论电网中无功功率补偿
- 格式:doc
- 大小:26.00 KB
- 文档页数:5
浅析低压电网中的无功补偿【摘要】无功补偿对电网系统有着重要的意义,对电网进行适当的无功补偿是提高电压质量的有效手段,通过对电网进行适当的无功补偿,可以稳定电网电压,提高功率因数和设备利用率,减小网络有功功率损耗,提高经常效益,从而达到降耗的目的。
本文简要介绍了低压电网中的无功补偿含义和重要意义,论述了低压电网中的无功补偿原理、方法,并阐述了对无功补偿装置的选择及应用。
【关键词】电网配置原则低压无功补偿技术应用1 引言随着我国民经济的不断发展,电力已成为国民生产生活中不可或缺的重要工具,合理用电、节约用电就显得尤为重要。
在我国的工业、农业和民用用电量大幅增加的用电负荷中,整流和变频设备所占的比例也在不断增加,这使得无功电流成为一大障碍,不仅增大供电系统的损耗,而且还可能引发通信系统的故障。
因此减少无功电流的损失成为诸多专家和学者面临的严峻挑战。
其实,无功并非无用之功,依靠它才能在电路的电感、电容元件中建立变化的电、磁场,从而建立电压,传递和转换有功功率,成为电力系统和用电设备正常运转所不可缺少的重要因素。
无功功率不足,会导致系统电压及功率因数降低,因而损坏用电设备,甚至会造成电压崩溃,使系统瓦解,从而造成大面积停电。
2 低压电网中的无功补偿含义及重要意义(1)低压电网中的无功补偿是对低压电网中的无功功率进行补偿的措施,旨在提高低压电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善低压电网的供电环境。
所谓无功补偿是因为电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。
低压电网中的无功补偿通过选择合适的补偿方法和补偿装置,可以最大限度的减少低压电网的损耗,使电网质量提高,减少电压波动和降低谐波,从而提高电压稳定性。
在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。
电力系统无功功率补偿技术研究1. 引言电力系统在现代社会中扮演着至关重要的角色,为人们的生活和工作提供了可靠的电能。
然而,电力系统中存在着无功功率的浪费和损耗问题。
无功功率是指在电力系统中无法产生有用功而只是导致能量的来回转移的功率。
为了解决这一问题,研究人员开发了许多无功功率补偿技术。
2. 无功功率的形成和影响无功功率的形成主要源于电感和电容元件的存在。
这些元件会产生无功电流,导致电力系统中无功功率的增加。
无功功率的存在会导致电力系统的效率下降,产生额外的损耗,降低电能的使用效果。
此外,无功功率也会导致电流的谐波扭曲、电压降低和设备的过载等问题。
3. 无功功率补偿技术的原理无功功率补偿技术旨在通过引入合适的电力电子器件来抵消无功功率的影响。
其中,最常见的无功功率补偿技术包括电容器补偿、静止补偿设备和可控无源滤波器。
这些技术通过各种方法来动态地调整无功功率的流动,提高电力系统的效率和稳定性。
4. 电容器补偿技术电容器补偿技术是最早被采用的无功功率补偿技术之一。
它通过在电力系统中并联连接电容器来抵消无功功率。
电容器可以吸收无功功率,并将其转化为有用功率。
这种技术简单易行,成本低廉,被广泛应用于电力系统中的低压和中压环节。
然而,电容器补偿技术也存在一些问题,如容量不足、频率响应不稳定等。
5. 静止补偿设备静止补偿设备是一种采用电力电子器件来实现无功功率补偿的技术。
它包括静止无功功率发生器(STATCOM)和静止无功功率补偿器(SVC)等。
静止补偿设备可以实时监测电力系统中的无功功率,并根据需要提供相应的补偿。
这种技术具有快速响应、精确控制等优点,适用于大功率场合,但需要高昂的投资和专业的维护。
6. 可控无源滤波器可控无源滤波器是一种利用电力电子技术抑制电力系统谐波的技术。
谐波是无功功率产生的一个重要因素,会导致电压的失真和设备的故障。
可控无源滤波器通过控制无功功率之间的相位差来消除谐波,提高电力系统的纯度和质量。
浅谈电网的无功补偿与电压调整【摘要】电网的无功补偿和电压调整对电力系统的稳定运行至关重要。
无功补偿能够提高电网效率,减少潜在的负载问题,同时增加电力系统的稳定性。
而电压调整则能保持电网中的电压稳定,确保电力设备正常运行。
常见的无功补偿设备包括静态补偿器和同步电容器,而电压调整方法主要有调压器和自动电压调整器。
为了优化电网运行,可以采取措施如降低电力损耗、减少电网压降以及提高电力负载能力等。
电网的无功补偿和电压调整对于保障电力系统的安全稳定运行具有重要意义,需要各方共同努力来提高电力系统的可靠性和效率。
【关键词】无功补偿、电压调整、电网、稳定运行、重要性1. 引言1.1 介绍电网的无功补偿和电压调整的重要性电网的无功补偿和电压调整在电力系统中起着至关重要的作用。
无功补偿能够提高电网的功率因数,减少线路传输损耗,提高系统的稳定性和可靠性。
而电压调整则可以确保电网中的电压稳定在合适的范围内,保障各类电气设备的正常运行,同时提高供电质量。
由于电力系统中无功功率不能直接通过输电线路传输,需要通过专门的无功补偿设备来进行调整;而电压调整则需要通过相应的控制方法和调节设备来实现。
通过优化电网的无功补偿和电压调整,可以有效提高电网的运行效率,降低系统的运行成本,并且减少供电事故的发生概率。
深入研究和实施电网的无功补偿和电压调整技术显得尤为重要,对于保障电网的持续稳定运行具有不可替代的作用。
2. 正文2.1 无功补偿的作用无功补偿是指在电力系统中通过补偿电网中存在的无功功率,以维持电网的正常运行和提高系统的功率因数。
无功功率是交流电路中在电压和电流的波形之间存在的相位差引起的功率,它并不完成有用功但会消耗系统的电能。
电网中存在大量的感性负载或容性负载时,会导致系统的功率因数下降,影响电网的稳定性。
通过无功补偿可以调节系统的功率因数,减少系统中的无功功率流动,提高系统的效率和稳定性。
无功补偿的作用主要包括以下几个方面:无功补偿可以提高系统的功率因数,减小线损、降低电网运行成本,提高系统的能效。
浅谈电网的无功补偿与电压调整电网是指由输电线路、变电设备和配电设备等组成的供电系统,其主要功能是将发电厂产生的电能传输到用户所在地。
电网的稳定运行对于保障电力系统的安全、可靠、经济运行具有重要意义。
而无功补偿和电压调整则是电网中一个重要的问题,它们对于电网的稳定运行起着至关重要的作用。
一、电网无功补偿的作用在电网中,无功功率是指交流电路中发生的能量的来回转移,并不执行有用功。
它是一种虚拟功率,对电网的稳定性和效率产生重要影响。
为了保证电网的稳定运行,需要对无功功率进行补偿,以提高电网的功率因数。
无功功率的产生主要有两种情况:一是由于电感负载产生的感性无功功率,二是由于电容补偿设备的损耗产生的容性无功功率。
感性负载导致电压的下降和线路的过热,降低了电网的输电效率;而容性负载会使电网电压升高,在负载端压降过大,影响电网的电压稳定性。
通过增加或减少无功功率的产生,可以有效地提高电网的稳定性和效率,减小输电损耗。
为了进行无功功率的补偿,通常采用无功功率补偿装置,如静态无功补偿装置(如无功电容器、无功电感器)、静止无功发生器(STATCOM)等。
这些装置能够快速调整电网的无功功率,提高电网的功率因数,减小电网运行中的不稳定因素。
从而保证电网的正常运行,提高电网的运行效率和经济性。
二、电网电压调整的重要性在电网运行中,电压的稳定性是保障电网正常运行的重要指标之一。
电网的电压稳定性受多种因素影响,如负荷变化、发电量变化、故障短路等。
为了保持电网的电压稳定,需要对电网进行电压调整。
电压调整主要是通过调节电压的大小和波形来保持电网的电压稳定。
电网中,通常采用自动电压调整装置和无功功率控制装置来进行电压调整。
自动电压调整装置通过控制变压器的绕组变化,使其变比按需调整,来调节电压的大小;而无功功率控制装置则通过控制无功功率的产生,来调节电网的电压。
这些装置可以根据电网的负载变化和故障情况,快速地进行电压调节,以保证电网的电压稳定性。
浅谈电力系统中的无功补偿无功补偿,全称无功功率补偿,是一种在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境的技术。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少电网的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
下面详细介绍无功补偿的基本原理、意义、优点、补偿方式、存在的问题等。
基本原理电网输出的功率包括两部分:一是有功功率:直接消耗电能,把电能转变为机械能、热能、化学能或声能,利用这些能作功,这部分功率称为有功功率;二是无功功率:消耗电能,但只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率(如电磁元件建立磁场占用的电能,电容器建立电场所占的电能)。
无功补偿的意义电力电网中的负荷如变压器、电动机等,很多属于感性负荷,需向这些设备提供相应的无功功率。
在电网中安装并联智能电力电容器等无功补偿设备以后,可以提供感性电抗所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,减少了无功功率在电力电网中的流动,所以可以降低变压器与线路因传输无功功率造成的电能损耗,这就是无功补偿。
无功补偿可以提高功率因数,是一项收效快、投资少的降损节能措施。
无功补偿具有优点:1.降低电能损耗;2.改善电能质量。
电网中无功补偿设备的合理配置,与电网的供电电压质量关系十分密切。
合理安装补偿设备可以改善电压质量。
3.挖掘发供电设备潜力(1)如需要的有功不变,则由于需要的无功减少,因此所需要的配变容量也相应地减少;(2)在设备容量不变的条件下,由于提高了功率因数可以少送无功功率,因此可以多送有功功率;(3)安装智能无功补偿设备,可使发电机多发有功功率。
系统采取无功补偿后,使无功负荷降低,发电机就可少发无功,多发有功,充分达到铭牌出力。
第22卷第4期2006年8月赤峰学院学报Journal o f Ch ifeng C olleg eV ol.22N o.4Aug.2006浅谈电网的无功补偿范 晖(赤峰电业局,内蒙古 赤峰 024000) 摘 要:在实际电力系统中,异步电动机作为传统的主要负荷使电网产生感性无功电流;电力电子装置大多数功率因数都很低,导致电网中出现大量的无功电流.无功电流产生无功功率,给电网带来额外负担且影响供电质量.因此,无功功率补偿(以下简称无功补偿)就成为保持电网高质量运行的一种主要手段之一.关键词:电网;无功补偿;供电质量中图分类号:T M714.3文献标识码:A文章编号:1673-260X(2006)04-0089-03 赤峰电网处于东北主网西部,供电面积9万多平方公里,大———变、乌———变、新———变、林———变、热———变均为辐射形接线,宁———变、元———变、平———变、赤———变为环网运行.赤峰地区电网按地理位置分南部(宁城地区)、中部(赤峰、元宝山、平庄地区)、东部(红山、敖汉地区)、西部(锦山地区)和北部(乌丹以北).到2005年末,赤峰地区电网局属变电所并联补偿电容器总容量为75.53Mvar,全网电容器总容量为207Mvar.赤峰电网北部地区和东部敖汉地区电压不稳定现象比较突出,林西、克旗、左旗、敖汉旗、阿旗的末端电压很难达到要求,原因是供电半径大、负荷变化大,尤其是春灌期间压降最大时达到10%.由于其大多数电力负荷是感性负载,同时,由于其分布分散、季节性强、配电线路供电半径大、分支线多等因素,导致无功电源与无功占用不平衡,造成农村电网功率因数偏低和电压质量低劣.赤峰地区电网北部的无功补偿装置主要从电压质量为主考虑进行投切,因此存在频繁投切无功补偿装置的现象.南部电网的无功补偿装置主要从经济运行为主考虑进行投切.随着赤峰地区电网容量迅速增长以及工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量受到人们的日益重视.在赤峰地区电网中进行无功补偿,在目前电网缺电的形势下,意义尤为重大,无功补偿既可减少输变电的电能损失,又能使有限的电力发挥更大作用.在实际电力系统中,异步电动机作为传统的主要负荷使电网产生感性无功电流,电力电子装置大多数功率因数都很低,导致电网中出现大量的无功电流.无功电流产生无功功率,给电网带来额外负担且影响供电质量.因此,无功补偿就成为保持电网高质量运行的一种主要手段之一,这也是当今电气自动化技术及电力系统研究领域面临发展的一个重大课题,且正在受到越来越多的关注.本文着重对电力系统无功补偿作以下阐述 无功补偿概念与原则在交流电路中,由电源供给负载的电功率有两种:一种是有功功率,一种是无功功率.有功功率就是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率.相对有功功率而言无功功率就比较抽象,它用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率,它不对外作功,而是转变为其他形式的能量,凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率.但是无功功率决不是无用功率,它的用处其实很大,电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的.变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压.因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合.在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率,如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行.但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以我们需要在电网中设置一些无功补尝装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作.通过以上的简单介绍我们可以知道无功电源同有功电源一样,是保证电能质量不可缺少的部分,在电力系统中应保持无功平衡,否则将会使系统电压降低、设备损坏、功率因数下降,严重时还会引起电压崩溃,系统解裂,造成大面积停电事故.因此,解决电网的无功容量不足,增装无功补偿设备,提高网络的功率因数,对电网的降损节电、安全可靠运行有着极为重要的意义.当电网需要增设无功补偿时应按照“全面规划,合理布局,分级补偿,就地平衡”的总原则,进行合理的配置,以便取得最大的综合补偿效益其具体要求是既要.1.:98满足全区(地区)的无功功率平衡,还要满足分区(供电区)、分站(变电站)的无功平衡,尽可能地使长距离输送的无功量小,最大限度地减少功率及电能损耗.集中补偿与分散补偿相结合,以分散补偿为主.既要在变电站进行集中补偿,又要在配电线路及部分用户进行分散补偿,但大部分补偿设备应配置在配电网络中,以实现就地就近补偿.电力部门补偿与用户补偿相结合.2 无功补偿的基本原理无论是工业负荷还是民用负荷,大多数均为感性负荷,所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是无功补偿装置提供.由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益.而由无功补偿装置就地提供无功功率,就可以避免由输电系统传输无功功率,从而降低无功损耗,提高系统的传输功率,因此我们都是合理安装无功补偿装置来达到补偿无功的目的.无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换.这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿.无功补偿可以改善电能质量、降低电能损耗、挖掘发供电设备潜力、无功补偿减少用户电费支出,是一项投资少、收效快的节能措施.在优先保证电压合格基础上,调整无功缺额,使无功功率始终处于最佳补偿状态,提高了电能质量,节约了电力能源.3 无功补偿装置种类简介3.1 同步发电机同步发电机既是有功电源,又是无功的主要电源.一般中、小型发电机的额定功率因数为0.80—0.85,即每供给100MW的有功功率,同时还供给62—75M W的无功功率,如果发电机的有功输出未满载,在保证发电机的电压为额定电压,并且定转子电流不超过额定值的条件下,发电机的无功出力还可以适当增加.3.2 输电线路的充电功率架空线路的导线是平行排列的,导线之间形成电容,当电压加在输电线上时,线路便产生充电电流,即使线路不接负载,也有电容电流流过.由于电容电流的存在,运行中的输电线路将产生充电功率,影响沿线路各点的电压、输电功率和功率因数.因此,我们在分析电力网的运行情况时,必须计算线路的电容和充电功率.3.3 并联电容器并联电容器(又称移相电容器)是一种无功电源,其主要用途是补偿电力网中感性负荷需要的无功,提高网络的功率因数,并兼有调压的辅助作用,并联电容器是我们最常用的无功补偿方式.并联电容器补偿的联结方式分为单相、三相星形、三相三角形三种.在实际接电中,为了满足补偿容量的需要,往往采用多台电容器并联或串联组成电容器组,若每台电容器的容量均为C0,则由m组并联,由n台串联组成的电容器组总容量为:C=m/n3C0并联电容器发出的无功功率与电压平方成正比,当电网传输的无功较大,补偿点的电压偏低,需要大量无功使电压恢复时,电容器发出的无功反而随电压的下降成平方关系减小,促使电压更趋于下降.相反,当补偿点电压偏高,需要减少无功时,电容器随电压升高而增发无功,又促使电压升高.电容器这种无功特性满足不了电网调压要求,为此,常用带负荷调压变压器与并联电容补偿配合使用的运行方式.如果没有带负荷调压装置,一般是将电容器组分成若干组,实行分组投切.当电网电压降低或负荷功率因数减少时,投入部分电容器组;反之,则切除部分电容器组.并联电容器由于具有设备简单、安装和维护方便、本身损耗低、节电效果显著等优点,在电力网的无功补偿中得到广泛的应用.3.4 同期调相机随着电力系统的发展,要求对无功功率进行动态补偿,从而产生了同步调相机.它是专门用来产生无功功率的同步电机,在过励磁或欠励磁的情况下,能够分别发出不同大小的容性或感性无功功率,提高电网功率因数,改善电压质量,提高电力系统运行的稳定性.由于调相机容量较大,只能集中使用,一般装于大型的枢纽变电站内.自20世纪20、30年代以来的儿十年中,同步调相机在电力系统中作为有源的无功补偿曾一度发挥着主要作用,所以被称为传统的无功动态补偿装置.然而,由于它是旋转电机,运行中的损耗和噪声都比较大,运行维护复杂,而且响应速度慢,难以满足快速动态补偿的要求.3.5 无功静止补偿装置无功静止之补偿装置(静止补偿器),是一种技术先进、调节性能好的动态无功功率补偿设备.主要由并联电容器组、可调饱和电抗器以及检测与控制系统三部分组成.静止补偿器兼有电容器和调相机二者的优点,可在几个周波内快速完成调节,保持网络电压稳定,增强系统的稳定性.4 无功补偿方式理论上而言,无功补偿最好的方式是在哪里需要无功,就在哪里补偿,整个系统将没有无功电流的流动.但在实际电网当中这是不可能做到的,因为无论是变压器、输电线路还是各种负载均会需要无功.所以实际电网当中就补偿装置的安装位置而言有如下几种补偿方式:(1)变电所集中补偿;(2)配电线路分散补偿;(3)负荷侧集中补偿;(4)用户负荷的就地补偿.根据《电力系统电压和无功电力技术导则》可知,无功补偿容量一般为变压器额定容量的20%—30%.5 无功的经济补偿对于电力系统而言,在高压侧或低压侧均可进行补偿.但是,如果在低压侧进行补偿,既可减少变压器、输电线路等的损耗,又可提高变压器、输电线路的利用率及提高负载端的端电压,所以补偿电容器的安装越靠近负载端,对用户而言越可获取较大的经济效益.装设补偿电容器后,改善了负荷侧的功率因数,用电负荷所需的无功功率,由电容器直接提供,可以降低电网的总电流I2=I2P+ I2C.式中I———视在电流,I P———有功电流,I C———电容电流.因为在低压侧装设一了电容器补偿无功电流,即无功电流由电容器提供,所以在进行电网设计时,只考虑有功0 9电流即可,大大节省变压器及输电线路的投资.对于已有的电网,也能够提高电网的出力.5.1 减少输电线路及变压器的损耗P n=3I2R=3I2P R+3I2q R式中P n———有功功率损失,R———每项输电线路的电阻(含输电线路及变压器)输电线路电阻R=K L/A.式中K———电阻系数, L———导线长度,m,A———导线截面积.变压器电阻R=Y k U2/S n.式中Y K———变压器短路阻抗,Ω,U———系统电压,V,S n———变压器额定容量, kV A.5.2 增加变压器及输电线路的利用率所增加的利用率为:(P2-P1)/P1=〔(cosφ1-cosφ2)-1〕×100%式中cos<1———改善前的功率因数,cos<2———改善后的功率因数5.3 提高系统的端电压减少系统的电压降du(%)=Q C/S n×X k(%)式中du(%)———电压提高百分比,QC———补偿电容器的容量,k var,S n———变压器容量,kV A,X K(%)———变压器阻抗百分比.(责任编辑 白海龙)(上接第71页)不牢固而造成空鼓.补救时可注入高强粘结砂浆或粘结剂.2.6 饰面砖粘贴不平:主要是墙面不平,外墙面垂直、平整度偏差大,对基层处理不够认真所致.2.7 饰面砖缝和分格缝不均匀,未认真排砖和弹线,分格不均匀,不直.这是由于施工前未认真根据图纸和大样图核对结构施工的实际情况,缺乏预见性,加上分段分块弹线时排砖不细,贴标准点少,以及饰面砖规格尺寸偏差大、未挑选,操作不注意造成的.2.8 饰面砖墙较脏:主要是缝勾完后未及时擦净残留的砂浆,成品保护不良,被其他工种施工污染.处理时可用棉丝蘸稀盐酸加20%水刷洗,然后用水冲净.3 外墙饰面砖防脱落的施工做法3.1 基层处理(1)结构施工时,外墙面的垂直度、平整度应达到标准要求.刮糙前将凸出墙面的混凝土凿平,凹处用1∶3水泥砂浆补平(补平厚度较大时应分层补),若厚度或垂直度偏差超过30mm,需采取钉钢丝网等补救措施.(2)抹灰前将砖墙面、混凝土面等基层表面灰尘、污垢和油溃清除干净,不同界面处(如砖墙与混凝土墙交接处)用射钉固定300mm宽钢丝网.(3)对用钢模板施工的混凝土墙面,应凿毛后用钢丝刷满刷一遍,再浇水湿润或采用界面剂处理表面,以提高混凝土表面的粘结强度.(4)外墙角纵向挂直径2mm钢丝垂线,做上下砂浆灰屏,横间水平线要根据窗口位置拉通长线控制,灰屏间距1500mm左右.3.2 涂抹界面剂将界面剂用水调成厚糊状,水灰比约1∶4,充分搅拌均匀后放置5—10min等其变稠,再稍加点水调匀.将拌匀的界面剂用泥板涂抹在基层面上,等10—20min,后抹水泥砂浆找平层.调制的界面剂应在5—6小时内用完.3.3 基层抹灰:底层第一遍砂浆厚度宜为5mm,抹后用木抹子搓平,隔天浇水养护,待六七成干时即可抹第二遍,随即用木长尺刮平,木抹子搓毛,隔天浇水养护.若需抹第三遍,方法同第二遍,直至底层砂浆抹平.3.4 弹线排砖:在基层抹灰面上弹出垂直、水平控制线,再根据饰面砖的规格尺寸和排列图弹出饰面砖控制线.根据饰面砖排列图要求,水平缝宽控制在5—9mm,水平缝与窗台面一般在同一水平线上,并按图纸要求留设分仓缝.墙面阴阳角处第一块砖须为整砖,如排砖不巧,饰面砖允许切割,放在窗洞口两边,但切割后的饰面砖长度要求不小于45mm.试排成功后在基层抹灰面上弹出每块砖的纵横分格线,以保证饰面砖粘贴后灰缝横平竖直.试排完成后,根据弹线安装外窗,窗四周必须用砂浆嵌实,并在窗下口做一个小圆角.突出墙面的部位不要留置朝天缝,底面饰面砖要在外端留置滴水线.3.5 浸砖及粘贴:饰面砖吸水率应符合标准,使用前须清洗干净并隔夜用水浸泡不小于2小时,晾干后才能使用.粘贴饰面砖的砂浆应饱满,粘贴应一次完成,不宜多敲及移动,尤其是砂浆收水后不能再纠偏挪动.粘贴饰面砖的砂浆宜采用1∶0.2∶2混合砂浆或粘结剂粘贴,厚7—10mm.粘贴用水泥的安定性、强度须经复试合格.对留设有分仓缝的部分,须使缝断至结构面层.3.6 饰面砖勾缝:用1∶1水泥砂浆分两次勾缝:第一遍勾缝厚度7mm;第二遍按设计要的色彩配置彩色水泥砂浆,勾成凹缝,凹进面砖深约3mm.3.7 表面清理:饰面砖勾缝后,用棉纱浆将面砖表面擦净,以免影响面砖的整体清洁、美观.3.8 检查及修补:饰面砖铺完并待砂浆收干后,在拆脚手架前,应逐块对面砖进行敲击检查,发现起壳应及时处理,不留隐患.(责任编辑 白秀云)19。
论电网中无功功率补偿
许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。
为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。
在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cosφ,其计算公式为:
cosφ=P/S=P/(P2+Q2)1/2
在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。
这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。
1影响功率因数的主要因素
(1)大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。
据有关的统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。
所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。
(2)变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。
因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。
(3)供电电压超出规定范围也会对功率因数造成很大的影响。
当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%
左右。
当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。
但供电电压降低会影响电气设备的正常工作。
所以,应当采取措施使电力系统的供电电压尽可能保持稳定。
2无功补偿的一般方法:无功补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。
下面简单介绍这3种补偿方式的适用范围及使用该种补偿方式的优缺点。
(1)低压个别补偿:
低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。
通过控制、保护装置与电机同时投切。
随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。
低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,因此不会造成无功倒送。
具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。
(2)低压集中补偿:
低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。
电容器的投切是整组进行,做不到平滑的调节。
低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。
(3)高压集中补偿:
高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。
适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。
同时便于运行维护,补偿效益高。
3采取适当措施,设法提高系统自然功率因数
提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。
(1)合理使用电动机;
(2)提高异步电动机的检修质量;
(3)采用同步电动机:同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功功率取决于转子中的励磁电流大小,在欠励状态时,定子绕组向电网"吸取"无功,在过励状态时,定子绕组向电网"送出"无功。
因此,对于恒速长期运行的大型机构设备可以采用同步电动机作为动力。
异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是"异步电动机同步化"。
(4)合理选择配变容量,改善配变的运行方式:对负载率比较低的配变,一般采取"撤、换、并、停"等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。
4无功电源
电力系统的无功电源除了同步电机外,还有静电电容器、静止无功补偿器以及静止无功发生器,这4种装置又称为无功补偿装置。
除电容器外,其余几种既能吸收容性无功又能吸收感性无功。
(1)同步电机:同步电机中有发电机、电动机及调相机3种。
①同步发电机:同步发电机是唯一的有功电源,同时又是最基本的无功电源,当其在额定状态下运行时,可以发出无功功率:
Q=S×sinφ=P×tgφ
其中:Q、S、P、φ是相对应的无功功率、视在功率、有功功率和功率因数角。
发电机正常运行时,以滞后功率因数运行为主,向系统提供无功,但必要时,也可以减小励磁电流,使功率因数超前,即所谓的"进相运行",以吸收系统多余的无功。
②同步调相机:
同步调相机是空载运行的同步电机,它能在欠励或过励的情况下向系统吸收或供出无功,装有自励装置的同步电机能根据电压平滑地调节输入或输出的无功功率,这是其优点。
但它的有功损耗大、运行维护复杂、响应速度慢,近来已逐渐退出电网运行。
③并联电容器:
并联电容器补偿是目前使用最广泛的一种无功电源,由于通过电容器的交变电流在相位上正好超前于电容器极板上的电压,相反于电感中的滞后,由此可视为向电网"发?quot;无功功率:
Q=U2/Xc
其中:Q、U、Xc分别为无功功率、电压、电容器容抗。
并联电容器本身功耗很小,装设灵活,节省投资;由它向系统提供无功可以改善功率因数,减少由发电机提供的无功功率。
④静止无功补偿器:
静止无功补偿器是由晶闸管所控制投切电抗器和电容器组成,由于晶闸管对于控制信号反应极为迅速,而且通断次数也可以不受限制。
当电压变化时静止补偿器能快速、平滑地调节,以满足动态无功补偿的需要,同时还能做到分相补偿;对于三相不平衡负荷及冲击负荷有较强的适应性;但由于晶闸管控制对电抗器的投切过程中会产生高次谐波,为此需加装专门的滤波器。
⑤静止无功发生器:
它的主体是一个电压源型逆变器,由可关断晶闸管适当的通断,将电容上的直流电压转换成为与电力系统电压同步的三相交流电压,再通过电抗器和变压器并联接入电网。
适当控制逆变器的输出电压,就可以灵活地改变其运行工况,使其处于容性、感性或零负荷状态。
与静止无功补偿器相比,静止无功发生器响应速度更快,谐波电流更少,而且在系统电压较低时仍能向系统注入较大的无功。
5结束语
本文集中探讨了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益,介绍了影响功率因数的主要因素和提高功率因数的几种方法,还讨论了目前所通用的几种无功电源及其特点。
这对供电企业是十分有益的。