得乙桶中液体的质量增加2倍;第二次从乙桶往甲桶倒,使乙桶中液体的质量减少四分之一;第三次再从甲桶往乙桶倒,使甲桶中液体的质量减少五分之一.最后甲桶中液体的质量恰好等于最初乙桶中液体的质量,请问:最后甲、乙两桶中液体的浓度分别等于多少?4.有甲、乙、丙3瓶酒精溶液,它们的质量比是3:2:1.如果把两瓶酒精混合后再按原来的质量分配到各自的瓶中,称为一次操作.现在先对甲、乙两瓶酒精进行一次操作,再对乙、丙两瓶酒精进行一次操作,最后对丙、甲两瓶酒精进行一次操作.三次操作后,甲、乙两瓶溶液的浓度分别是67%和61%.求最初丙溶液的浓度.5.水果店进了一批水果,希望卖出去之后得到50%的利润.当售出六成数量的水果时,由于天气原因水果无法保存,于是商店决定打折处理,结果还是有一成数量的水果烂了,最终只得到了所期望利润的34%.请问:商店打折处理时打了几折?6.某商店将甲、乙两种奶糖混合在一起.甲种每份100克,售价1.65元;乙种每份100克,售价1.2元,原来打算将甲种的两份混合到乙种的一份中去,后来改变混合的方式,将甲种的一份混合到乙种的两份中去,问:顾客买10千克这种奶糖能比原来省多少元钱?7.有甲、乙、丙三瓶溶液,甲比乙浓度高6%,乙的浓度则是丙的4倍,如果把乙溶液倒入甲中,就会使甲溶液的浓度比原来下降2.4%;如果把丙溶液倒入乙溶液中,就会使乙溶液的浓度比原来下降2.25%;如果把甲、丙两瓶溶液混合,则混合液的浓度正好等于乙溶液的浓度.请问:甲、乙、丙三瓶溶液的重量比是多少?它们的浓度分别是多少?8.商店进了一批商品,按40%加价出售.在售出八成后,为了尽快销完,决定五折处理剩余商品,而且商品全部出售后,突然被征收了150元的附加税,这使得商店的实际利润率只是预期利润率的一半,那么这批商品的进价是多少元?(注:附加税算作成本)第5讲立体几何内容概述掌握长方体、立方体、圆柱、圆锥的体积和表面积计算公式;学会计算由基本立体固形通过切割、拼接而构成的复杂立体固形的体积和表面积;掌握平面固形通过折叠、旋转所得立体图形的相关计算.典型问题超越篇1.有一个棱长为20的大立方体,在它的每个角上按如图5 -20所示的方式各做一个小立方体,于是得到8个小立方体.在这些立方体中,上面4个的棱长为12,下面4个的棱长为13.请问:所有这8个小立方体公共部分的体积是多少?2.地上有一堆小立方体,从上面看时如图5-21所示,从前面看时如图5-22所示,从左边看时如图5-23所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?3.(1)已知一个圆锥的底面直径为6厘米,高为4厘米.求它的体积和表面积;(答案用兀表示)(2)用一个半径为25厘米,圆心角为345.6°的扇形围成一个圆锥,这个圆锥的体积是多少?如果圆心角是216°呢?(答案用丌表示)4.将图5 -24、图5-25中的平面图形分别折叠成一个四棱锥和三棱柱,这两个立体图形的体积分别是多少?(图5 -24正中央是一个面积为18平方厘米的正方形,每边上分别有一个腰长为5厘米的等腰三角形;图5-25中的图形由三个长方形和两个直角三角形组成.)5.一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,如图5-26圆柱体的底面直径和高都是12厘米,其内有一些水,正放时水面离容器顶11厘米,倒放时,水面离顶部5厘米.请问:这个容器的容积是多少立方厘米?(兀取3.14)6.有一个长方体水池,底面为边长60厘米的正方形,里面插着一根长1米的木桩,木桩的底面是一个边长15厘米的正方形,木桩有一部分浸在水中,一部分露出水面.现在将木桩提起来24厘米(仍有部分浸在水里),那么露出水面的木桩浸湿部分面积为多少平方厘米?7.图5 -27是一个有底无盖的容器的平面展开图,其中①是边长为18厘米的正方形,②③④⑤是同样大的等腰直角三角形,⑥⑦⑧⑨是同样大的等边三角形.那么,这个容器的容积是多少毫升?8.有一个三棱柱和一个正方体,三棱柱的底面是一个等边三角形,边长恰好等于正方体的面对角线长度,三棱柱的高恰好等于正方体的体对角线长度,如果正方体的棱长为6,那么三棱柱的体积为多少?第6讲逻辑推理二内容概述体育比赛形式的逻辑推理问题,学会将比赛双方以及胜平负关系的情况田点线图表示,借助表格来统计得分数与得失球数,有时还可利用总得分数来进行分析.需要从整体考虑或从极端情况分析的,具有一定综合性的逻辑推理问题.典型问题超越篇1.在一次射击练习中,甲、乙、丙3位战士各打了4发子弹,全部中靶.其命中情况如下:①每人4发子弹所命中的环数各不相同;②每人4发子弹所命中的总环数均为17环;③乙有2发命中的环数分别与甲其中的2发一样,乙另2发命中的环数与丙其中的2发一样;④甲与丙只有l发环数相同;⑤每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?2.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?3.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B战胜了E.请问:战胜过C的球队有哪些?4.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?5.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,图6-4是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入图6-5中.6.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?7.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?8.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?第7讲几何综合一内容概述复杂的长度、角度计算;复杂的直线形比例关系;具有一定综合性的直线形计算问题.典型问题超越篇1.如图7 - 22,长方形的面积是60平方厘米,其内3条长度相等且两两夹角为120°的线段将长方形分成了两个梯形和一个三角形.请问:一个梯形的面积是多少平方厘米?2.如图7-23,P是三角形ABC内一点,DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.请问:三角形ABC的面积是多少?3.如图7 -24所示,正方形ABCD的面积为1.E、F分别是BC和DF的中点,DE与BF交于M点,DE 与AF交于Ⅳ点,那么阴影三角形MFN的面积为多少?4.如图7 -25,三角形ABC的面积为1,D、E、F分别是三条边上的三等分点,求阴影三角形的面积.5.如图7-26,小悦测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?6.如图7-27,ED垂直于等腰梯形ABCD的上底AD,并交BC于G,AE平行于BD,∠DCB =45°,且三角形ABD和三角形EDC的面积分别为75、45,那么三角形AED的面积是多少?7.在长方形ABCD中,E、F、G、H分别是边AB、BC、CD、DA上的点,将长方形的四个角分别沿着HE、EF、FG、GH对折后,A点与B点重合,C点与D点重合.已知EH =3,EF =4,求线段AD与AB 的长度比.8.如图7-28,在长方形ABCD中,AE: ED= AF:AB= BG: GC.已知△EFC的面积为20,△FGD的面积为16,那么长方形ABCD的面积是多少?第8讲数论综合一内容概述运用已学过的数论知识,解决综合性较强的各类数论问题;学会利用简单代数式处理数论问题.典型问题超越篇1.有6个互不相同且不为0的自然数,其中任意5个数的和都是7的倍数,任意4个数的和都是6的倍数.请问:这6个数的和最小是多少?2.设N= 301×302×…×2005×2006,请问:(1)N的末尾一共会出现多少个连续的数字“0”?(2)用N不断除以12,直到结果不能被12整除为止,一共可以除以多少次12?3.老师告诉贝贝和晶晶一个小于5000的四位数,这个四位数是5的倍数.贝贝计算出它与5!的最小公倍数,晶晶计算出它与10!的最大公约数,结果发现贝贝的计算结果恰好是晶晶的5倍.锖问:这个四位数是多少?4.一个正整数,它分别加上75和48以后都不是120的倍数,但这两个和的乘积却能被120整除.这个正整数最小是多少?5.a、b、c是三个非零自然数.a和b的最小公倍数是300,c和a、c和b的最大公约数都是20,且a>b>c.请问:满足条件的a、b、c共有多少组?6.有一类三位数,它们除以2、3、4、5、6所得到的余数互不相同(可以含0).这样的三位数中最小的三个是多少?7.有一个自然数除以15、17、19所得到的商与余数之和都相等,并且商和余数都大于1,那么这个自然数是多少?8.有4个互不相同的三位数,它们的首位数字相同,并且它们的和能被它们之中的3个数整除,请写出这4个数,第9讲计算综合二内容概述综合性较强的计算问题。