《比例应用题》练习题
- 格式:doc
- 大小:28.00 KB
- 文档页数:4
小学六年级数学比例应用题专项练习
1. 长度比例题
题目1
小明骑自行车去学校,半小时能骑行6公里。
如果小明用同样的速度骑行,那么1小时能骑行多远?
题目2
小红花了10分钟走完家到学校的路程,这段路程是4公里。
如果她用同样的速度走,那么20分钟能走多远?
题目3
小王从家到学校的路程是12公里。
如果他用1小时走完这段路程,他的速度是多少?
2. 面积比例题
题目1
一个矩形的长是3厘米,宽是5厘米。
如果长宽比例为1:2,
这个矩形的面积是多少平方厘米?
题目2
一个正方形的面积是25平方米,另一个正方形的面积是50平
方米。
这两个正方形的边长比例是多少?
题目3
一个圆的直径是10厘米,另一个圆的直径是20厘米。
这两个
圆的面积比是多少?
3. 比例综合应用题
题目1
小明所在班级有男生和女生,男生比例是1:3,女生比例是1:2。
班级一共有多少学生?
题目2
一个长方形的长和宽的比例是1:3,面积是12平方米。
这个长
方形的周长是多少?
题目3
根据统计,一车间有工人72人,其中男工人的比例是3:8。
女工人比男工人多多少人?
以上是小学六年级数学比例应用题专项练题目,希望能够帮助到你!。
关于比例的应用题一、简单比例应用题1. 题目- 已知甲、乙两数的比是3:5,甲数是12,求乙数是多少?- 解析:- 因为甲、乙两数的比是3:5,设乙数为x。
- 根据比例的定义,(甲)/(乙)=(3)/(5),已知甲数是12,可列出方程(12)/(x)=(3)/(5)。
- 通过交叉相乘得到3x = 12×5,即3x=60。
- 解得x = 20,所以乙数是20。
2. 题目- 一种盐水,盐和水的比是1:10,要配制这种盐水550克,需要盐和水各多少克?- 解析:- 盐和水的比是1:10,那么盐水一共是1 + 10=11份。
- 要配制550克盐水,每份的重量是550÷11 = 50克。
- 盐占1份,所以盐的重量是50×1 = 50克。
- 水占10份,水的重量是50×10 = 500克。
二、比例尺相关应用题1. 题目- 在比例尺是1:5000000的地图上,量得A、B两地的距离是6厘米。
A、B两地的实际距离是多少千米?- 解析:- 比例尺1:5000000表示地图上1厘米代表实际距离5000000厘米。
- 量得A、B两地在地图上的距离是6厘米,那么实际距离就是6×5000000 = 30000000厘米。
- 因为1千米 = 100000厘米,所以30000000厘米=30000000÷100000 = 300千米。
2. 题目- 一个长方形操场,长120米,宽80米。
如果把它画在比例尺是1:400的图纸上,长和宽各应画多少厘米?- 解析:- 因为1米 = 100厘米,所以长120米=120×100 = 12000厘米,宽80米=80×100 = 8000厘米。
- 根据比例尺1:400,图上距离 = 实际距离×比例尺。
- 长应画12000×(1)/(400)=30厘米。
- 宽应画8000×(1)/(400) = 20厘米。
6年级比例应用题一、简单比例关系应用题(1 10题)1. 一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?解析:首先根据速度 = 路程÷时间,求出汽车的速度。
汽车3小时行驶180千米,速度为公式千米/小时。
然后根据路程 = 速度×时间,5小时行驶的路程为公式千米。
设5小时行驶公式千米,根据速度一定,路程和时间成正比例关系,可得公式,解得公式。
2. 配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?解析:药粉和水的比是公式,即水是药粉的500倍。
现有水6000千克,那么药粉的重量为公式千克。
设需要药粉公式千克,根据比例关系公式,解得公式。
3. 学校图书馆科技书与故事书的比是3:5,科技书有180本,故事书有多少本?解析:因为科技书与故事书的比是公式,设故事书有公式本,则公式,交叉相乘得公式,公式本。
思路是根据两种书数量的比例关系列方程求解。
4. 一块长方形菜地长和宽的比是5:3,长是40米,宽是多少米?解析:设宽是公式米,因为长和宽的比是公式,所以公式,交叉相乘得公式,公式米。
利用长和宽的比例关系来建立方程求解宽的长度。
5. 某工厂男职工与女职工的人数比是4:3,男职工有320人,女职工有多少人?解析:设女职工有公式人,根据男职工与女职工人数比是公式,可得公式,交叉相乘得公式,公式人。
依据给定的人数比例关系列方程求解女职工人数。
6. 一种混凝土是由水泥、沙子和石子按2:3:5配制而成的。
现在要配制150吨这种混凝土,需要水泥、沙子和石子各多少吨?解析:水泥、沙子和石子的比例为公式,总份数为公式份。
水泥占公式,沙子占公式,石子占公式。
水泥的重量为公式吨,沙子的重量为公式吨,石子的重量为公式吨。
先求出各成分占总量的比例,再根据总量求出各成分的量。
7. 小明和小红的零花钱之比是7:5,如果小明有56元零花钱,小红有多少元零花钱?解析:设小红有公式元零花钱,因为小明和小红零花钱之比是公式,所以公式,交叉相乘得公式,公式元。
六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。
- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。
- 已知甲数是12,即(12)/(x)=(3)/(5)。
- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。
- 解得x=(12×5)/(3)=20。
2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。
- 由比例性质可得4x = 24×3。
- 解得x=(24×3)/(4)=18人。
3. 一种药水是把药粉和水按照1:100的比配成的。
要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。
- 这种药水共4040克,那么一份就是4040÷101 = 40克。
- 药粉占1份,所以需要药粉40克。
4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。
- 根据比例性质3x=180×4。
- 解得x=(180×4)/(3)=240本。
5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。
- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。
- 它们的和是66,则5x + 6x=66。
- 即11x = 66,解得x = 6。
- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。
二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。
比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
数学比的应用题有答案数学比的应用题及答案1. 问题:小明和小红一起买了一些苹果,小明买了苹果的2/5,小红买了苹果的3/5。
如果小红买了15个苹果,那么小明买了多少个苹果?答案:小明买了12个苹果。
2. 问题:一个班级有40名学生,其中男生和女生的比是3:2。
这个班级有多少男生和女生?答案:这个班级有24名男生和16名女生。
3. 问题:一个工厂生产两种类型的产品,A型产品和B型产品。
A型产品和B型产品的生产比是4:3。
如果工厂一天生产了120个A型产品,那么它生产了多少个B型产品?答案:工厂生产了90个B型产品。
4. 问题:在一个水果店,苹果和橘子的比例是5:3。
如果水果店有100个苹果,那么有多少个橘子?答案:水果店有60个橘子。
5. 问题:在一次长跑比赛中,小华和小李的速度比是3:2。
如果小华跑了3600米,那么小李跑了多少米?答案:小李跑了2400米。
6. 问题:一个公园的树木中,松树和柏树的比例是7:4。
如果公园里有42棵柏树,那么有多少棵松树?答案:公园里有63棵松树。
7. 问题:在一个合唱团中,男生和女生的人数比是5:4。
如果合唱团有30名男生,那么合唱团有多少名女生?答案:合唱团有24名女生。
8. 问题:一个农场的奶牛和山羊的头数比是6:5。
如果农场有45头奶牛,那么有多少头山羊?答案:农场有37.5头山羊,但由于山羊的数量必须是整数,所以实际上会有37头山羊。
9. 问题:一个学校的图书馆中,科学书籍和文学书籍的比例是2:3。
如果图书馆有60本科学书籍,那么有多少本文学书籍?答案:图书馆有90本文学书籍。
10. 问题:在一次数学竞赛中,小刚和小强的得分比是4:5。
如果小强得了50分,那么小刚得了多少分?答案:小刚得了40分。
六年级关于比例的应用题一、比例应用题。
1. 一辆汽车3小时行驶180千米,照这样的速度,行驶300千米需要几小时?- 解析:首先根据速度 = 路程÷时间,求出汽车的速度。
已知汽车3小时行驶180千米,那么速度为180÷3 = 60(千米/小时)。
设行驶300千米需要x小时,因为速度一定,路程和时间成正比例,所以可列出比例式180:3 = 300:x,即180x=300×3,180x = 900,解得x = 5小时。
2. 用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?- 解析:因为每块方砖的面积是一定的,所以方砖的块数和铺地的面积成正比例。
设铺42平方米要用x块方砖。
可列出比例式20:320 = 42:x,20x=320×42,20x = 13440,解得x = 672块。
3. 配制一种农药,药粉和水的比是1:500。
- 现有水6000千克,配制这种农药需要药粉多少千克?- 解析:药粉和水的比是1:500,设需要药粉x千克,可列出比例式1:500=x:6000,500x = 6000,解得x = 12千克。
- 现有药粉3.6千克,配制这种农药需要水多少千克?- 解析:设需要水y千克,根据比例1:500 = 3.6:y,y=3.6×500 = 1800千克。
4. 学校操场长120米,宽80米,画在比例尺为1:4000的图纸上,长和宽各应画多少厘米?- 解析:因为比例尺=图上距离:实际距离,所以图上距离 = 实际距离×比例尺。
操场长120米=12000厘米,宽80米=8000厘米。
长应画12000×(1)/(4000)=3厘米,宽应画8000×(1)/(4000) = 2厘米。
5. 一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
- 解析:首先统一单位,4厘米= 40毫米。
比例尺=图上距离:实际距离=40:5 = 8:1。
小学比例应用题25道含答案1.一个箱子里有12个苹果和18个橘子,苹果和橘子的比例是多少?答案:2:3。
2.一个班级有48名学生,其中男生和女生的比例是3:5,男生有多少人?答案:18人。
3.一块土地被分为4份,其中3份分给了小王、小明、小李三人,他们的比例是1:2:3,小李分到的土地面积是60平方米,这块土地的总面积是多少?答案:160平方米。
4.某公司的员工有280人,其中男员工和女员工的比例是3:4,女员工有多少人?答案:160人。
5.某班级有30名学生,其中男生和女生的比例是2:3,女生有多少人?答案:18人。
6.一桶液体有48升,其中糖水和水的比例是1:3,糖水有多少升?答案:12升。
7.某个城市的总人口为800000人,其中男性和女性的比例是2:3,女性有多少人?答案:480000人。
8.一辆公交车上乘客的男性和女性的比例是1:2,如果有36名乘客是男性,公交车上有多少名乘客?答案:108名。
9.一家超市苹果和橙子一共60箱,苹果和橙子的比例是1:2,超市里有多少箱橙子?答案:40箱。
10.一个班级有60名学生,其中男生和女生的比例是1:3,女生有多少人?答案:45人。
11.某地区的总人口为500000人,其中男性和女性的比例是3:2,女性有多少人?答案:200000人。
12.一台机器由A、B、C三个部分组成,它们的价值比例是1:2:3,如果整台机器的价值为1500元,C部分的价值是多少元?答案:750元。
13.一栋楼房的高度是50米,它的模型高度是20厘米,模型与楼房的比例是多少?答案:1:250。
14.一种药物的瓶子里有15毫升药液和45毫升水,药液和水的比例是多少?答案:1:3。
15.一架飞机上有90名乘客,其中男性和女性的比例是2:3,女性有多少人答案:54人。
16.一个班级有40名学生,其中男生和女生的比例是3:2,男生有多少人?答案:24人。
17.一个班级有36名学生,其中男生和女生的比例是4:5,男生有多少人?答案:16人。
比例应用题含有答案比例应用题含有答案【试题】【题1】甲数比乙数少20%,那么乙数比甲数多百分之几?【题2】有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?【题3】一个正方体的棱长增加原长的1/2,他的表面积比原表面积增加百分之几?【题4】商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球占现在总数的25%,卖出的篮球是多少个?【题5】把一个正方形的一边削减20%,另一边增加2公尺,得到一个长方形,他与原来的正方形面积相等,那么正方形的.面积是多少平方公尺?【题6】已知甲校同学数是乙校同学数的40%,甲校女生数是甲校同学数的30%,乙校男生数是乙校同学数的42%,那么,两校女生数占两校同学总数的百分之几?【题7】把25公克盐放进100公克水里制成盐水,制成的这种盐水,含盐量是百分之几?【题8】某次会议,昨天参与会议的男代表比女代表多700人,今日男代表削减10%,女代表增加5%,今日共1995人出席会议,昨天参与会议的有多少人?【题9】有甲、乙两家商店,如甲店的利润增加20%,乙店的利润削减10%,那么,这两店的利润就相同,问原来甲店的利润是原来乙店的利润的百分之几?【题10】有浓度为3.2%的盐水500公克,为把他变成浓度是8%的盐水,需要使他蒸发掉多少公克的水?【参考答案】1.【解答】20%÷(1-20%)=25%。
2.【解答】16÷【(1-25%)÷25%―(1―45%)÷45%】=9(块)。
3.【解答】【(1+1/2)×(1+1/2)×6】÷(1×1×6)-1 = 125%。
4.【解答】45×60%-18×【25%÷(1-25%)】= 6(个)。
5.【解答】【2×(1-20%)÷20%】2 = 64(平方公尺)。
解比例应用题1、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?2、甲、乙两地相距240 千米,画在比例尺是1 ∶3000000 的地图上,长度是多少厘米?3、在一幅地图上,用 3 厘米的线段表示实际距离600 千米。
量得甲、乙两地的距离是4.5 厘米,甲、乙两地的实际距离是多少千米?4、运来一批纸装订成练习本,每本36 页,可订 40 本,若每本 30 页,可订多少本?5、在一幅比例尺是1: 30000 的地图上,量得东、西两村的距离是12.3 厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120 千米,在一幅比例尺是1:6000000 的地图上,应画多少厘米?7、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?8、在一幅比例尺是1 :4000 的平面图上,量得一块三角形的菜地的底是12 厘米,高是 8 厘米,这块菜地的实际面积是多少公顷?9、一辆汽车2 小时行驶 130 千米。
照这样的速度,从甲地到乙地共行驶5 小时。
甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行 64 千米, 5 小时到达。
如果要 4 小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修360 米,30 天可以修完。
如果要提前5 天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120 米,8 天可以修完;如果每天修150 米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长12 千米,开工 3 天修了 1.5 千米。
照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修120 米,8 天可以修完;如果每天多修30 米,几天可以修完?(用比例方法解)15、小明买4 本同样的练习本用了 4.8 元,138 元可以买多少本这样的练习本 ?(用比例解答)16、工厂有一批煤,计划每天烧2.4 吨,42 天可以烧完。
《比例应用题》练习题
1. 一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?
2. 一辆汽车2小时行驶130千米。
照这样的速度,从甲地到乙地共行驶5小时,甲、乙两地相距多少千米?
3. 修一条公路,总长12千米,开工3天修了1.5千米。
照这样计算,修完这条路还要多少天?
4. 修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?
5. 修一条公路,原计划每天修360米,30天可以修完。
如果要提前5天修完,每天要修多少米?
6.运一堆土,每天运150车,需要24天运完,如果要提前4天完成,每天要多运多少车?
7. 解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?
8.修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?
9. 一对互相啮合的齿轮,主动轮有60个齿,每分转80转。
从动轮有20个齿,每分转多少转?
10. 用6台同样的榨油机每天可榨油48.6吨,现增加13台这样的榨油机,每天共榨油多少吨?
11. 在一幅地图上,用3厘米的线段表示实际距离600千米。
量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?
12. 一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?
13.一种稻谷每1000千克能碾出大米720千克。
照这样计算,要得到180吨大米,需要稻谷多少吨?
14.一间教室,用一边长30cm的方砖铺地,需200块,如果改用边长为20cm的方砖铺地,需多少块?
15. 一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?
16.用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?
17.把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?
18.一辆汽车从甲地开往乙地,3.5小时行了全程的
7
5,照这样计算,行完全程要几小时?
19.工厂有一批煤,计划每天烧2.4吨,42天可以烧完。
实际每天节约12.5%,实际可以烧多少天?
20.一辆汽车从甲地开往乙地,如果每小时行80km ,9小时到达;这辆车前3小时已经行了180km ,照这样的速度,几小时能行完全程?(用正比例和反比例解答)。