电力系统的无功补偿和电压调整的解决方案
- 格式:doc
- 大小:171.00 KB
- 文档页数:13
电力系统的无功补偿和电压调整的解决方案为了保证电力系统的稳定运行和电能质量的提高,无功补偿和电压调整是非常重要的技术手段。
本文将从技术和设备两方面,详细讨论电力系统的无功补偿和电压调整的解决方案。
1.静态无功补偿装置(SVC):SVC是通过控制可变电容器和可变电抗器的容量,实现电力系统的无功调节。
它具有快速响应、精确调节无功功率因数的特点,并且能够提供压力支撑和电压稳定功能。
2.静态同步补偿装置(STATCOM):STATCOM是利用电力电子器件和控制系统,通过直流电压的调节来实现对电力系统无功功率的调节。
它能够实现快速响应和灵活控制的特点,可以有效地提高电力系统的无功调节能力。
3.无功发电机(SVC):无功发电机是利用发电机的励磁系统来控制无功功率的输出,实现电力系统的无功补偿。
它可以根据需要灵活调节无功功率因数,提高电力系统的无功调节能力。
4.并联电容器补偿装置:并联电容器补偿装置是通过并联连接电容器,提供无功功率来补偿电力系统的无功功率缺陷。
它具有成本低、简单可靠的特点,并且能够有效改善电力系统的功率因数。
5.无功补偿滤波器:无功补偿滤波器是利用滤波器来抑制电力系统中的无功电流,实现无功补偿。
它可以有效减少电力系统中的谐波和电磁干扰,提高电力系统的电能质量。
1.电压调整变压器:通过调整变压器的变比来实现电力系统的电压调整。
它可以根据需要提高或降低电压水平,保证电力系统的电压稳定性。
2.电压调整容性器:通过并联连接容性器,提供额外的无功功率,实现电力系统的电压调整。
它可以根据需要灵活调整电压水平,保证电力系统的电压稳定性。
3.电压调整调压器:通过调节调压器的输出电压,实现电力系统的电压调整。
它具有调节范围广、快速响应的特点,并且能够适应不同负荷变化的需求。
4.电力电子设备:电力电子器件和控制系统可以通过改变电力系统中的电流、电压和频率等参数,实现对电力系统的电压调整。
它具有响应快、控制精度高的特点,并且能够适应不同负荷的变化。
关于电力系统电压与无功补偿问题探讨电力系统中无功补偿对电力系统的重要性越来越受到重视,合理地投停使用无功补偿设备,对调整电网电压、提高供电质量、抑制谐波干扰、保证电网安全运行都有着十分重要的作用。
如果系统无功电源不足,则会使电网处于低电压水平上的无功功率平衡,即靠电压降低、负荷吸收无功功率的减少来弥补无功电源的不足。
同样,如果由于电网缺乏调节手段或无功补偿元件的不合理运行使某段时间无功功率过剩,也会造成整个电网的运行电压过高。
因此,要维持整个系统的电压水平,就必须有足够的无功电源来满足系统负荷对无功功率的需求和补偿线路和变压器中的无功功率损耗。
一、无功功率就地补偿的概念无功补偿装置的分布,首先要考虑调压的要求,满足电网电压质量指标。
同时,也要避免无功功率在电网内的长距离传输,减少电网的电压损耗和功率损耗。
无功功率补偿的原则是做到无功功率分层分区平衡,就是要做到哪里有无功负荷就在那里安装无功补偿装置。
这既是经济上的需要,也是无功电力特征所必需的,如果不这样做,就达不到最佳补偿的目的,解决不了无功电力就地平衡的问题。
二、无功功率的平衡在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。
电压与无功功率也和频率与有功功率一样,是一对对立的统一体。
当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。
电压与无功功率之间的关系要比频率与有功功率之间的关系复杂得多,大体上有以下几点:2.1在一个并列运行的电力系统中,任何一点的频率都是一样的,而电压与无功电力却不是这样的。
当无功功率平衡时,整个电力系统的电压从整体上看是会正常的,是可以达到额定值的,即便是如此,也是指整体上而已,实际上有些节点处的电压并不一定合格,如果无功不是处于平衡状态时,那么情况就更复杂了,当无功出力大于无功负荷时,电压普遍会高一些,但也会有个别地方可能低一些,反之,也是如此。
浅谈电网的无功补偿与电压调整【摘要】电网的无功补偿和电压调整对电力系统的稳定运行至关重要。
无功补偿能够提高电网效率,减少潜在的负载问题,同时增加电力系统的稳定性。
而电压调整则能保持电网中的电压稳定,确保电力设备正常运行。
常见的无功补偿设备包括静态补偿器和同步电容器,而电压调整方法主要有调压器和自动电压调整器。
为了优化电网运行,可以采取措施如降低电力损耗、减少电网压降以及提高电力负载能力等。
电网的无功补偿和电压调整对于保障电力系统的安全稳定运行具有重要意义,需要各方共同努力来提高电力系统的可靠性和效率。
【关键词】无功补偿、电压调整、电网、稳定运行、重要性1. 引言1.1 介绍电网的无功补偿和电压调整的重要性电网的无功补偿和电压调整在电力系统中起着至关重要的作用。
无功补偿能够提高电网的功率因数,减少线路传输损耗,提高系统的稳定性和可靠性。
而电压调整则可以确保电网中的电压稳定在合适的范围内,保障各类电气设备的正常运行,同时提高供电质量。
由于电力系统中无功功率不能直接通过输电线路传输,需要通过专门的无功补偿设备来进行调整;而电压调整则需要通过相应的控制方法和调节设备来实现。
通过优化电网的无功补偿和电压调整,可以有效提高电网的运行效率,降低系统的运行成本,并且减少供电事故的发生概率。
深入研究和实施电网的无功补偿和电压调整技术显得尤为重要,对于保障电网的持续稳定运行具有不可替代的作用。
2. 正文2.1 无功补偿的作用无功补偿是指在电力系统中通过补偿电网中存在的无功功率,以维持电网的正常运行和提高系统的功率因数。
无功功率是交流电路中在电压和电流的波形之间存在的相位差引起的功率,它并不完成有用功但会消耗系统的电能。
电网中存在大量的感性负载或容性负载时,会导致系统的功率因数下降,影响电网的稳定性。
通过无功补偿可以调节系统的功率因数,减少系统中的无功功率流动,提高系统的效率和稳定性。
无功补偿的作用主要包括以下几个方面:无功补偿可以提高系统的功率因数,减小线损、降低电网运行成本,提高系统的能效。
水电工程Һ㊀浅析电力系统中电容器无功补偿与电压调整的问题及处理措施丁向利摘㊀要:就目前我国电力系统而言,电压是我国衡量电力系统质量的重要指标和参数,电力系统当中的设备,在进行设计制造时,均是按照国家标准的额定电压进行设计的,从而保证设备电压和额定电压的偏移值在可控范围内㊂文章针对电力系统中电容器无功补偿与电压调整的问题及处理措施展开探究,并提出一些参考建议,为电力系统行业的发展提供一些技术和理论的支持㊂关键词:电力系统;电容器;无功补偿;电压调整一㊁引言在电力系统的正常运行过程中,电压损耗是十分常见,也是无法避免的问题,存在电压损耗的主要因素,还是由于电力系统当中无功功率在电压当中出现压降,而有功功率在电阻当中存在压降现象㊂通常来说,我国电力系统当中的电阻值通常要比电压数值低很多,也就导致无功功率对于电压损耗的影响较大,而有功功率所产生的电压损耗相对较小㊂在进行电压调整过程中,系统中会存在数量极多的母线或节点,主要是由于本身电压值均不相同,所以电力系统的电压和无功功率以及系统本身有着直接且紧密的联系,如果无功功率的损耗远高于有功功率的损耗,需要对无功功率的电源设置位置进行调整,并安排无功功率补偿措施㊂二㊁无功功率平衡探讨(一)无功平衡关系探究想要达到无功平衡的目的,这需要电力系统无功电源所形成的,电话系统网络无功损耗和对应的无功负荷保持平衡,而无功平衡存在也会产出无功功率的损耗㊂(二)电力系统无功电源对于电力系统中存在的无功电源,不仅包含了同步电机的,还涵盖了静电状态下的无功补偿器㊁电容器和无功发生器等设备㊂上述设备均属于无功电源的一部分,在电力系统当中起着无功补偿的重要作用㊂(三)电力系统当中的无功负荷电力系统在进行无功负荷时,所涉及的设备主要是异步电动机,该电动机具有功率因数较小的优点,同时,在我国电力系统网络负荷工作中,发挥着比重较大的作用㊂三㊁电容器无功补偿措施(一)低压个别补偿这种补偿措施,具体内容是根据每个通电设备的无功需求量进行补偿的,把多台或某一台设备电容器分开,并和用电设备并联,长安形成一套断路器,再通过保护装置㊁控制和电机同时投切活动㊂这种方法的优点,它可以满足设备正常运行时,就可以进行无功补偿的投入,而设备停止工作时,补偿设备也会自动停止并退出,可以有效解决无功倒送的问题㊂同时,还具有占地面积小㊁安装方便㊁配置更换方便㊁投资资金较低㊁维护简单㊁事故率低的优点㊂(二)低压集中补偿这种补偿措施,主要是通过将低压电容和对应的开关与配电变压器进行连接,连接方向和低压母线相同,然后通过无功补偿投切装置,来对这一系统进行控制和保护,在运行过程中,可以依照低压母线无功负荷来进行控制,还能针对电容器开展投切处理㊂这种投切的方式是针对整组设备进行的,整体共同工作和停止,无法针对某一设备进行针对性的工作㊂这种方式的优点在于运行维护工作量小㊁接线简单㊁无功就地处理平衡,能够显著提高配电变压器的利用效率,降低电网在工作过程中所形成的损失,同时,也具有较高的经济价值,是我国当前采取的最常规的无功补偿手段㊂(三)高压集中补偿这种方式是通过并联电容器组,从而直接对变电所6 10kV高压母线进行作用,从而达到无功补偿㊂这种方式通常应用于变电站㊁用户离变电站较远㊁地理位置偏僻,在供电线路的末端部位的时候进行应用㊂与此同时,如果使用者本身有一部分高压负荷时,这种方法可以有效降低电力系统自身形成的无功损耗,一定程度上还能起到补偿作用㊂这种方法的优点就在于可以根据复核进行自动投切活动,有较高的补偿效益㊂四㊁电力系统电压调整电压和电力的质量息息相关,也直接反映着电力系统分布状态和无功功率,通过对电力系统的电压进行调整,可以有效保证电力系统的安全稳定运行,并保障电压质量,具体方式可以通过以下几种方式进行调整㊂电压的调整方式有横调压㊁逆调压㊁顺调压这三种,横调压更适合电负荷浮动小的企业,如三班倒类企业;你一条也可以用,用于电网负荷高的阶段电压上线和下线的运行;顺调压是通过对电力系统在电压额定范围内进行调整,从而降低高峰时段的电压值㊂电压调整具体可以通过,对发动机电压进行调压㊁调整变压器的变化㊁对补偿设备进行调压和适当加大导线的横截面积,通过这几种方法也可以有效对电力系统的电压进行调整,保障电力系统安全稳定运行㊂五㊁结语对于电力系统,电容器无功补偿和电压调整措施,可以有效提高电力系统电力输送的质量,保证电压的稳定性,更显著降低了我国在电力资源损耗当中所浪费的成本,极大程度地提高了社会的经济效益㊂参考文献:[1]刘阳.基于电力系统电容器无功补偿与电压调整问题的探讨[J].现代国企研究,2018(4):122.[2]李艳芸.煤矿电力系统电压无功补偿自动调节探究[J].自动化应用,2019(2):99-100,105.[3]王振河,陈天,咸日常,等.电力电容器常见故障分析及预防措施[J].电力电容器与无功补偿,2020,v.41;No.188(2):48-52.[4]康童.新颖元启发式智能优化算法及其在电力系统中的应用研究[D].长沙:湖南大学,2019.作者简介:丁向利,国网河北省电力有限公司邢台供电分公司㊂571。
浅谈电网的无功补偿与电压调整电网的无功补偿与电压调整在电力系统中起着非常重要的作用。
无功功率是指在交流电路中,既不做功也不产生热量的电能。
它是一种必须存在于交流电路中的功率,它的存在使得交流电路的电压和电流存在相位差。
而无功功率补偿则是通过无功功率补偿装置对电网中的无功功率进行调整,以维持电网的稳定运行。
对于电能系统来说,为了使系统能够正常稳定运行,需要保持电网中的功率平衡,即有功功率和无功功率的平衡。
而无功功率的产生和补偿在电网中具有重要的地位。
无功功率主要是由感性负载和容性负载所引起的,感性负载使得电网中存在导致电压下降的无功功率,而容性负载则使得电网中存在导致电压升高的无功功率。
对于电网来说需要通过无功功率补偿来对电网中的无功功率进行控制,以保持电网的电压稳定和功率平衡。
无功功率在电力系统中的作用非常重要,它直接关系到电力系统的供电质量和稳定性。
在电力系统中,无功功率补偿主要有两种方式,即静态无功功率补偿和动态无功功率补偿。
静态无功功率补偿是通过静止补偿设备(如无功功率补偿电容器、电感器等)来对电网中的无功功率进行补偿,从而改善电网的功率因数和电压质量。
而动态无功功率补偿则是通过动态稳态补偿设备(如静止无功功率补偿装置、电力电子器件等)来对电网中的无功功率进行动态调节,从而对电网中的无功功率进行精确调节,以保持电网的稳定运行。
对于电力系统来说,电压的稳定性是电力系统正常运行的关键指标之一。
当电网中出现大的无功功率波动或负载变化时,往往会导致电网中的电压下降或者电压上升,从而引起电网中的电压质量下降,甚至导致电力系统的不稳定运行。
由于大部分电力负载是动态变化的,在电力系统中不可避免地会出现无功功率的变化,因此需要通过无功功率补偿来对电网中的无功功率进行调节,以保持电网中的电压稳定。
电网的无功补偿与电压调整在电力系统中具有非常重要的作用。
通过对电网中的无功功率进行补偿,可以有效地提高电网的电压稳定性和功率平衡,保障电力系统的正常运行。
电力系统电压稳定与无功补偿随着电力需求的不断增长,电力系统的可靠性和稳定性越发显得重要。
而电力系统中的电压稳定与无功补偿正是确保系统运行平稳的关键因素。
本文将探讨电力系统电压稳定与无功补偿的原理、方法和作用。
一、电压稳定的重要性电力系统中,电压是衡量系统稳定运行的重要参数之一。
当电压波动较大时,不仅会影响电力设备的正常运行,还会导致电力损耗、安全隐患以及用户电器设备的损坏。
因此,保持电力系统的电压稳定非常关键。
电力系统中的电压稳定问题主要有两个方面:传输电压和终端电压。
传输电压稳定主要解决电力输送中线路功率损耗、电流负荷以及终端电压波动的问题,而终端电压稳定则解决用户用电终端设备的供电质量问题。
二、电压稳定的机理与方法电压稳定问题的解决需要了解电力系统中电压波动的原因以及相应的解决方法。
电力系统中的电压波动通常由于以下几个方面原因引起:负载变化、短路故障、突发负荷等。
为保持电力系统的电压稳定,可以采取以下方法。
1. 调整发电机的输出发电机是电力系统的重要组成部分,通过控制发电机的输出来调整系统电压,能有效地解决电压波动的问题。
例如,通过调整发电机的励磁电流、切换发电机并联等方式,可以提高电力系统的电压稳定性。
2. 使用变压器调压器变压器调压器是一种常用的调节电压的设备。
它可以通过调整变压器的转换比,改变系统的电压水平。
例如,在电力系统负荷增加时,可以适当降低变压器的转换比,以提高系统电压,从而保持电力系统的电压稳定。
3. 安装电力电子设备电力电子设备在电力系统中发挥着越来越重要的作用。
通过安装电容器、感应器等电力电子设备,可以有效地改变系统的无功功率流动,从而调整系统的电压水平。
例如,在电力系统中引入静态无功补偿装置(SVC),可以控制电压回路的电阻、电感和电容,以实现无功功率补偿和电压稳定。
三、无功补偿的作用与方法无功补偿是电力系统中实现电压稳定的重要手段之一。
无功补偿主要通过调整电力系统的无功功率流动,实现电压的稳定。
电力系统电压调整的措施
电力系统电压调整是确保电力供应稳定和保障设备正常运行的重要措施之一。
以下是常见的电力系统电压调整措施:
1.发电机调压器控制:发电机调压器是调整发电机输出电压的关键设备。
通过控制调压器的输出电压,可以调整发电机的电压,以满足电力系统的需求。
2.变压器控制:在输电过程中,变压器起到调整电压的作用。
通过调整变压器的变比,可以实现对电压的调整。
控制系统根据电网的负荷情况来调整变压器的变比,以保持正常的电压水平。
3.无功补偿设备:无功补偿设备,如无功补偿容器和STATCOM(静止同步补偿器),可以对电压进行补偿控制。
通过投入或退出无功补偿设备,可以调整系统的无功功率,并间接影响电压水平。
4.电力调度和功率平衡:电力系统的运营人员通过电力调度和功率平衡来控制电压。
根据负荷的变化和供需情况,调整发电机出力和负荷调度,以保持电力系统的稳定和电压水平的合理范围。
5.电压稳定控制器:电压稳定控制器是用于监测和自动调整电压的设备。
通过采集电网的电压信息,并根据预设的控制策略,自动调整发电机的励磁、变压器的变比以及无功
补偿设备的投入与退出,以维持电力系统的电压稳定。
调整电力系统电压的措施电力系统电压调整是电网运行过程中常见的问题,如果电压偏高或偏低都会对电网系统的稳定性和安全性产生影响。
因此,为保障电网的正常运行,需要采取一些措施来调整电力系统电压,下面就是一些常见的措施:1. 调整发电机的励磁电流在电力系统中,发电机的励磁电流会对电压产生影响。
当电压偏低时,要增加发电机的励磁电流,以提高发电机电压。
当电压偏高时,要减小发电机的励磁电流,以降低发电机电压。
因此,调整发电机的励磁电流是调整电力系统电压的重要手段之一。
2. 调节变压器的输出电压变压器是电力系统中常用的电压调整设备之一,通过调节变压器的输出电压,可以对电力系统的电压进行调整。
当电压偏低时,要增加变压器的输出电压;当电压偏高时,要减小变压器的输出电压。
调节变压器的输出电压可以通过调整变压器的控制电路或调整变压器的连接组数来实现。
3. 调整无功补偿装置在电力系统中,无功补偿装置可以用来调整电网系统的电压。
当电压偏低时,可以通过启动无功补偿装置来提高电网的电压。
当电压偏高时,可以通过关闭无功补偿装置来降低电网的电压。
因此,使用无功补偿装置可以有效地调整电力系统的电压。
4. 调整负荷负荷大小是影响电力系统电压的因素之一。
当负荷过大时,会导致电压下降;当负荷过小时,会导致电压升高。
因此,在调整电力系统电压时,需要根据实际负荷情况进行合理地调整。
对于负荷过大的情况,需要采取措施减小负荷;对于负荷过小的情况,需要采取措施增加负荷。
5. 定期进行检查和维护定期检查和维护电力设备是保障电力系统稳定运行的重要措施之一。
在检查和维护中,可以发现电力设备的故障和异常情况,及时采取措施进行修理和更换,以保证电力设备的正常运行。
定期维护还可以提高电力设备的使用寿命,降低故障率和维修成本,保障电力系统的安全可靠运行。
以上就是一些常见的调整电力系统电压的措施。
在电力系统的日常运行和维护中,需要根据实际情况合理地采取这些措施,保障电力系统的安全、稳定、可靠运行。
图9-7 综合负荷的电压静态特性图9-8 发电机有功与无功功率的出力图第二节 电力系统无功功率与电压的调整电压是衡量电能质量的重要指标,各种电气设备都是设计在额定电压下运行的,这样既安全又有最高的效率。
电力系统在正常运行时,由于网络中电压损耗的存在,当用电负荷变化或系统运行方式变化时,网络中的电压损耗也将发生变化,从而网络中的电压分布将不可避免地随之而发生变化。
随着电力工业的发展,供电范围不断扩大,网络的电压损耗也增大,要使系统中各处的电压都在允许的偏移范围内,需要采取多种调压措施。
电力系统的负荷由各种类型的用电设备组成,一般以异步电动机为主体。
综合负荷的电压静态特性,即电压与负荷取用的有功功率和无功功率的关系如图9-7所示。
分析负荷的电压静态特性可见,在额定电压附近,电压与无功功率的关系比电压与有功功率的关系密切得多,表现为无功功率对电压具有较大的变化率,所以分析系统运行的电压水平应从系统的无功功率分析入手。
一、电力系统的无功功率平衡1.无功电源 电力系统的无功电源有发电机、同步调相机、静电电容器及静止补偿器等。
同步发电机不仅是电力系统唯一的有功电源,也是电力系统的主要无功电源。
当发电机处于额定状态下运行时,发出的无功功率为 Q GN =S GN sin φN =P GN tg φN (9-6)式中,S GN ——发电机的额定视在功率;P GN ——发电机的额定有功功率;Q GN ——发电机的额定无功功率;φN ——发电机的额定功率因数角。
现在以图9-8所示的汽轮发电机有功与无功功率出力图为例来分析发电机在非额定功率因数下运行时,可能发出的无功功率。
图中OA 代表发电机额定电压GN U ,GN I 为发电机额定定子电流,它滞后于GN U 一个额定功率因数角φN 。
AC 代表GNI 在发电机电抗X d 上引起的电压降,正比于定子额定电流,所以AC 亦正比于发电机的额定视在功率S GN 。
这样,C 点表示了发电机的额定运行点。
电力系统无功补偿及调压设计技术导则一、引言本文的主题是电力系统无功补偿及调压设计技术导则。
无功补偿和调压是电力系统运行中十分重要的技术,对于提高电力系统的功率因数和稳定运行具有重要意义。
在本文中,我们将全面、详细、完整地探讨无功补偿和调压的设计技术,包括其基本原理、常见的无功补偿和调压设备以及设计要点等方面。
二、无功补偿的基本原理1. 无功功率的定义无功功率是指电力系统中的反馈功率,不对外界做功,主要用于维持电力系统中的电压稳定。
在电力系统中,无功功率分为容性无功和感性无功两种。
2. 无功补偿的作用无功补偿是指通过在电力系统中添加适当的无功功率来提高功率因数,减小电力系统的无功负荷。
无功补偿的作用主要包括: - 提高电力系统的功率因数; - 减小电力系统的线路损耗; - 提高电力系统的电压稳定性。
3. 无功补偿的设备常见的无功补偿设备有静态无功补偿器(SVC)、静止无功发生器(STATCOM)和同步补偿器等。
这些设备可以根据电力系统的实际需要进行选择和配置,从而实现无功补偿的效果。
4. 无功补偿的设计要点无功补偿的设计需要考虑电力系统的运行情况、负荷需求以及无功功率的分布等因素。
在设计中,需要注意: - 合理选择无功补偿设备的容量和位置; - 考虑电力系统的负载特性,合理分配无功功率; - 防止无功补偿设备引起电力系统的谐波问题。
三、调压设计技术的基本原理1. 电压调节的目的电压调节是为了保证电力系统中的电压稳定在额定值附近。
电力系统中的电压过高或过低都会对电器设备的正常运行产生不利影响,因此电压调节是电力系统中必不可少的技术。
2. 电压调节的方法电压调节可以通过变压器调压、变容器调压、调整发电机励磁电压等多种方法实现。
各种方法可以根据电力系统的实际情况来选择和配置。
3. 电压调节的设计要点在进行电压调节的设计时,需要考虑以下几个要点: - 合理选择电压调节设备的容量和数量; - 考虑电力系统的负载变化情况,调整调压设备的响应速度; - 防止电压调节设备对电力系统造成的谐波扰动。
调整电力系统电压的措施电力系统电压的稳定性对于能源的输送以及电网的运营至关重要。
如果电压不稳定,可能会导致电网中出现大面积停电或者电器设备损坏等问题。
因此,电力系统运营中需要采取一些措施来调整和维护电压的稳定性。
以下是调整电力系统电压稳定性的措施:1. 误差补偿当电力系统中的设备出现偏差时,误差补偿可以帮助调整电压。
误差补偿是通过添加外部电源来补偿电压误差。
例如,当负载变化时,电压可能会产生变化。
这可能会导致电力系统中的电压过低或过高。
通过误差补偿,我们可以补偿这种电压偏差,从而维持电力系统的稳定性。
2. 电容器和感应器的使用电容器和感应器也可以用来调整电压。
这些组件可以通过向电力系统中添加或移除电容器和感应器来改变电压。
例如,电容器可以被用作电力系统中的电能储备器。
当负载变化时,电容器可以释放电能应对电压变化。
感应器也可以被用来调整电力系统中的电压。
感应器可以通过增加或减少电流来改变电压。
3. 变压器的使用变压器也是调整电力系统电压的重要工具。
变压器可以将电能从一处转移到另一处,并对电压进行调整。
例如,当电力系统中的电压过高时,变压器可以将电压降低到合适的水平。
同样的,当电压过低时,变压器也可以将电压升高到合适的水平。
4. 静态无功补偿静态无功补偿是一种调整电力系统电压的先进技术。
静态无功补偿可以通过控制电力系统中的无功功率来改变电压。
例如,当电力系统中的负载发生变化时,无功功率的需求也会随之变化。
通过静态无功补偿,我们可以控制无功功率的大小,并调整电力系统中的电压。
5. 电力系统的监控和控制监控和控制也是调整电力系统电压稳定性的重要手段。
通过对电力系统进行监控,我们可以及时发现电压问题,采取及时的措施进行调整。
例如,可以采用自动电压调节器(AVR)和电力控制系统(PCS)等技术来控制电力系统中的电压。
这些技术可以对电力系统进行实时监控,并自动采取措施调整电压。
总结一下,调整电力系统电压的措施有很多种,包括误差补偿、电容器和感应器的使用、变压器的使用、静态无功补偿以及电力系统的监控和控制等。
并联电容器对电力系统无功补偿及电压调节问题的探讨马文成摘要:变电站并联电容器可以对电网的无功功率进行集中补偿。
通过对无功功率的合理补偿,从而达到调节电压、使系统经济和稳定运行。
但在实际运行中,往往由于设计原因,无功负荷的分布不可预见性等因素导致变电站母线并联电容器不能合理的补偿无功和调节电压。
下面就某站10kV 母线并联电容器运行中存在的问题加以分析和探讨。
关键词:并联电容器、无功补偿、电压调节某变电站电压等级为110/35/10kV ,两台主变容量分别为25000kVA 和20000kVA 的有载调压变压器,正常时20000kVA 变压器运行,另一台主变热备用,10kV Ⅰ、Ⅱ段母线经分段开关联成单母运行。
10kV Ⅱ段母线装var 36003600102K TBB -成套电容器装置,电容器型号为:W BFFH 31180023114⨯-⨯--密集型电容器,每组容量为var 1800K ,两组共3600var K ,其额定电流为89A ,串联电抗器型号为11012--CKGKL 的空芯电抗器,额定电抗率为1%。
1 运行中存在的问题该站自2000年投运以来,因10kV 母线并联电容器的补偿容量不合理致使电容器不能正常投入运行,因此,10kV 母线输送的无功负荷不能实现就地补偿,从而不利于电网运行的经济性和稳定性。
1.1 影响并联电容器投入运行的因素:1.1.1 并联电容器投入时补偿容量过剩图例分析如下: 25003000350040004500500055002月1月3月4月5月6月7月8月9月10月t800900100011001200700有功(kw )无功(kvar )图 A 10kV 母线2011 年平均有功、无功负荷曲线图上图数据为该站10kV 母线2011年有功、无功负荷平均值,从图中可以看出,10kV 母线年输送无功负荷最大值为1500var K ,最小值为500 var K ,平均值为1000var K 。
关于电力调度对电网无功及电压的调整方式分析摘要:电网无功补偿在电力系统中起到很重要的宏观调节作用,可以提高电网的功率因数,增加变电设备的效率,减少高压输电线路无用功,从而提高供电效率。
如果某个供电区域能合理地配备无功补偿装置并采取合理的补偿方案,就能最大限度地减少线损,提高供电可靠性;反之,如果设备选择不当,则会造成区域性电压波动,产生较大的谐波,导致事故的发生。
关键词:电力调度;电网;无功;电压一、无功调整基本原则1)电网无功功率在保证电压质量、降低电能损耗的前提下,实行分层、分区就地平衡的原则。
应尽可能使无功功率就地供应,避免通过长距离线路输送无功功率。
局部电网无功功率不足时,应先就地调整,无法调整时,再由电网调整。
2)发电机运行功率因数应按电网要求进行调整。
3)新投运发电机组应具备在有功功率额定时,功率因数进相0.95运行的能力。
对已投运的发电机组,有计划地进行进相运行的试验。
4)由市调直接调度的具有进相运行能力的发电机组,其运行方式的改变按值班调度员的命令执行。
5)无功补偿设备应按照电网无功功率优化计算结果优化配置,提高无功补偿设备的最优运行能力。
6)220 k V及以下电网的无功电源总容量应大于最大自然无功负荷,一般按1.15倍计算。
7)200 k V及以下电网在主变压器最大负荷时,其二次侧功率因数或由电网发出的无功功率与有功功率比值的正常范围。
8)直供变电站,当供电线路距离较近时,功率因数应该取自表中低值,其他情况应取高值。
9)无功补偿设备应视需要投入运行,以主变压器高压侧不向电网倒送无功功率为原则,只有当母线电压超出正常范围,且已无法调整时才能停运。
10)各级调度应根据电网的负荷、潮流变化及设备的技术状况及时调整运行方式,缩短供电半径,减少迂回供电,降低线损,实现电网经济运行。
二、电压调整基本原则电网电压调整实行逆调压:用电高峰时将区域各个母线电压调到电压越限范围的最大值,以保证供电线路末端的供电可靠性;用电低谷时将区域母线电压调到电压越限范围的最小值,以确保供电线路前端线路的供电可靠性。
电力系统的无功补偿和电压调整的解决方案1.引言电力系统中,电能质量是评价电力系统运行性能优劣的重要指标,而电压又是衡量电能质量的一个重要指标,因此,电压的稳定性对电力系统运行性能来说显得尤为重要。
电压稳定与否主要取决于系统中无功功率的平衡,如果用电负荷的无功需求波动较大,而电网的无功功率来源及其分布不能及时调控,就会导致线路电压超出允许极限;另外,对于负荷一侧,电力系统多由输配电线、变压器、发电机等构成,其内阻抗主要呈感性,使得负载无功功率的变化对电网电压的稳定性带来极为不利的影响。
无功功率补偿是涉及电力电子技术、电力系统、电气自动化技术、理论电工等领域的重大课题。
由于电力电子技术装置的应用日益普及生产、生活各个领域,无功补偿问题引起人们越来越多的关注。
据有关科学统计,如果全国都通过优化配置计算来安装无功补偿装置,在总投资不变的条件下,估计每年可以节省电量大约3亿千瓦时。
因此,电力系统的无功补偿和电压调整是保证电网安全、优质、经济运行的重要措施。
目前,由于电力电子技术的飞速进步,无功功率补偿方面也取得了突破性的进展。
2.连续无功补偿装置发展历史、现状和发展前景工程上应用的无功补偿器主要包括旋转无功补偿器和静止无功补偿器,其具体分类见图1。
电力系统的无功补偿和电压调整的解决方案2.1 连续无功补偿装置的发展历史旋转无功补偿器以同步调相机为代表,同步调相机实际上就是在过励或欠励状态下运行的同步电机,它既能发出容性无功,也能发出感性无功,因而同步调相机能对变化的无功功率进行动态补偿。
由于其存在诸多缺点(见表1),70年代以来逐渐被静止无功补偿器取代。
静止无功补偿技术经历了图1所示的3代发展:第Ⅰ代属于慢速无功补偿装置,在电力系统中应用较早,目前也仍在应用;第Ⅱ代属无源、快速动态无功补偿装置,出现于 20 世纪 70 年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少,SVC 可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。
SVC 作为系统补偿时可以连续调节并与系统进行无功功率交换;第Ⅲ代属快速的动态无功补偿装置,国外从20世纪80年代开始研究,90年代末得到较广泛的应用。
随着大功率全控型电力电子器件GTO、IGBT、及IGCT的出现,特别是相控技术、脉宽调制技术(PWM)、四象限变流技术的提出,使得电力电子逆变技术得到快速发展,以此为基础的无功补偿技术也得以迅速发展。
静止同步补偿器,作为FACTS 家族最重要的成员,在美国、德国、日本、中国相继得到成功应用。
此外,SVG和SVC相比还拥有调节速度更快、调节范围更广、欠压条件下的无功调节能力更强等优点,同时谐波含量和占用空间都大大减少。
3代无功补偿装置的优缺点见表1。
2.2 国内外电网动态无功补偿的现状我国电网中目前使用最为广泛的补偿装置是机械投切的并联电容器组。
为满足调压要求,在低压供电网络中装设了大量的并联电容器组,在中压配电网络中装设了少量的并联电容器组。
牡丹江科海电气设备有限公司设计生产的G(X)JF1型电容器跟踪投切柜(箱)采用了KH -ZK电容器智能投切开关;G(X)JK1型接触器式电容器跟踪投切柜(箱)投切电容过程涌流小,整机使用寿命长,维修量小,无功补偿响应快,可频繁投切,多级补偿一次到位。
包括G(X)D1型电容投切产品都是该补偿装置的进步发展。
目前,我国输电系统中一共有5地 6套大容量SVC投入使用,它们分别被装设在广东江门、湖南云田、湖北凤凰山(2套)、河南小刘以及辽宁沙岭的500kV变电站中。
此类SVC多为进口,其中有3套是ABB 公司的产品。
SVC在大型工矿企业中的应用较为广泛,在钢铁企业中的应用尤为突出,武汉钢铁公、包头钢铁公司、宝山钢铁公司、济南钢铁公司、张家港沙钢铁公司、天津钢管公司等均装有该补偿装置,如济南钢铁公司中厚板厂二期工程在35kV母线上安装了由西门子公司设计制造的一套容量为25Mvar的SVC,2001年底带负荷一次投运成功。
从国际范围来讲,目前SVC与SVG都已得到普遍的应用。
SVC出现早,应用时间长,仅ABB公司,其目前在全世界投运的SVC就已超过370套,ABB 与西门子两个公司已安装的SVC总容量约为9万Mvar(包括已退役装置)。
SVG装置在20世纪主要以示范工程为主,从上世纪90年代末到本世纪初,SVG在日本及欧美得到了广泛应用,尤其是在冶金、铁道等需要快速动态无功补偿的场合。
1999 年3月,我国第一台工业化STATCON在河南省洛阳市朝阳变电站成功并网运行,标志着我国掌握了高压大容量FACTS 设备的设计制造技术。
2.3 静止无功补偿装置的发展前景随着电力电子技术的日新月异以及各门学科的交叉影响,静止无功补偿的发展趋势主要有以下几点:(1)在城网改造中,运行单位往往需要在配电变压器的低压侧同时加装无功补偿控制器和配电综合测试仪,因此提出了无功补偿控制器和配电综合一体化的问题。
(2)快速准确地检测系统的无功参数,提高动态响应时间,快速投切电容器,以满足工作条件较恶劣的情况(如大的冲击负荷或负荷波动较频繁的场合)。
随着计算机数字控制技术和智能控制理论的发展,可以在无功补偿中引入一些先进的控制方法,如模糊控制、微机控制等。
(3)目前无功补偿技术还主要用于低压系统。
高压系统由于受到晶闸管水平的限制,是通过变压器降压接入的,如用于电气化铁道牵引变电所等。
研制高压动态无功补偿的装置具有十分重要的意义,关键是要解决补偿装置晶闸管和二极管的耐压,即多个晶闸管元件串联及均压、触发控制的同步性等问题。
(4)由单一的无功功率补偿到具有滤波以及抑制谐波的功能。
随着电力电子技术的发展和电力电子产品的推广应用,供电系统或负荷中含有大量谐波。
研制开发兼有无功补偿与电力滤波器双重优点的晶闸管开关滤波器,将成为改善系统功率因数、抑制谐波、稳定系统电压、改善电能质量的有效手段。
有源电力虑波器(APF)、统一潮流控制器(UPFC)正是既能补偿谐波,又能补偿无功的装置,虽然有电流中的高次谐波,单台容量低,成本较高等问题,但是其发展前景仍然看好。
(5)将一个由晶闸管换流器产生的交流电压串入并叠加在输电线相电压上,使其幅值和相角皆可连续变化,从而实现线路有功和无功功率的准确调节,并可提高输送能力以及阻尼系统振荡。
目前综合潮流控制器(UPFC)发展较为迅速,美国西屋电气公司研制出串联潮流控制器(SPFC),其造价明显低于UPFC,功能可与之相比且优于SVG。
3.无功功率补偿的根本目的工程运用中,为了提高电网功率因数及稳定电网电压,通常引入无功补偿装置。
对系统进行无功补偿,能够改变功率因数,降低系统损耗,大大提高电网功率的运行效率。
另外,无功补偿还可以减少电压闪变、降低过电压以及提高电力系统的静止和动态稳定性等,就其经济价值而言,具有重要意义。
3.1 减少线路压降,提高电压的稳定性无功补偿装置的引入,平衡了系统中无功功率,提高了电压的稳定性。
由于线路传送电流小了,系统的线路电压损失也相应减小,有利于系统电压的稳定(轻载时要防止超前电流使电压上升过高),有利于大电机装置的起动。
3.2 降低系统能耗,提高资源的利用率功率因数的提高,能一定程度减少线路损耗及变压器的铜耗。
由(5)式可知,功率因数从0.8提高至0.9时,铜耗相当于原来的79%。
3.3 改善功率因数,减少相应电费根据国家水电部,物价局颁布的《功率因数调整电费办法》,规定三种功率因数标准值,相应减少电费:(1)高压供电的用电单位,功率因数为0.9以上。
(2)低压供电的用电单位,功率因数为0.85以上。
(3)低压供电的农业用户,功率因数为0.8以上。
根据《办法》,补偿后的功率因数以分别不超出0.95、0.94、0.92为宜,因为超过此值,电费并没有减少,相反初次设备增加,是不经济的。
3.4 增加供电功率,减少用电投资对于原有供电设备来讲,同样的有功功率下,功率因数提高,负荷电流减小,因此向负荷传输功率所经过的变压器、开关、导线等配电设备都增加了功率储备,发挥了设备的潜力。
对于新建项目来说,降低了变压器容量,减少了投资费用,同时也减少了运行后的基本电费。
4.无功补偿的一般方法无功功率补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿和高压集中补偿。
4.1 低压个别补偿低压个别补偿就是根据个别用电设备对无功的需求,将单台或多台低压电容器组分散地与用电设备并接。
它与用电设备共用一套断路器,通过控制、保护装置与电机同时投切,随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。
低压个别补偿的优点:根据用电设备运行或者停运,无功补偿投入或者退出,不会造成无功倒送。
具有投资少、体积小、安装容易、配置方便、操作灵活、维护简单、事故率低等优点。
4.2 低压集中补偿低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷直接控制电容器的投切。
电容器的投切是整组进行,做不到平滑的调节。
低压集中补偿的优点:配置容易、维护简单、平衡迅捷,从而提高配变利用率,降低网损,具有较高的经济价值,是目前无功补偿常用手段之一。
4.3 高压集中补偿高压集中补偿是指将并联电容器组直接接在变电所6~10kV高压母线上的补偿方式。
适用于远离变电所或在供电线路末端的用户,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗,起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。
高压集中补偿的优点:配置灵活、维护简单,补偿效益高等。
5.无功功率补偿的基本原理在电力系统中,无功功率的动态补偿,可以实现如下诸多功能,比如:①对动态无功负荷的功率因数校正;②调整电压;③提高电力系统的动态和静态稳定性;④降低过电压;⑤减少电压闪烁;⑥阻尼功率振荡;⑦阻尼次同步振荡;⑧减少电压和电流的不平衡。
虽然以上八种功能相互关联,然而,实际的静止无功补偿装置往往只能以其中的某一条或某几条为直接控制目标,尽可能的兼顾其它功能,并且,在控制策略和控制方式有所侧重。
本文仅以改善电压调整的基本功能做一介绍。
补偿原理:将电路具体分为系统、负载和补偿器三部分的等效电路,其动态补偿原理如图2所示。
系统的特性曲线可近似用下式表示:电力系统的无功补偿和电压调整的解决方案由(7)式可以看出,无功功率的变化,引起系统电压成比例的变化,系统供给的无功功率为负载和补偿器无功功率之和,即:Q=QL+QY在电力工程运行过程中,负载无功功率QL变化时,补偿器的无功功率QY总能够弥补负载无功功率QL的变化,从而使得△Q=Q1-Q2,无功功率Q维持不变。